subr_pserialize.c revision 1.13
1/*	$NetBSD: subr_pserialize.c,v 1.13 2019/10/06 15:11:17 uwe Exp $	*/
2
3/*-
4 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Passive serialization.
31 *
32 * Implementation accurately matches the lapsed US patent 4809168, therefore
33 * code is patent-free in the United States.  Your use of this code is at
34 * your own risk.
35 *
36 * Note for NetBSD developers: all changes to this source file must be
37 * approved by the <core>.
38 */
39
40#include <sys/cdefs.h>
41__KERNEL_RCSID(0, "$NetBSD: subr_pserialize.c,v 1.13 2019/10/06 15:11:17 uwe Exp $");
42
43#include <sys/param.h>
44
45#include <sys/condvar.h>
46#include <sys/cpu.h>
47#include <sys/evcnt.h>
48#include <sys/kmem.h>
49#include <sys/mutex.h>
50#include <sys/pserialize.h>
51#include <sys/proc.h>
52#include <sys/queue.h>
53#include <sys/xcall.h>
54
55struct pserialize {
56	TAILQ_ENTRY(pserialize)	psz_chain;
57	lwp_t *			psz_owner;
58	kcpuset_t *		psz_target;
59	kcpuset_t *		psz_pass;
60};
61
62static u_int			psz_work_todo	__cacheline_aligned;
63static kmutex_t			psz_lock	__cacheline_aligned;
64static struct evcnt		psz_ev_excl	__cacheline_aligned;
65
66/*
67 * As defined in "Method 1":
68 *	q0: "0 MP checkpoints have occured".
69 *	q1: "1 MP checkpoint has occured".
70 *	q2: "2 MP checkpoints have occured".
71 */
72static TAILQ_HEAD(, pserialize)	psz_queue0	__cacheline_aligned;
73static TAILQ_HEAD(, pserialize)	psz_queue1	__cacheline_aligned;
74static TAILQ_HEAD(, pserialize)	psz_queue2	__cacheline_aligned;
75
76#ifdef LOCKDEBUG
77#include <sys/percpu.h>
78
79static percpu_t		*psz_debug_nreads	__cacheline_aligned;
80#endif
81
82/*
83 * pserialize_init:
84 *
85 *	Initialize passive serialization structures.
86 */
87void
88pserialize_init(void)
89{
90
91	psz_work_todo = 0;
92	TAILQ_INIT(&psz_queue0);
93	TAILQ_INIT(&psz_queue1);
94	TAILQ_INIT(&psz_queue2);
95	mutex_init(&psz_lock, MUTEX_DEFAULT, IPL_SCHED);
96	evcnt_attach_dynamic(&psz_ev_excl, EVCNT_TYPE_MISC, NULL,
97	    "pserialize", "exclusive access");
98#ifdef LOCKDEBUG
99	psz_debug_nreads = percpu_alloc(sizeof(uint32_t));
100#endif
101}
102
103/*
104 * pserialize_create:
105 *
106 *	Create and initialize a passive serialization object.
107 */
108pserialize_t
109pserialize_create(void)
110{
111	pserialize_t psz;
112
113	psz = kmem_zalloc(sizeof(struct pserialize), KM_SLEEP);
114	kcpuset_create(&psz->psz_target, true);
115	kcpuset_create(&psz->psz_pass, true);
116	psz->psz_owner = NULL;
117
118	return psz;
119}
120
121/*
122 * pserialize_destroy:
123 *
124 *	Destroy a passive serialization object.
125 */
126void
127pserialize_destroy(pserialize_t psz)
128{
129
130	KASSERT(psz->psz_owner == NULL);
131
132	kcpuset_destroy(psz->psz_target);
133	kcpuset_destroy(psz->psz_pass);
134	kmem_free(psz, sizeof(struct pserialize));
135}
136
137/*
138 * pserialize_perform:
139 *
140 *	Perform the write side of passive serialization.  The calling
141 *	thread holds an exclusive lock on the data object(s) being updated.
142 *	We wait until every processor in the system has made at least two
143 *	passes through cpu_switchto().  The wait is made with the caller's
144 *	update lock held, but is short term.
145 */
146void
147pserialize_perform(pserialize_t psz)
148{
149	int n;
150
151	KASSERT(!cpu_intr_p());
152	KASSERT(!cpu_softintr_p());
153
154	if (__predict_false(panicstr != NULL)) {
155		return;
156	}
157	KASSERT(psz->psz_owner == NULL);
158	KASSERT(ncpu > 0);
159
160	if (__predict_false(mp_online == false)) {
161		psz_ev_excl.ev_count++;
162		return;
163	}
164
165	/*
166	 * Set up the object and put it onto the queue.  The lock
167	 * activity here provides the necessary memory barrier to
168	 * make the caller's data update completely visible to
169	 * other processors.
170	 */
171	psz->psz_owner = curlwp;
172	kcpuset_copy(psz->psz_target, kcpuset_running);
173	kcpuset_zero(psz->psz_pass);
174
175	mutex_spin_enter(&psz_lock);
176	TAILQ_INSERT_TAIL(&psz_queue0, psz, psz_chain);
177	psz_work_todo++;
178
179	n = 0;
180	do {
181		mutex_spin_exit(&psz_lock);
182
183		/*
184		 * Force some context switch activity on every CPU, as
185		 * the system may not be busy.  Pause to not flood.
186		 */
187		if (n++ > 1)
188			kpause("psrlz", false, 1, NULL);
189		xc_barrier(XC_HIGHPRI);
190
191		mutex_spin_enter(&psz_lock);
192	} while (!kcpuset_iszero(psz->psz_target));
193
194	psz_ev_excl.ev_count++;
195	mutex_spin_exit(&psz_lock);
196
197	psz->psz_owner = NULL;
198}
199
200int
201pserialize_read_enter(void)
202{
203	int s;
204
205	KASSERT(!cpu_intr_p());
206	s = splsoftserial();
207#ifdef LOCKDEBUG
208	{
209		uint32_t *nreads;
210		nreads = percpu_getref(psz_debug_nreads);
211		(*nreads)++;
212		if (*nreads == 0)
213			panic("nreads overflow");
214		percpu_putref(psz_debug_nreads);
215	}
216#endif
217	return s;
218}
219
220void
221pserialize_read_exit(int s)
222{
223
224#ifdef LOCKDEBUG
225	{
226		uint32_t *nreads;
227		nreads = percpu_getref(psz_debug_nreads);
228		(*nreads)--;
229		if (*nreads == UINT_MAX)
230			panic("nreads underflow");
231		percpu_putref(psz_debug_nreads);
232	}
233#endif
234	splx(s);
235}
236
237/*
238 * pserialize_switchpoint:
239 *
240 *	Monitor system context switch activity.  Called from machine
241 *	independent code after mi_switch() returns.
242 */
243void
244pserialize_switchpoint(void)
245{
246	pserialize_t psz, next;
247	cpuid_t cid;
248
249	/*
250	 * If no updates pending, bail out.  No need to lock in order to
251	 * test psz_work_todo; the only ill effect of missing an update
252	 * would be to delay LWPs waiting in pserialize_perform().  That
253	 * will not happen because updates are on the queue before an
254	 * xcall is generated (serialization) to tickle every CPU.
255	 */
256	if (__predict_true(psz_work_todo == 0)) {
257		return;
258	}
259	mutex_spin_enter(&psz_lock);
260	cid = cpu_index(curcpu());
261
262	/*
263	 * At first, scan through the second queue and update each request,
264	 * if passed all processors, then transfer to the third queue.
265	 */
266	for (psz = TAILQ_FIRST(&psz_queue1); psz != NULL; psz = next) {
267		next = TAILQ_NEXT(psz, psz_chain);
268		kcpuset_set(psz->psz_pass, cid);
269		if (!kcpuset_match(psz->psz_pass, psz->psz_target)) {
270			continue;
271		}
272		kcpuset_zero(psz->psz_pass);
273		TAILQ_REMOVE(&psz_queue1, psz, psz_chain);
274		TAILQ_INSERT_TAIL(&psz_queue2, psz, psz_chain);
275	}
276	/*
277	 * Scan through the first queue and update each request,
278	 * if passed all processors, then move to the second queue.
279	 */
280	for (psz = TAILQ_FIRST(&psz_queue0); psz != NULL; psz = next) {
281		next = TAILQ_NEXT(psz, psz_chain);
282		kcpuset_set(psz->psz_pass, cid);
283		if (!kcpuset_match(psz->psz_pass, psz->psz_target)) {
284			continue;
285		}
286		kcpuset_zero(psz->psz_pass);
287		TAILQ_REMOVE(&psz_queue0, psz, psz_chain);
288		TAILQ_INSERT_TAIL(&psz_queue1, psz, psz_chain);
289	}
290	/*
291	 * Process the third queue: entries have been seen twice on every
292	 * processor, remove from the queue and notify the updating thread.
293	 */
294	while ((psz = TAILQ_FIRST(&psz_queue2)) != NULL) {
295		TAILQ_REMOVE(&psz_queue2, psz, psz_chain);
296		kcpuset_zero(psz->psz_target);
297		psz_work_todo--;
298	}
299	mutex_spin_exit(&psz_lock);
300}
301
302/*
303 * pserialize_in_read_section:
304 *
305 *   True if the caller is in a pserialize read section.  To be used only
306 *   for diagnostic assertions where we want to guarantee the condition like:
307 *
308 *     KASSERT(pserialize_in_read_section());
309 */
310bool
311pserialize_in_read_section(void)
312{
313#ifdef LOCKDEBUG
314	uint32_t *nreads;
315	bool in;
316
317	/* Not initialized yet */
318	if (__predict_false(psz_debug_nreads == NULL))
319		return true;
320
321	nreads = percpu_getref(psz_debug_nreads);
322	in = *nreads != 0;
323	percpu_putref(psz_debug_nreads);
324
325	return in;
326#else
327	return true;
328#endif
329}
330
331/*
332 * pserialize_not_in_read_section:
333 *
334 *   True if the caller is not in a pserialize read section.  To be used only
335 *   for diagnostic assertions where we want to guarantee the condition like:
336 *
337 *     KASSERT(pserialize_not_in_read_section());
338 */
339bool
340pserialize_not_in_read_section(void)
341{
342#ifdef LOCKDEBUG
343	uint32_t *nreads;
344	bool notin;
345
346	/* Not initialized yet */
347	if (__predict_false(psz_debug_nreads == NULL))
348		return true;
349
350	nreads = percpu_getref(psz_debug_nreads);
351	notin = *nreads == 0;
352	percpu_putref(psz_debug_nreads);
353
354	return notin;
355#else
356	return true;
357#endif
358}
359