subr_percpu.c revision 1.14
1/*	$NetBSD: subr_percpu.c,v 1.14 2011/07/27 14:35:34 uebayasi Exp $	*/
2
3/*-
4 * Copyright (c)2007,2008 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/*
30 * per-cpu storage.
31 */
32
33#include <sys/cdefs.h>
34__KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.14 2011/07/27 14:35:34 uebayasi Exp $");
35
36#include <sys/param.h>
37#include <sys/cpu.h>
38#include <sys/kmem.h>
39#include <sys/kernel.h>
40#include <sys/mutex.h>
41#include <sys/percpu.h>
42#include <sys/rwlock.h>
43#include <sys/vmem.h>
44#include <sys/xcall.h>
45
46#define	PERCPU_QUANTUM_SIZE	(ALIGNBYTES + 1)
47#define	PERCPU_QCACHE_MAX	0
48#define	PERCPU_IMPORT_SIZE	2048
49
50#if defined(DIAGNOSTIC)
51#define	MAGIC	0x50435055	/* "PCPU" */
52#define	percpu_encrypt(pc)	((pc) ^ MAGIC)
53#define	percpu_decrypt(pc)	((pc) ^ MAGIC)
54#else /* defined(DIAGNOSTIC) */
55#define	percpu_encrypt(pc)	(pc)
56#define	percpu_decrypt(pc)	(pc)
57#endif /* defined(DIAGNOSTIC) */
58
59static krwlock_t	percpu_swap_lock	__cacheline_aligned;
60static kmutex_t		percpu_allocation_lock	__cacheline_aligned;
61static vmem_t *		percpu_offset_arena	__cacheline_aligned;
62static unsigned int	percpu_nextoff		__cacheline_aligned;
63
64static percpu_cpu_t *
65cpu_percpu(struct cpu_info *ci)
66{
67
68	return &ci->ci_data.cpu_percpu;
69}
70
71static unsigned int
72percpu_offset(percpu_t *pc)
73{
74	const unsigned int off = percpu_decrypt((uintptr_t)pc);
75
76	KASSERT(off < percpu_nextoff);
77	return off;
78}
79
80/*
81 * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
82 */
83
84static void
85percpu_cpu_swap(void *p1, void *p2)
86{
87	struct cpu_info * const ci = p1;
88	percpu_cpu_t * const newpcc = p2;
89	percpu_cpu_t * const pcc = cpu_percpu(ci);
90
91	KASSERT(ci == curcpu() || !mp_online);
92
93	/*
94	 * swap *pcc and *newpcc unless anyone has beaten us.
95	 */
96	rw_enter(&percpu_swap_lock, RW_WRITER);
97	if (newpcc->pcc_size > pcc->pcc_size) {
98		percpu_cpu_t tmp;
99		int s;
100
101		tmp = *pcc;
102
103		/*
104		 * block interrupts so that we don't lose their modifications.
105		 */
106
107		s = splhigh();
108
109		/*
110		 * copy data to new storage.
111		 */
112
113		memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
114
115		/*
116		 * this assignment needs to be atomic for percpu_getptr_remote.
117		 */
118
119		pcc->pcc_data = newpcc->pcc_data;
120
121		splx(s);
122
123		pcc->pcc_size = newpcc->pcc_size;
124		*newpcc = tmp;
125	}
126	rw_exit(&percpu_swap_lock);
127}
128
129/*
130 * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
131 */
132
133static void
134percpu_cpu_enlarge(size_t size)
135{
136	CPU_INFO_ITERATOR cii;
137	struct cpu_info *ci;
138
139	for (CPU_INFO_FOREACH(cii, ci)) {
140		percpu_cpu_t pcc;
141
142		pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
143		pcc.pcc_size = size;
144		if (!mp_online) {
145			percpu_cpu_swap(ci, &pcc);
146		} else {
147			uint64_t where;
148
149			where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
150			xc_wait(where);
151		}
152		KASSERT(pcc.pcc_size < size);
153		if (pcc.pcc_data != NULL) {
154			kmem_free(pcc.pcc_data, pcc.pcc_size);
155		}
156	}
157}
158
159/*
160 * percpu_backend_alloc: vmem import callback for percpu_offset_arena
161 */
162
163static vmem_addr_t
164percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
165    vm_flag_t vmflags)
166{
167	unsigned int offset;
168	unsigned int nextoff;
169
170	ASSERT_SLEEPABLE();
171	KASSERT(dummy == NULL);
172
173	if ((vmflags & VM_NOSLEEP) != 0)
174		return VMEM_ADDR_NULL;
175
176	size = roundup(size, PERCPU_IMPORT_SIZE);
177	mutex_enter(&percpu_allocation_lock);
178	offset = percpu_nextoff;
179	percpu_nextoff = nextoff = percpu_nextoff + size;
180	mutex_exit(&percpu_allocation_lock);
181
182	percpu_cpu_enlarge(nextoff);
183
184	*resultsize = size;
185	return (vmem_addr_t)offset;
186}
187
188static void
189percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
190{
191	size_t sz = (uintptr_t)vp2;
192
193	memset(vp, 0, sz);
194}
195
196/*
197 * percpu_zero: initialize percpu storage with zero.
198 */
199
200static void
201percpu_zero(percpu_t *pc, size_t sz)
202{
203
204	percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
205}
206
207/*
208 * percpu_init: subsystem initialization
209 */
210
211void
212percpu_init(void)
213{
214
215	ASSERT_SLEEPABLE();
216	rw_init(&percpu_swap_lock);
217	mutex_init(&percpu_allocation_lock, MUTEX_DEFAULT, IPL_NONE);
218	percpu_nextoff = PERCPU_QUANTUM_SIZE;
219
220	percpu_offset_arena = vmem_create("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
221	    percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
222	    IPL_NONE);
223}
224
225/*
226 * percpu_init_cpu: cpu initialization
227 *
228 * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
229 */
230
231void
232percpu_init_cpu(struct cpu_info *ci)
233{
234	percpu_cpu_t * const pcc = cpu_percpu(ci);
235	size_t size = percpu_nextoff; /* XXX racy */
236
237	ASSERT_SLEEPABLE();
238	pcc->pcc_size = size;
239	if (size) {
240		pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
241	}
242}
243
244/*
245 * percpu_alloc: allocate percpu storage
246 *
247 * => called in thread context.
248 * => considered as an expensive and rare operation.
249 * => allocated storage is initialized with zeros.
250 */
251
252percpu_t *
253percpu_alloc(size_t size)
254{
255	unsigned int offset;
256	percpu_t *pc;
257
258	ASSERT_SLEEPABLE();
259	offset = vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT);
260	pc = (percpu_t *)percpu_encrypt((uintptr_t)offset);
261	percpu_zero(pc, size);
262	return pc;
263}
264
265/*
266 * percpu_free: free percpu storage
267 *
268 * => called in thread context.
269 * => considered as an expensive and rare operation.
270 */
271
272void
273percpu_free(percpu_t *pc, size_t size)
274{
275
276	ASSERT_SLEEPABLE();
277	vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
278}
279
280/*
281 * percpu_getref:
282 *
283 * => safe to be used in either thread or interrupt context
284 * => disables preemption; must be bracketed with a percpu_putref()
285 */
286
287void *
288percpu_getref(percpu_t *pc)
289{
290
291	KPREEMPT_DISABLE(curlwp);
292	return percpu_getptr_remote(pc, curcpu());
293}
294
295/*
296 * percpu_putref:
297 *
298 * => drops the preemption-disabled count after caller is done with per-cpu
299 *    data
300 */
301
302void
303percpu_putref(percpu_t *pc)
304{
305
306	KPREEMPT_ENABLE(curlwp);
307}
308
309/*
310 * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
311 * helpers to access remote cpu's percpu data.
312 *
313 * => called in thread context.
314 * => percpu_traverse_enter can block low-priority xcalls.
315 * => typical usage would be:
316 *
317 *	sum = 0;
318 *	percpu_traverse_enter();
319 *	for (CPU_INFO_FOREACH(cii, ci)) {
320 *		unsigned int *p = percpu_getptr_remote(pc, ci);
321 *		sum += *p;
322 *	}
323 *	percpu_traverse_exit();
324 */
325
326void
327percpu_traverse_enter(void)
328{
329
330	ASSERT_SLEEPABLE();
331	rw_enter(&percpu_swap_lock, RW_READER);
332}
333
334void
335percpu_traverse_exit(void)
336{
337
338	rw_exit(&percpu_swap_lock);
339}
340
341void *
342percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
343{
344
345	return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
346}
347
348/*
349 * percpu_foreach: call the specified callback function for each cpus.
350 *
351 * => called in thread context.
352 * => caller should not rely on the cpu iteration order.
353 * => the callback function should be minimum because it is executed with
354 *    holding a global lock, which can block low-priority xcalls.
355 *    eg. it's illegal for a callback function to sleep for memory allocation.
356 */
357void
358percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
359{
360	CPU_INFO_ITERATOR cii;
361	struct cpu_info *ci;
362
363	percpu_traverse_enter();
364	for (CPU_INFO_FOREACH(cii, ci)) {
365		(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
366	}
367	percpu_traverse_exit();
368}
369