kern_time.c revision 1.95
1/*	$NetBSD: kern_time.c,v 1.95 2005/10/23 00:09:14 cube Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.95 2005/10/23 00:09:14 cube Exp $");
72
73#include "fs_nfs.h"
74#include "opt_nfs.h"
75#include "opt_nfsserver.h"
76
77#include <sys/param.h>
78#include <sys/resourcevar.h>
79#include <sys/kernel.h>
80#include <sys/systm.h>
81#include <sys/malloc.h>
82#include <sys/proc.h>
83#include <sys/sa.h>
84#include <sys/savar.h>
85#include <sys/vnode.h>
86#include <sys/signalvar.h>
87#include <sys/syslog.h>
88#include <sys/timevar.h>
89
90#include <sys/mount.h>
91#include <sys/syscallargs.h>
92
93#include <uvm/uvm_extern.h>
94
95#if defined(NFS) || defined(NFSSERVER)
96#include <nfs/rpcv2.h>
97#include <nfs/nfsproto.h>
98#include <nfs/nfs.h>
99#include <nfs/nfs_var.h>
100#endif
101
102#include <machine/cpu.h>
103
104static void timerupcall(struct lwp *, void *);
105
106/* Time of day and interval timer support.
107 *
108 * These routines provide the kernel entry points to get and set
109 * the time-of-day and per-process interval timers.  Subroutines
110 * here provide support for adding and subtracting timeval structures
111 * and decrementing interval timers, optionally reloading the interval
112 * timers when they expire.
113 */
114
115/* This function is used by clock_settime and settimeofday */
116int
117settime(struct timeval *tv)
118{
119	struct timeval delta;
120	struct cpu_info *ci;
121	int s;
122
123	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
124	s = splclock();
125	timersub(tv, &time, &delta);
126	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
127		splx(s);
128		return (EPERM);
129	}
130#ifdef notyet
131	if ((delta.tv_sec < 86400) && securelevel > 0) {
132		splx(s);
133		return (EPERM);
134	}
135#endif
136	time = *tv;
137	(void) spllowersoftclock();
138	timeradd(&boottime, &delta, &boottime);
139	/*
140	 * XXXSMP
141	 * This is wrong.  We should traverse a list of all
142	 * CPUs and add the delta to the runtime of those
143	 * CPUs which have a process on them.
144	 */
145	ci = curcpu();
146	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
147	    &ci->ci_schedstate.spc_runtime);
148#	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
149		nqnfs_lease_updatetime(delta.tv_sec);
150#	endif
151	splx(s);
152	resettodr();
153	return (0);
154}
155
156/* ARGSUSED */
157int
158sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
159{
160	struct sys_clock_gettime_args /* {
161		syscallarg(clockid_t) clock_id;
162		syscallarg(struct timespec *) tp;
163	} */ *uap = v;
164	clockid_t clock_id;
165	struct timeval atv;
166	struct timespec ats;
167	int s;
168
169	clock_id = SCARG(uap, clock_id);
170	switch (clock_id) {
171	case CLOCK_REALTIME:
172		microtime(&atv);
173		TIMEVAL_TO_TIMESPEC(&atv,&ats);
174		break;
175	case CLOCK_MONOTONIC:
176		/* XXX "hz" granularity */
177		s = splclock();
178		atv = mono_time;
179		splx(s);
180		TIMEVAL_TO_TIMESPEC(&atv,&ats);
181		break;
182	default:
183		return (EINVAL);
184	}
185
186	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
187}
188
189/* ARGSUSED */
190int
191sys_clock_settime(struct lwp *l, void *v, register_t *retval)
192{
193	struct sys_clock_settime_args /* {
194		syscallarg(clockid_t) clock_id;
195		syscallarg(const struct timespec *) tp;
196	} */ *uap = v;
197	struct proc *p = l->l_proc;
198	int error;
199
200	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
201		return (error);
202
203	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
204}
205
206
207int
208clock_settime1(clockid_t clock_id, const struct timespec *tp)
209{
210	struct timespec ats;
211	struct timeval atv;
212	int error;
213
214	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
215		return (error);
216
217	switch (clock_id) {
218	case CLOCK_REALTIME:
219		TIMESPEC_TO_TIMEVAL(&atv, &ats);
220		if ((error = settime(&atv)) != 0)
221			return (error);
222		break;
223	case CLOCK_MONOTONIC:
224		return (EINVAL);	/* read-only clock */
225	default:
226		return (EINVAL);
227	}
228
229	return 0;
230}
231
232int
233sys_clock_getres(struct lwp *l, void *v, register_t *retval)
234{
235	struct sys_clock_getres_args /* {
236		syscallarg(clockid_t) clock_id;
237		syscallarg(struct timespec *) tp;
238	} */ *uap = v;
239	clockid_t clock_id;
240	struct timespec ts;
241	int error = 0;
242
243	clock_id = SCARG(uap, clock_id);
244	switch (clock_id) {
245	case CLOCK_REALTIME:
246	case CLOCK_MONOTONIC:
247		ts.tv_sec = 0;
248		ts.tv_nsec = 1000000000 / hz;
249		break;
250	default:
251		return (EINVAL);
252	}
253
254	if (SCARG(uap, tp))
255		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
256
257	return error;
258}
259
260/* ARGSUSED */
261int
262sys_nanosleep(struct lwp *l, void *v, register_t *retval)
263{
264	static int nanowait;
265	struct sys_nanosleep_args/* {
266		syscallarg(struct timespec *) rqtp;
267		syscallarg(struct timespec *) rmtp;
268	} */ *uap = v;
269	struct timespec rqt;
270	struct timespec rmt;
271	struct timeval atv, utv;
272	int error, s, timo;
273
274	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
275	if (error)
276		return (error);
277
278	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
279	if (itimerfix(&atv))
280		return (EINVAL);
281
282	s = splclock();
283	timeradd(&atv,&time,&atv);
284	timo = hzto(&atv);
285	/*
286	 * Avoid inadvertantly sleeping forever
287	 */
288	if (timo == 0)
289		timo = 1;
290	splx(s);
291
292	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
293	if (error == ERESTART)
294		error = EINTR;
295	if (error == EWOULDBLOCK)
296		error = 0;
297
298	if (SCARG(uap, rmtp)) {
299		int error1;
300
301		s = splclock();
302		utv = time;
303		splx(s);
304
305		timersub(&atv, &utv, &utv);
306		if (utv.tv_sec < 0)
307			timerclear(&utv);
308
309		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
310		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
311			sizeof(rmt));
312		if (error1)
313			return (error1);
314	}
315
316	return error;
317}
318
319/* ARGSUSED */
320int
321sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
322{
323	struct sys_gettimeofday_args /* {
324		syscallarg(struct timeval *) tp;
325		syscallarg(void *) tzp;		really "struct timezone *"
326	} */ *uap = v;
327	struct timeval atv;
328	int error = 0;
329	struct timezone tzfake;
330
331	if (SCARG(uap, tp)) {
332		microtime(&atv);
333		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
334		if (error)
335			return (error);
336	}
337	if (SCARG(uap, tzp)) {
338		/*
339		 * NetBSD has no kernel notion of time zone, so we just
340		 * fake up a timezone struct and return it if demanded.
341		 */
342		tzfake.tz_minuteswest = 0;
343		tzfake.tz_dsttime = 0;
344		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
345	}
346	return (error);
347}
348
349/* ARGSUSED */
350int
351sys_settimeofday(struct lwp *l, void *v, register_t *retval)
352{
353	struct sys_settimeofday_args /* {
354		syscallarg(const struct timeval *) tv;
355		syscallarg(const void *) tzp;	really "const struct timezone *"
356	} */ *uap = v;
357	struct proc *p = l->l_proc;
358	int error;
359
360	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
361		return (error);
362
363	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
364}
365
366int
367settimeofday1(const struct timeval *utv, const struct timezone *utzp,
368    struct proc *p)
369{
370	struct timeval atv;
371	struct timezone atz;
372	struct timeval *tv = NULL;
373	struct timezone *tzp = NULL;
374	int error;
375
376	/* Verify all parameters before changing time. */
377	if (utv) {
378		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
379			return (error);
380		tv = &atv;
381	}
382	/* XXX since we don't use tz, probably no point in doing copyin. */
383	if (utzp) {
384		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
385			return (error);
386		tzp = &atz;
387	}
388
389	if (tv)
390		if ((error = settime(tv)) != 0)
391			return (error);
392	/*
393	 * NetBSD has no kernel notion of time zone, and only an
394	 * obsolete program would try to set it, so we log a warning.
395	 */
396	if (tzp)
397		log(LOG_WARNING, "pid %d attempted to set the "
398		    "(obsolete) kernel time zone\n", p->p_pid);
399	return (0);
400}
401
402int	tickdelta;			/* current clock skew, us. per tick */
403long	timedelta;			/* unapplied time correction, us. */
404long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
405int	time_adjusted;			/* set if an adjustment is made */
406
407/* ARGSUSED */
408int
409sys_adjtime(struct lwp *l, void *v, register_t *retval)
410{
411	struct sys_adjtime_args /* {
412		syscallarg(const struct timeval *) delta;
413		syscallarg(struct timeval *) olddelta;
414	} */ *uap = v;
415	struct proc *p = l->l_proc;
416	int error;
417
418	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
419		return (error);
420
421	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
422}
423
424int
425adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
426{
427	struct timeval atv;
428	long ndelta, ntickdelta, odelta;
429	int error;
430	int s;
431
432	error = copyin(delta, &atv, sizeof(struct timeval));
433	if (error)
434		return (error);
435
436	/*
437	 * Compute the total correction and the rate at which to apply it.
438	 * Round the adjustment down to a whole multiple of the per-tick
439	 * delta, so that after some number of incremental changes in
440	 * hardclock(), tickdelta will become zero, lest the correction
441	 * overshoot and start taking us away from the desired final time.
442	 */
443	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
444	if (ndelta > bigadj || ndelta < -bigadj)
445		ntickdelta = 10 * tickadj;
446	else
447		ntickdelta = tickadj;
448	if (ndelta % ntickdelta)
449		ndelta = ndelta / ntickdelta * ntickdelta;
450
451	/*
452	 * To make hardclock()'s job easier, make the per-tick delta negative
453	 * if we want time to run slower; then hardclock can simply compute
454	 * tick + tickdelta, and subtract tickdelta from timedelta.
455	 */
456	if (ndelta < 0)
457		ntickdelta = -ntickdelta;
458	if (ndelta != 0)
459		/* We need to save the system clock time during shutdown */
460		time_adjusted |= 1;
461	s = splclock();
462	odelta = timedelta;
463	timedelta = ndelta;
464	tickdelta = ntickdelta;
465	splx(s);
466
467	if (olddelta) {
468		atv.tv_sec = odelta / 1000000;
469		atv.tv_usec = odelta % 1000000;
470		error = copyout(&atv, olddelta, sizeof(struct timeval));
471	}
472	return error;
473}
474
475/*
476 * Interval timer support. Both the BSD getitimer() family and the POSIX
477 * timer_*() family of routines are supported.
478 *
479 * All timers are kept in an array pointed to by p_timers, which is
480 * allocated on demand - many processes don't use timers at all. The
481 * first three elements in this array are reserved for the BSD timers:
482 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
483 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
484 * syscall.
485 *
486 * Realtime timers are kept in the ptimer structure as an absolute
487 * time; virtual time timers are kept as a linked list of deltas.
488 * Virtual time timers are processed in the hardclock() routine of
489 * kern_clock.c.  The real time timer is processed by a callout
490 * routine, called from the softclock() routine.  Since a callout may
491 * be delayed in real time due to interrupt processing in the system,
492 * it is possible for the real time timeout routine (realtimeexpire,
493 * given below), to be delayed in real time past when it is supposed
494 * to occur.  It does not suffice, therefore, to reload the real timer
495 * .it_value from the real time timers .it_interval.  Rather, we
496 * compute the next time in absolute time the timer should go off.  */
497
498/* Allocate a POSIX realtime timer. */
499int
500sys_timer_create(struct lwp *l, void *v, register_t *retval)
501{
502	struct sys_timer_create_args /* {
503		syscallarg(clockid_t) clock_id;
504		syscallarg(struct sigevent *) evp;
505		syscallarg(timer_t *) timerid;
506	} */ *uap = v;
507
508	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
509	    SCARG(uap, evp), copyin, l->l_proc);
510}
511
512int
513timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
514    copyin_t fetch_event, struct proc *p)
515{
516	int error;
517	timer_t timerid;
518	struct ptimer *pt;
519
520	if (id < CLOCK_REALTIME ||
521	    id > CLOCK_PROF)
522		return (EINVAL);
523
524	if (p->p_timers == NULL)
525		timers_alloc(p);
526
527	/* Find a free timer slot, skipping those reserved for setitimer(). */
528	for (timerid = 3; timerid < TIMER_MAX; timerid++)
529		if (p->p_timers->pts_timers[timerid] == NULL)
530			break;
531
532	if (timerid == TIMER_MAX)
533		return EAGAIN;
534
535	pt = pool_get(&ptimer_pool, PR_WAITOK);
536	if (evp) {
537		if (((error =
538		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
539		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
540			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
541			pool_put(&ptimer_pool, pt);
542			return (error ? error : EINVAL);
543		}
544	} else {
545		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
546		switch (id) {
547		case CLOCK_REALTIME:
548			pt->pt_ev.sigev_signo = SIGALRM;
549			break;
550		case CLOCK_VIRTUAL:
551			pt->pt_ev.sigev_signo = SIGVTALRM;
552			break;
553		case CLOCK_PROF:
554			pt->pt_ev.sigev_signo = SIGPROF;
555			break;
556		}
557		pt->pt_ev.sigev_value.sival_int = timerid;
558	}
559	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
560	pt->pt_info.ksi_errno = 0;
561	pt->pt_info.ksi_code = 0;
562	pt->pt_info.ksi_pid = p->p_pid;
563	pt->pt_info.ksi_uid = p->p_cred->p_ruid;
564	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
565
566	pt->pt_type = id;
567	pt->pt_proc = p;
568	pt->pt_overruns = 0;
569	pt->pt_poverruns = 0;
570	pt->pt_entry = timerid;
571	timerclear(&pt->pt_time.it_value);
572	if (id == CLOCK_REALTIME)
573		callout_init(&pt->pt_ch);
574	else
575		pt->pt_active = 0;
576
577	p->p_timers->pts_timers[timerid] = pt;
578
579	return copyout(&timerid, tid, sizeof(timerid));
580}
581
582/* Delete a POSIX realtime timer */
583int
584sys_timer_delete(struct lwp *l, void *v, register_t *retval)
585{
586	struct sys_timer_delete_args /*  {
587		syscallarg(timer_t) timerid;
588	} */ *uap = v;
589	struct proc *p = l->l_proc;
590	timer_t timerid;
591	struct ptimer *pt, *ptn;
592	int s;
593
594	timerid = SCARG(uap, timerid);
595
596	if ((p->p_timers == NULL) ||
597	    (timerid < 2) || (timerid >= TIMER_MAX) ||
598	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
599		return (EINVAL);
600
601	if (pt->pt_type == CLOCK_REALTIME)
602		callout_stop(&pt->pt_ch);
603	else if (pt->pt_active) {
604		s = splclock();
605		ptn = LIST_NEXT(pt, pt_list);
606		LIST_REMOVE(pt, pt_list);
607		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
608			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
609			    &ptn->pt_time.it_value);
610		splx(s);
611	}
612
613	p->p_timers->pts_timers[timerid] = NULL;
614	pool_put(&ptimer_pool, pt);
615
616	return (0);
617}
618
619/*
620 * Set up the given timer. The value in pt->pt_time.it_value is taken
621 * to be an absolute time for CLOCK_REALTIME timers and a relative
622 * time for virtual timers.
623 * Must be called at splclock().
624 */
625void
626timer_settime(struct ptimer *pt)
627{
628	struct ptimer *ptn, *pptn;
629	struct ptlist *ptl;
630
631	if (pt->pt_type == CLOCK_REALTIME) {
632		callout_stop(&pt->pt_ch);
633		if (timerisset(&pt->pt_time.it_value)) {
634			/*
635			 * Don't need to check hzto() return value, here.
636			 * callout_reset() does it for us.
637			 */
638			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
639			    realtimerexpire, pt);
640		}
641	} else {
642		if (pt->pt_active) {
643			ptn = LIST_NEXT(pt, pt_list);
644			LIST_REMOVE(pt, pt_list);
645			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
646				timeradd(&pt->pt_time.it_value,
647				    &ptn->pt_time.it_value,
648				    &ptn->pt_time.it_value);
649		}
650		if (timerisset(&pt->pt_time.it_value)) {
651			if (pt->pt_type == CLOCK_VIRTUAL)
652				ptl = &pt->pt_proc->p_timers->pts_virtual;
653			else
654				ptl = &pt->pt_proc->p_timers->pts_prof;
655
656			for (ptn = LIST_FIRST(ptl), pptn = NULL;
657			     ptn && timercmp(&pt->pt_time.it_value,
658				 &ptn->pt_time.it_value, >);
659			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
660				timersub(&pt->pt_time.it_value,
661				    &ptn->pt_time.it_value,
662				    &pt->pt_time.it_value);
663
664			if (pptn)
665				LIST_INSERT_AFTER(pptn, pt, pt_list);
666			else
667				LIST_INSERT_HEAD(ptl, pt, pt_list);
668
669			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
670				timersub(&ptn->pt_time.it_value,
671				    &pt->pt_time.it_value,
672				    &ptn->pt_time.it_value);
673
674			pt->pt_active = 1;
675		} else
676			pt->pt_active = 0;
677	}
678}
679
680void
681timer_gettime(struct ptimer *pt, struct itimerval *aitv)
682{
683	struct ptimer *ptn;
684
685	*aitv = pt->pt_time;
686	if (pt->pt_type == CLOCK_REALTIME) {
687		/*
688		 * Convert from absolute to relative time in .it_value
689		 * part of real time timer.  If time for real time
690		 * timer has passed return 0, else return difference
691		 * between current time and time for the timer to go
692		 * off.
693		 */
694		if (timerisset(&aitv->it_value)) {
695			if (timercmp(&aitv->it_value, &time, <))
696				timerclear(&aitv->it_value);
697			else
698				timersub(&aitv->it_value, &time,
699				    &aitv->it_value);
700		}
701	} else if (pt->pt_active) {
702		if (pt->pt_type == CLOCK_VIRTUAL)
703			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
704		else
705			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
706		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
707			timeradd(&aitv->it_value,
708			    &ptn->pt_time.it_value, &aitv->it_value);
709		KASSERT(ptn != NULL); /* pt should be findable on the list */
710	} else
711		timerclear(&aitv->it_value);
712}
713
714
715
716/* Set and arm a POSIX realtime timer */
717int
718sys_timer_settime(struct lwp *l, void *v, register_t *retval)
719{
720	struct sys_timer_settime_args /* {
721		syscallarg(timer_t) timerid;
722		syscallarg(int) flags;
723		syscallarg(const struct itimerspec *) value;
724		syscallarg(struct itimerspec *) ovalue;
725	} */ *uap = v;
726	int error;
727	struct itimerspec value, ovalue, *ovp = NULL;
728
729	if ((error = copyin(SCARG(uap, value), &value,
730	    sizeof(struct itimerspec))) != 0)
731		return (error);
732
733	if (SCARG(uap, ovalue))
734		ovp = &ovalue;
735
736	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
737	    SCARG(uap, flags), l->l_proc)) != 0)
738		return error;
739
740	if (ovp)
741		return copyout(&ovalue, SCARG(uap, ovalue),
742		    sizeof(struct itimerspec));
743	return 0;
744}
745
746int
747dotimer_settime(int timerid, struct itimerspec *value,
748    struct itimerspec *ovalue, int flags, struct proc *p)
749{
750	int s;
751	struct itimerval val, oval;
752	struct ptimer *pt;
753
754	if ((p->p_timers == NULL) ||
755	    (timerid < 2) || (timerid >= TIMER_MAX) ||
756	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
757		return (EINVAL);
758
759	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
760	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
761	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
762		return (EINVAL);
763
764	oval = pt->pt_time;
765	pt->pt_time = val;
766
767	s = splclock();
768	/*
769	 * If we've been passed a relative time for a realtime timer,
770	 * convert it to absolute; if an absolute time for a virtual
771	 * timer, convert it to relative and make sure we don't set it
772	 * to zero, which would cancel the timer, or let it go
773	 * negative, which would confuse the comparison tests.
774	 */
775	if (timerisset(&pt->pt_time.it_value)) {
776		if (pt->pt_type == CLOCK_REALTIME) {
777			if ((flags & TIMER_ABSTIME) == 0)
778				timeradd(&pt->pt_time.it_value, &time,
779				    &pt->pt_time.it_value);
780		} else {
781			if ((flags & TIMER_ABSTIME) != 0) {
782				timersub(&pt->pt_time.it_value, &time,
783				    &pt->pt_time.it_value);
784				if (!timerisset(&pt->pt_time.it_value) ||
785				    pt->pt_time.it_value.tv_sec < 0) {
786					pt->pt_time.it_value.tv_sec = 0;
787					pt->pt_time.it_value.tv_usec = 1;
788				}
789			}
790		}
791	}
792
793	timer_settime(pt);
794	splx(s);
795
796	if (ovalue) {
797		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
798		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
799	}
800
801	return (0);
802}
803
804/* Return the time remaining until a POSIX timer fires. */
805int
806sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
807{
808	struct sys_timer_gettime_args /* {
809		syscallarg(timer_t) timerid;
810		syscallarg(struct itimerspec *) value;
811	} */ *uap = v;
812	struct itimerspec its;
813	int error;
814
815	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
816	    &its)) != 0)
817		return error;
818
819	return copyout(&its, SCARG(uap, value), sizeof(its));
820}
821
822int
823dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
824{
825	int s;
826	struct ptimer *pt;
827	struct itimerval aitv;
828
829	if ((p->p_timers == NULL) ||
830	    (timerid < 2) || (timerid >= TIMER_MAX) ||
831	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
832		return (EINVAL);
833
834	s = splclock();
835	timer_gettime(pt, &aitv);
836	splx(s);
837
838	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
839	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
840
841	return 0;
842}
843
844/*
845 * Return the count of the number of times a periodic timer expired
846 * while a notification was already pending. The counter is reset when
847 * a timer expires and a notification can be posted.
848 */
849int
850sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
851{
852	struct sys_timer_getoverrun_args /* {
853		syscallarg(timer_t) timerid;
854	} */ *uap = v;
855	struct proc *p = l->l_proc;
856	int timerid;
857	struct ptimer *pt;
858
859	timerid = SCARG(uap, timerid);
860
861	if ((p->p_timers == NULL) ||
862	    (timerid < 2) || (timerid >= TIMER_MAX) ||
863	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
864		return (EINVAL);
865
866	*retval = pt->pt_poverruns;
867
868	return (0);
869}
870
871/* Glue function that triggers an upcall; called from userret(). */
872static void
873timerupcall(struct lwp *l, void *arg)
874{
875	struct ptimers *pt = (struct ptimers *)arg;
876	unsigned int i, fired, done;
877
878	KDASSERT(l->l_proc->p_sa);
879	/* Bail out if we do not own the virtual processor */
880	if (l->l_savp->savp_lwp != l)
881		return ;
882
883	KERNEL_PROC_LOCK(l);
884
885	fired = pt->pts_fired;
886	done = 0;
887	while ((i = ffs(fired)) != 0) {
888		siginfo_t *si;
889		int mask = 1 << --i;
890		int f;
891
892		f = l->l_flag & L_SA;
893		l->l_flag &= ~L_SA;
894		si = siginfo_alloc(PR_WAITOK);
895		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
896		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
897		    sizeof(*si), si, siginfo_free) != 0) {
898			siginfo_free(si);
899			/* XXX What do we do here?? */
900		} else
901			done |= mask;
902		fired &= ~mask;
903		l->l_flag |= f;
904	}
905	pt->pts_fired &= ~done;
906	if (pt->pts_fired == 0)
907		l->l_proc->p_userret = NULL;
908
909	KERNEL_PROC_UNLOCK(l);
910}
911
912
913/*
914 * Real interval timer expired:
915 * send process whose timer expired an alarm signal.
916 * If time is not set up to reload, then just return.
917 * Else compute next time timer should go off which is > current time.
918 * This is where delay in processing this timeout causes multiple
919 * SIGALRM calls to be compressed into one.
920 */
921void
922realtimerexpire(void *arg)
923{
924	struct ptimer *pt;
925	int s;
926
927	pt = (struct ptimer *)arg;
928
929	itimerfire(pt);
930
931	if (!timerisset(&pt->pt_time.it_interval)) {
932		timerclear(&pt->pt_time.it_value);
933		return;
934	}
935	for (;;) {
936		s = splclock();
937		timeradd(&pt->pt_time.it_value,
938		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
939		if (timercmp(&pt->pt_time.it_value, &time, >)) {
940			/*
941			 * Don't need to check hzto() return value, here.
942			 * callout_reset() does it for us.
943			 */
944			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
945			    realtimerexpire, pt);
946			splx(s);
947			return;
948		}
949		splx(s);
950		pt->pt_overruns++;
951	}
952}
953
954/* BSD routine to get the value of an interval timer. */
955/* ARGSUSED */
956int
957sys_getitimer(struct lwp *l, void *v, register_t *retval)
958{
959	struct sys_getitimer_args /* {
960		syscallarg(int) which;
961		syscallarg(struct itimerval *) itv;
962	} */ *uap = v;
963	struct proc *p = l->l_proc;
964	struct itimerval aitv;
965	int error;
966
967	error = dogetitimer(p, SCARG(uap, which), &aitv);
968	if (error)
969		return error;
970	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
971}
972
973int
974dogetitimer(struct proc *p, int which, struct itimerval *itvp)
975{
976	int s;
977
978	if ((u_int)which > ITIMER_PROF)
979		return (EINVAL);
980
981	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
982		timerclear(&itvp->it_value);
983		timerclear(&itvp->it_interval);
984	} else {
985		s = splclock();
986		timer_gettime(p->p_timers->pts_timers[which], itvp);
987		splx(s);
988	}
989
990	return 0;
991}
992
993/* BSD routine to set/arm an interval timer. */
994/* ARGSUSED */
995int
996sys_setitimer(struct lwp *l, void *v, register_t *retval)
997{
998	struct sys_setitimer_args /* {
999		syscallarg(int) which;
1000		syscallarg(const struct itimerval *) itv;
1001		syscallarg(struct itimerval *) oitv;
1002	} */ *uap = v;
1003	struct proc *p = l->l_proc;
1004	int which = SCARG(uap, which);
1005	struct sys_getitimer_args getargs;
1006	const struct itimerval *itvp;
1007	struct itimerval aitv;
1008	int error;
1009
1010	if ((u_int)which > ITIMER_PROF)
1011		return (EINVAL);
1012	itvp = SCARG(uap, itv);
1013	if (itvp &&
1014	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1015		return (error);
1016	if (SCARG(uap, oitv) != NULL) {
1017		SCARG(&getargs, which) = which;
1018		SCARG(&getargs, itv) = SCARG(uap, oitv);
1019		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1020			return (error);
1021	}
1022	if (itvp == 0)
1023		return (0);
1024
1025	return dosetitimer(p, which, &aitv);
1026}
1027
1028int
1029dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1030{
1031	struct ptimer *pt;
1032	int s;
1033
1034	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1035		return (EINVAL);
1036
1037	/*
1038	 * Don't bother allocating data structures if the process just
1039	 * wants to clear the timer.
1040	 */
1041	if (!timerisset(&itvp->it_value) &&
1042	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1043		return (0);
1044
1045	if (p->p_timers == NULL)
1046		timers_alloc(p);
1047	if (p->p_timers->pts_timers[which] == NULL) {
1048		pt = pool_get(&ptimer_pool, PR_WAITOK);
1049		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1050		pt->pt_ev.sigev_value.sival_int = which;
1051		pt->pt_overruns = 0;
1052		pt->pt_proc = p;
1053		pt->pt_type = which;
1054		pt->pt_entry = which;
1055		switch (which) {
1056		case ITIMER_REAL:
1057			callout_init(&pt->pt_ch);
1058			pt->pt_ev.sigev_signo = SIGALRM;
1059			break;
1060		case ITIMER_VIRTUAL:
1061			pt->pt_active = 0;
1062			pt->pt_ev.sigev_signo = SIGVTALRM;
1063			break;
1064		case ITIMER_PROF:
1065			pt->pt_active = 0;
1066			pt->pt_ev.sigev_signo = SIGPROF;
1067			break;
1068		}
1069	} else
1070		pt = p->p_timers->pts_timers[which];
1071
1072	pt->pt_time = *itvp;
1073	p->p_timers->pts_timers[which] = pt;
1074
1075	s = splclock();
1076	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1077		/* Convert to absolute time */
1078		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1079	}
1080	timer_settime(pt);
1081	splx(s);
1082
1083	return (0);
1084}
1085
1086/* Utility routines to manage the array of pointers to timers. */
1087void
1088timers_alloc(struct proc *p)
1089{
1090	int i;
1091	struct ptimers *pts;
1092
1093	pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1094	LIST_INIT(&pts->pts_virtual);
1095	LIST_INIT(&pts->pts_prof);
1096	for (i = 0; i < TIMER_MAX; i++)
1097		pts->pts_timers[i] = NULL;
1098	pts->pts_fired = 0;
1099	p->p_timers = pts;
1100}
1101
1102/*
1103 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1104 * then clean up all timers and free all the data structures. If
1105 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1106 * by timer_create(), not the BSD setitimer() timers, and only free the
1107 * structure if none of those remain.
1108 */
1109void
1110timers_free(struct proc *p, int which)
1111{
1112	int i, s;
1113	struct ptimers *pts;
1114	struct ptimer *pt, *ptn;
1115	struct timeval tv;
1116
1117	if (p->p_timers) {
1118		pts = p->p_timers;
1119		if (which == TIMERS_ALL)
1120			i = 0;
1121		else {
1122			s = splclock();
1123			timerclear(&tv);
1124			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1125			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1126			     ptn = LIST_NEXT(ptn, pt_list))
1127				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1128			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1129			if (ptn) {
1130				timeradd(&tv, &ptn->pt_time.it_value,
1131				    &ptn->pt_time.it_value);
1132				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1133				    ptn, pt_list);
1134			}
1135
1136			timerclear(&tv);
1137			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1138			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1139			     ptn = LIST_NEXT(ptn, pt_list))
1140				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1141			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1142			if (ptn) {
1143				timeradd(&tv, &ptn->pt_time.it_value,
1144				    &ptn->pt_time.it_value);
1145				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1146				    pt_list);
1147			}
1148			splx(s);
1149			i = 3;
1150		}
1151		for ( ; i < TIMER_MAX; i++)
1152			if ((pt = pts->pts_timers[i]) != NULL) {
1153				if (pt->pt_type == CLOCK_REALTIME)
1154					callout_stop(&pt->pt_ch);
1155				pts->pts_timers[i] = NULL;
1156				pool_put(&ptimer_pool, pt);
1157			}
1158		if ((pts->pts_timers[0] == NULL) &&
1159		    (pts->pts_timers[1] == NULL) &&
1160		    (pts->pts_timers[2] == NULL)) {
1161			p->p_timers = NULL;
1162			free(pts, M_SUBPROC);
1163		}
1164	}
1165}
1166
1167/*
1168 * Check that a proposed value to load into the .it_value or
1169 * .it_interval part of an interval timer is acceptable, and
1170 * fix it to have at least minimal value (i.e. if it is less
1171 * than the resolution of the clock, round it up.)
1172 */
1173int
1174itimerfix(struct timeval *tv)
1175{
1176
1177	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1178		return (EINVAL);
1179	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1180		tv->tv_usec = tick;
1181	return (0);
1182}
1183
1184/*
1185 * Decrement an interval timer by a specified number
1186 * of microseconds, which must be less than a second,
1187 * i.e. < 1000000.  If the timer expires, then reload
1188 * it.  In this case, carry over (usec - old value) to
1189 * reduce the value reloaded into the timer so that
1190 * the timer does not drift.  This routine assumes
1191 * that it is called in a context where the timers
1192 * on which it is operating cannot change in value.
1193 */
1194int
1195itimerdecr(struct ptimer *pt, int usec)
1196{
1197	struct itimerval *itp;
1198
1199	itp = &pt->pt_time;
1200	if (itp->it_value.tv_usec < usec) {
1201		if (itp->it_value.tv_sec == 0) {
1202			/* expired, and already in next interval */
1203			usec -= itp->it_value.tv_usec;
1204			goto expire;
1205		}
1206		itp->it_value.tv_usec += 1000000;
1207		itp->it_value.tv_sec--;
1208	}
1209	itp->it_value.tv_usec -= usec;
1210	usec = 0;
1211	if (timerisset(&itp->it_value))
1212		return (1);
1213	/* expired, exactly at end of interval */
1214expire:
1215	if (timerisset(&itp->it_interval)) {
1216		itp->it_value = itp->it_interval;
1217		itp->it_value.tv_usec -= usec;
1218		if (itp->it_value.tv_usec < 0) {
1219			itp->it_value.tv_usec += 1000000;
1220			itp->it_value.tv_sec--;
1221		}
1222		timer_settime(pt);
1223	} else
1224		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1225	return (0);
1226}
1227
1228void
1229itimerfire(struct ptimer *pt)
1230{
1231	struct proc *p = pt->pt_proc;
1232	struct sadata_vp *vp;
1233	int s;
1234	unsigned int i;
1235
1236	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1237		/*
1238		 * No RT signal infrastructure exists at this time;
1239		 * just post the signal number and throw away the
1240		 * value.
1241		 */
1242		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1243			pt->pt_overruns++;
1244		else {
1245			ksiginfo_t ksi;
1246			(void)memset(&ksi, 0, sizeof(ksi));
1247			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1248			ksi.ksi_code = SI_TIMER;
1249			ksi.ksi_sigval = pt->pt_ev.sigev_value;
1250			pt->pt_poverruns = pt->pt_overruns;
1251			pt->pt_overruns = 0;
1252			kpsignal(p, &ksi, NULL);
1253		}
1254	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1255		/* Cause the process to generate an upcall when it returns. */
1256
1257		if (p->p_userret == NULL) {
1258			/*
1259			 * XXX stop signals can be processed inside tsleep,
1260			 * which can be inside sa_yield's inner loop, which
1261			 * makes testing for sa_idle alone insuffucent to
1262			 * determine if we really should call setrunnable.
1263			 */
1264			pt->pt_poverruns = pt->pt_overruns;
1265			pt->pt_overruns = 0;
1266			i = 1 << pt->pt_entry;
1267			p->p_timers->pts_fired = i;
1268			p->p_userret = timerupcall;
1269			p->p_userret_arg = p->p_timers;
1270
1271			SCHED_LOCK(s);
1272			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1273				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1274					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1275					sched_wakeup(vp->savp_lwp);
1276					break;
1277				}
1278			}
1279			SCHED_UNLOCK(s);
1280		} else if (p->p_userret == timerupcall) {
1281			i = 1 << pt->pt_entry;
1282			if ((p->p_timers->pts_fired & i) == 0) {
1283				pt->pt_poverruns = pt->pt_overruns;
1284				pt->pt_overruns = 0;
1285				p->p_timers->pts_fired |= i;
1286			} else
1287				pt->pt_overruns++;
1288		} else {
1289			pt->pt_overruns++;
1290			if ((p->p_flag & P_WEXIT) == 0)
1291				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1292				    p->p_pid, pt->pt_overruns,
1293				    pt->pt_ev.sigev_value.sival_int,
1294				    p->p_userret);
1295		}
1296	}
1297
1298}
1299
1300/*
1301 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1302 * for usage and rationale.
1303 */
1304int
1305ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1306{
1307	struct timeval tv, delta;
1308	int s, rv = 0;
1309
1310	s = splclock();
1311	tv = mono_time;
1312	splx(s);
1313
1314	timersub(&tv, lasttime, &delta);
1315
1316	/*
1317	 * check for 0,0 is so that the message will be seen at least once,
1318	 * even if interval is huge.
1319	 */
1320	if (timercmp(&delta, mininterval, >=) ||
1321	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1322		*lasttime = tv;
1323		rv = 1;
1324	}
1325
1326	return (rv);
1327}
1328
1329/*
1330 * ppsratecheck(): packets (or events) per second limitation.
1331 */
1332int
1333ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1334{
1335	struct timeval tv, delta;
1336	int s, rv;
1337
1338	s = splclock();
1339	tv = mono_time;
1340	splx(s);
1341
1342	timersub(&tv, lasttime, &delta);
1343
1344	/*
1345	 * check for 0,0 is so that the message will be seen at least once.
1346	 * if more than one second have passed since the last update of
1347	 * lasttime, reset the counter.
1348	 *
1349	 * we do increment *curpps even in *curpps < maxpps case, as some may
1350	 * try to use *curpps for stat purposes as well.
1351	 */
1352	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1353	    delta.tv_sec >= 1) {
1354		*lasttime = tv;
1355		*curpps = 0;
1356	}
1357	if (maxpps < 0)
1358		rv = 1;
1359	else if (*curpps < maxpps)
1360		rv = 1;
1361	else
1362		rv = 0;
1363
1364#if 1 /*DIAGNOSTIC?*/
1365	/* be careful about wrap-around */
1366	if (*curpps + 1 > *curpps)
1367		*curpps = *curpps + 1;
1368#else
1369	/*
1370	 * assume that there's not too many calls to this function.
1371	 * not sure if the assumption holds, as it depends on *caller's*
1372	 * behavior, not the behavior of this function.
1373	 * IMHO it is wrong to make assumption on the caller's behavior,
1374	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1375	 */
1376	*curpps = *curpps + 1;
1377#endif
1378
1379	return (rv);
1380}
1381