kern_time.c revision 1.91
1/*	$NetBSD: kern_time.c,v 1.91 2005/07/11 19:50:42 cube Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.91 2005/07/11 19:50:42 cube Exp $");
72
73#include "fs_nfs.h"
74#include "opt_nfs.h"
75#include "opt_nfsserver.h"
76
77#include <sys/param.h>
78#include <sys/resourcevar.h>
79#include <sys/kernel.h>
80#include <sys/systm.h>
81#include <sys/malloc.h>
82#include <sys/proc.h>
83#include <sys/sa.h>
84#include <sys/savar.h>
85#include <sys/vnode.h>
86#include <sys/signalvar.h>
87#include <sys/syslog.h>
88
89#include <sys/mount.h>
90#include <sys/syscallargs.h>
91
92#include <uvm/uvm_extern.h>
93
94#if defined(NFS) || defined(NFSSERVER)
95#include <nfs/rpcv2.h>
96#include <nfs/nfsproto.h>
97#include <nfs/nfs_var.h>
98#endif
99
100#include <machine/cpu.h>
101
102static void timerupcall(struct lwp *, void *);
103
104
105/* Time of day and interval timer support.
106 *
107 * These routines provide the kernel entry points to get and set
108 * the time-of-day and per-process interval timers.  Subroutines
109 * here provide support for adding and subtracting timeval structures
110 * and decrementing interval timers, optionally reloading the interval
111 * timers when they expire.
112 */
113
114/* This function is used by clock_settime and settimeofday */
115int
116settime(struct timeval *tv)
117{
118	struct timeval delta;
119	struct cpu_info *ci;
120	int s;
121
122	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123	s = splclock();
124	timersub(tv, &time, &delta);
125	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126		splx(s);
127		return (EPERM);
128	}
129#ifdef notyet
130	if ((delta.tv_sec < 86400) && securelevel > 0) {
131		splx(s);
132		return (EPERM);
133	}
134#endif
135	time = *tv;
136	(void) spllowersoftclock();
137	timeradd(&boottime, &delta, &boottime);
138	/*
139	 * XXXSMP
140	 * This is wrong.  We should traverse a list of all
141	 * CPUs and add the delta to the runtime of those
142	 * CPUs which have a process on them.
143	 */
144	ci = curcpu();
145	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146	    &ci->ci_schedstate.spc_runtime);
147#	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148		nqnfs_lease_updatetime(delta.tv_sec);
149#	endif
150	splx(s);
151	resettodr();
152	return (0);
153}
154
155/* ARGSUSED */
156int
157sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
158{
159	struct sys_clock_gettime_args /* {
160		syscallarg(clockid_t) clock_id;
161		syscallarg(struct timespec *) tp;
162	} */ *uap = v;
163	clockid_t clock_id;
164	struct timeval atv;
165	struct timespec ats;
166	int s;
167
168	clock_id = SCARG(uap, clock_id);
169	switch (clock_id) {
170	case CLOCK_REALTIME:
171		microtime(&atv);
172		TIMEVAL_TO_TIMESPEC(&atv,&ats);
173		break;
174	case CLOCK_MONOTONIC:
175		/* XXX "hz" granularity */
176		s = splclock();
177		atv = mono_time;
178		splx(s);
179		TIMEVAL_TO_TIMESPEC(&atv,&ats);
180		break;
181	default:
182		return (EINVAL);
183	}
184
185	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186}
187
188/* ARGSUSED */
189int
190sys_clock_settime(struct lwp *l, void *v, register_t *retval)
191{
192	struct sys_clock_settime_args /* {
193		syscallarg(clockid_t) clock_id;
194		syscallarg(const struct timespec *) tp;
195	} */ *uap = v;
196	struct proc *p = l->l_proc;
197	int error;
198
199	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
200		return (error);
201
202	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
203}
204
205
206int
207clock_settime1(clockid_t clock_id, const struct timespec *tp)
208{
209	struct timespec ats;
210	struct timeval atv;
211	int error;
212
213	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
214		return (error);
215
216	switch (clock_id) {
217	case CLOCK_REALTIME:
218		TIMESPEC_TO_TIMEVAL(&atv, &ats);
219		if ((error = settime(&atv)) != 0)
220			return (error);
221		break;
222	case CLOCK_MONOTONIC:
223		return (EINVAL);	/* read-only clock */
224	default:
225		return (EINVAL);
226	}
227
228	return 0;
229}
230
231int
232sys_clock_getres(struct lwp *l, void *v, register_t *retval)
233{
234	struct sys_clock_getres_args /* {
235		syscallarg(clockid_t) clock_id;
236		syscallarg(struct timespec *) tp;
237	} */ *uap = v;
238	clockid_t clock_id;
239	struct timespec ts;
240	int error = 0;
241
242	clock_id = SCARG(uap, clock_id);
243	switch (clock_id) {
244	case CLOCK_REALTIME:
245	case CLOCK_MONOTONIC:
246		ts.tv_sec = 0;
247		ts.tv_nsec = 1000000000 / hz;
248		break;
249	default:
250		return (EINVAL);
251	}
252
253	if (SCARG(uap, tp))
254		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
255
256	return error;
257}
258
259/* ARGSUSED */
260int
261sys_nanosleep(struct lwp *l, void *v, register_t *retval)
262{
263	static int nanowait;
264	struct sys_nanosleep_args/* {
265		syscallarg(struct timespec *) rqtp;
266		syscallarg(struct timespec *) rmtp;
267	} */ *uap = v;
268	struct timespec rqt;
269	struct timespec rmt;
270	struct timeval atv, utv;
271	int error, s, timo;
272
273	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
274	if (error)
275		return (error);
276
277	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
278	if (itimerfix(&atv))
279		return (EINVAL);
280
281	s = splclock();
282	timeradd(&atv,&time,&atv);
283	timo = hzto(&atv);
284	/*
285	 * Avoid inadvertantly sleeping forever
286	 */
287	if (timo == 0)
288		timo = 1;
289	splx(s);
290
291	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
292	if (error == ERESTART)
293		error = EINTR;
294	if (error == EWOULDBLOCK)
295		error = 0;
296
297	if (SCARG(uap, rmtp)) {
298		int error1;
299
300		s = splclock();
301		utv = time;
302		splx(s);
303
304		timersub(&atv, &utv, &utv);
305		if (utv.tv_sec < 0)
306			timerclear(&utv);
307
308		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
309		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
310			sizeof(rmt));
311		if (error1)
312			return (error1);
313	}
314
315	return error;
316}
317
318/* ARGSUSED */
319int
320sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
321{
322	struct sys_gettimeofday_args /* {
323		syscallarg(struct timeval *) tp;
324		syscallarg(void *) tzp;		really "struct timezone *"
325	} */ *uap = v;
326	struct timeval atv;
327	int error = 0;
328	struct timezone tzfake;
329
330	if (SCARG(uap, tp)) {
331		microtime(&atv);
332		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
333		if (error)
334			return (error);
335	}
336	if (SCARG(uap, tzp)) {
337		/*
338		 * NetBSD has no kernel notion of time zone, so we just
339		 * fake up a timezone struct and return it if demanded.
340		 */
341		tzfake.tz_minuteswest = 0;
342		tzfake.tz_dsttime = 0;
343		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
344	}
345	return (error);
346}
347
348/* ARGSUSED */
349int
350sys_settimeofday(struct lwp *l, void *v, register_t *retval)
351{
352	struct sys_settimeofday_args /* {
353		syscallarg(const struct timeval *) tv;
354		syscallarg(const void *) tzp;	really "const struct timezone *"
355	} */ *uap = v;
356	struct proc *p = l->l_proc;
357	int error;
358
359	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
360		return (error);
361
362	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
363}
364
365int
366settimeofday1(const struct timeval *utv, const struct timezone *utzp,
367    struct proc *p)
368{
369	struct timeval atv;
370	struct timezone atz;
371	struct timeval *tv = NULL;
372	struct timezone *tzp = NULL;
373	int error;
374
375	/* Verify all parameters before changing time. */
376	if (utv) {
377		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
378			return (error);
379		tv = &atv;
380	}
381	/* XXX since we don't use tz, probably no point in doing copyin. */
382	if (utzp) {
383		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
384			return (error);
385		tzp = &atz;
386	}
387
388	if (tv)
389		if ((error = settime(tv)) != 0)
390			return (error);
391	/*
392	 * NetBSD has no kernel notion of time zone, and only an
393	 * obsolete program would try to set it, so we log a warning.
394	 */
395	if (tzp)
396		log(LOG_WARNING, "pid %d attempted to set the "
397		    "(obsolete) kernel time zone\n", p->p_pid);
398	return (0);
399}
400
401int	tickdelta;			/* current clock skew, us. per tick */
402long	timedelta;			/* unapplied time correction, us. */
403long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
404int	time_adjusted;			/* set if an adjustment is made */
405
406/* ARGSUSED */
407int
408sys_adjtime(struct lwp *l, void *v, register_t *retval)
409{
410	struct sys_adjtime_args /* {
411		syscallarg(const struct timeval *) delta;
412		syscallarg(struct timeval *) olddelta;
413	} */ *uap = v;
414	struct proc *p = l->l_proc;
415	int error;
416
417	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
418		return (error);
419
420	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
421}
422
423int
424adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
425{
426	struct timeval atv;
427	long ndelta, ntickdelta, odelta;
428	int error;
429	int s;
430
431	error = copyin(delta, &atv, sizeof(struct timeval));
432	if (error)
433		return (error);
434
435	/*
436	 * Compute the total correction and the rate at which to apply it.
437	 * Round the adjustment down to a whole multiple of the per-tick
438	 * delta, so that after some number of incremental changes in
439	 * hardclock(), tickdelta will become zero, lest the correction
440	 * overshoot and start taking us away from the desired final time.
441	 */
442	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
443	if (ndelta > bigadj || ndelta < -bigadj)
444		ntickdelta = 10 * tickadj;
445	else
446		ntickdelta = tickadj;
447	if (ndelta % ntickdelta)
448		ndelta = ndelta / ntickdelta * ntickdelta;
449
450	/*
451	 * To make hardclock()'s job easier, make the per-tick delta negative
452	 * if we want time to run slower; then hardclock can simply compute
453	 * tick + tickdelta, and subtract tickdelta from timedelta.
454	 */
455	if (ndelta < 0)
456		ntickdelta = -ntickdelta;
457	if (ndelta != 0)
458		/* We need to save the system clock time during shutdown */
459		time_adjusted |= 1;
460	s = splclock();
461	odelta = timedelta;
462	timedelta = ndelta;
463	tickdelta = ntickdelta;
464	splx(s);
465
466	if (olddelta) {
467		atv.tv_sec = odelta / 1000000;
468		atv.tv_usec = odelta % 1000000;
469		error = copyout(&atv, olddelta, sizeof(struct timeval));
470	}
471	return error;
472}
473
474/*
475 * Interval timer support. Both the BSD getitimer() family and the POSIX
476 * timer_*() family of routines are supported.
477 *
478 * All timers are kept in an array pointed to by p_timers, which is
479 * allocated on demand - many processes don't use timers at all. The
480 * first three elements in this array are reserved for the BSD timers:
481 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
482 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
483 * syscall.
484 *
485 * Realtime timers are kept in the ptimer structure as an absolute
486 * time; virtual time timers are kept as a linked list of deltas.
487 * Virtual time timers are processed in the hardclock() routine of
488 * kern_clock.c.  The real time timer is processed by a callout
489 * routine, called from the softclock() routine.  Since a callout may
490 * be delayed in real time due to interrupt processing in the system,
491 * it is possible for the real time timeout routine (realtimeexpire,
492 * given below), to be delayed in real time past when it is supposed
493 * to occur.  It does not suffice, therefore, to reload the real timer
494 * .it_value from the real time timers .it_interval.  Rather, we
495 * compute the next time in absolute time the timer should go off.  */
496
497/* Allocate a POSIX realtime timer. */
498int
499sys_timer_create(struct lwp *l, void *v, register_t *retval)
500{
501	struct sys_timer_create_args /* {
502		syscallarg(clockid_t) clock_id;
503		syscallarg(struct sigevent *) evp;
504		syscallarg(timer_t *) timerid;
505	} */ *uap = v;
506	struct proc *p = l->l_proc;
507	clockid_t id;
508	struct sigevent *evp;
509	struct ptimer *pt;
510	timer_t timerid;
511	int error;
512
513	id = SCARG(uap, clock_id);
514	if (id < CLOCK_REALTIME ||
515	    id > CLOCK_PROF)
516		return (EINVAL);
517
518	if (p->p_timers == NULL)
519		timers_alloc(p);
520
521	/* Find a free timer slot, skipping those reserved for setitimer(). */
522	for (timerid = 3; timerid < TIMER_MAX; timerid++)
523		if (p->p_timers->pts_timers[timerid] == NULL)
524			break;
525
526	if (timerid == TIMER_MAX)
527		return EAGAIN;
528
529	pt = pool_get(&ptimer_pool, PR_WAITOK);
530	evp = SCARG(uap, evp);
531	if (evp) {
532		if (((error =
533		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
534		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
535			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
536			pool_put(&ptimer_pool, pt);
537			return (error ? error : EINVAL);
538		}
539	} else {
540		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
541		switch (id) {
542		case CLOCK_REALTIME:
543			pt->pt_ev.sigev_signo = SIGALRM;
544			break;
545		case CLOCK_VIRTUAL:
546			pt->pt_ev.sigev_signo = SIGVTALRM;
547			break;
548		case CLOCK_PROF:
549			pt->pt_ev.sigev_signo = SIGPROF;
550			break;
551		}
552		pt->pt_ev.sigev_value.sival_int = timerid;
553	}
554	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
555	pt->pt_info.ksi_errno = 0;
556	pt->pt_info.ksi_code = 0;
557	pt->pt_info.ksi_pid = p->p_pid;
558	pt->pt_info.ksi_uid = p->p_cred->p_ruid;
559	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
560
561	pt->pt_type = id;
562	pt->pt_proc = p;
563	pt->pt_overruns = 0;
564	pt->pt_poverruns = 0;
565	pt->pt_entry = timerid;
566	timerclear(&pt->pt_time.it_value);
567	if (id == CLOCK_REALTIME)
568		callout_init(&pt->pt_ch);
569	else
570		pt->pt_active = 0;
571
572	p->p_timers->pts_timers[timerid] = pt;
573
574	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
575}
576
577
578/* Delete a POSIX realtime timer */
579int
580sys_timer_delete(struct lwp *l, void *v, register_t *retval)
581{
582	struct sys_timer_delete_args /*  {
583		syscallarg(timer_t) timerid;
584	} */ *uap = v;
585	struct proc *p = l->l_proc;
586	timer_t timerid;
587	struct ptimer *pt, *ptn;
588	int s;
589
590	timerid = SCARG(uap, timerid);
591
592	if ((p->p_timers == NULL) ||
593	    (timerid < 2) || (timerid >= TIMER_MAX) ||
594	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
595		return (EINVAL);
596
597	if (pt->pt_type == CLOCK_REALTIME)
598		callout_stop(&pt->pt_ch);
599	else if (pt->pt_active) {
600		s = splclock();
601		ptn = LIST_NEXT(pt, pt_list);
602		LIST_REMOVE(pt, pt_list);
603		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
604			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
605			    &ptn->pt_time.it_value);
606		splx(s);
607	}
608
609	p->p_timers->pts_timers[timerid] = NULL;
610	pool_put(&ptimer_pool, pt);
611
612	return (0);
613}
614
615/*
616 * Set up the given timer. The value in pt->pt_time.it_value is taken
617 * to be an absolute time for CLOCK_REALTIME timers and a relative
618 * time for virtual timers.
619 * Must be called at splclock().
620 */
621void
622timer_settime(struct ptimer *pt)
623{
624	struct ptimer *ptn, *pptn;
625	struct ptlist *ptl;
626
627	if (pt->pt_type == CLOCK_REALTIME) {
628		callout_stop(&pt->pt_ch);
629		if (timerisset(&pt->pt_time.it_value)) {
630			/*
631			 * Don't need to check hzto() return value, here.
632			 * callout_reset() does it for us.
633			 */
634			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
635			    realtimerexpire, pt);
636		}
637	} else {
638		if (pt->pt_active) {
639			ptn = LIST_NEXT(pt, pt_list);
640			LIST_REMOVE(pt, pt_list);
641			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
642				timeradd(&pt->pt_time.it_value,
643				    &ptn->pt_time.it_value,
644				    &ptn->pt_time.it_value);
645		}
646		if (timerisset(&pt->pt_time.it_value)) {
647			if (pt->pt_type == CLOCK_VIRTUAL)
648				ptl = &pt->pt_proc->p_timers->pts_virtual;
649			else
650				ptl = &pt->pt_proc->p_timers->pts_prof;
651
652			for (ptn = LIST_FIRST(ptl), pptn = NULL;
653			     ptn && timercmp(&pt->pt_time.it_value,
654				 &ptn->pt_time.it_value, >);
655			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
656				timersub(&pt->pt_time.it_value,
657				    &ptn->pt_time.it_value,
658				    &pt->pt_time.it_value);
659
660			if (pptn)
661				LIST_INSERT_AFTER(pptn, pt, pt_list);
662			else
663				LIST_INSERT_HEAD(ptl, pt, pt_list);
664
665			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
666				timersub(&ptn->pt_time.it_value,
667				    &pt->pt_time.it_value,
668				    &ptn->pt_time.it_value);
669
670			pt->pt_active = 1;
671		} else
672			pt->pt_active = 0;
673	}
674}
675
676void
677timer_gettime(struct ptimer *pt, struct itimerval *aitv)
678{
679	struct ptimer *ptn;
680
681	*aitv = pt->pt_time;
682	if (pt->pt_type == CLOCK_REALTIME) {
683		/*
684		 * Convert from absolute to relative time in .it_value
685		 * part of real time timer.  If time for real time
686		 * timer has passed return 0, else return difference
687		 * between current time and time for the timer to go
688		 * off.
689		 */
690		if (timerisset(&aitv->it_value)) {
691			if (timercmp(&aitv->it_value, &time, <))
692				timerclear(&aitv->it_value);
693			else
694				timersub(&aitv->it_value, &time,
695				    &aitv->it_value);
696		}
697	} else if (pt->pt_active) {
698		if (pt->pt_type == CLOCK_VIRTUAL)
699			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
700		else
701			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
702		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
703			timeradd(&aitv->it_value,
704			    &ptn->pt_time.it_value, &aitv->it_value);
705		KASSERT(ptn != NULL); /* pt should be findable on the list */
706	} else
707		timerclear(&aitv->it_value);
708}
709
710
711
712/* Set and arm a POSIX realtime timer */
713int
714sys_timer_settime(struct lwp *l, void *v, register_t *retval)
715{
716	struct sys_timer_settime_args /* {
717		syscallarg(timer_t) timerid;
718		syscallarg(int) flags;
719		syscallarg(const struct itimerspec *) value;
720		syscallarg(struct itimerspec *) ovalue;
721	} */ *uap = v;
722	struct proc *p = l->l_proc;
723	int error, s, timerid;
724	struct itimerval val, oval;
725	struct itimerspec value, ovalue;
726	struct ptimer *pt;
727
728	timerid = SCARG(uap, timerid);
729
730	if ((p->p_timers == NULL) ||
731	    (timerid < 2) || (timerid >= TIMER_MAX) ||
732	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
733		return (EINVAL);
734
735	if ((error = copyin(SCARG(uap, value), &value,
736	    sizeof(struct itimerspec))) != 0)
737		return (error);
738
739	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
740	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
741	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
742		return (EINVAL);
743
744	oval = pt->pt_time;
745	pt->pt_time = val;
746
747	s = splclock();
748	/*
749	 * If we've been passed a relative time for a realtime timer,
750	 * convert it to absolute; if an absolute time for a virtual
751	 * timer, convert it to relative and make sure we don't set it
752	 * to zero, which would cancel the timer, or let it go
753	 * negative, which would confuse the comparison tests.
754	 */
755	if (timerisset(&pt->pt_time.it_value)) {
756		if (pt->pt_type == CLOCK_REALTIME) {
757			if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
758				timeradd(&pt->pt_time.it_value, &time,
759				    &pt->pt_time.it_value);
760		} else {
761			if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
762				timersub(&pt->pt_time.it_value, &time,
763				    &pt->pt_time.it_value);
764				if (!timerisset(&pt->pt_time.it_value) ||
765				    pt->pt_time.it_value.tv_sec < 0) {
766					pt->pt_time.it_value.tv_sec = 0;
767					pt->pt_time.it_value.tv_usec = 1;
768				}
769			}
770		}
771	}
772
773	timer_settime(pt);
774	splx(s);
775
776	if (SCARG(uap, ovalue)) {
777		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
778		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
779		return copyout(&ovalue, SCARG(uap, ovalue),
780		    sizeof(struct itimerspec));
781	}
782
783	return (0);
784}
785
786/* Return the time remaining until a POSIX timer fires. */
787int
788sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
789{
790	struct sys_timer_gettime_args /* {
791		syscallarg(timer_t) timerid;
792		syscallarg(struct itimerspec *) value;
793	} */ *uap = v;
794	struct itimerval aitv;
795	struct itimerspec its;
796	struct proc *p = l->l_proc;
797	int s, timerid;
798	struct ptimer *pt;
799
800	timerid = SCARG(uap, timerid);
801
802	if ((p->p_timers == NULL) ||
803	    (timerid < 2) || (timerid >= TIMER_MAX) ||
804	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
805		return (EINVAL);
806
807	s = splclock();
808	timer_gettime(pt, &aitv);
809	splx(s);
810
811	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
812	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
813
814	return copyout(&its, SCARG(uap, value), sizeof(its));
815}
816
817/*
818 * Return the count of the number of times a periodic timer expired
819 * while a notification was already pending. The counter is reset when
820 * a timer expires and a notification can be posted.
821 */
822int
823sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
824{
825	struct sys_timer_getoverrun_args /* {
826		syscallarg(timer_t) timerid;
827	} */ *uap = v;
828	struct proc *p = l->l_proc;
829	int timerid;
830	struct ptimer *pt;
831
832	timerid = SCARG(uap, timerid);
833
834	if ((p->p_timers == NULL) ||
835	    (timerid < 2) || (timerid >= TIMER_MAX) ||
836	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
837		return (EINVAL);
838
839	*retval = pt->pt_poverruns;
840
841	return (0);
842}
843
844/* Glue function that triggers an upcall; called from userret(). */
845static void
846timerupcall(struct lwp *l, void *arg)
847{
848	struct ptimers *pt = (struct ptimers *)arg;
849	unsigned int i, fired, done;
850	extern struct pool siginfo_pool;	/* XXX Ew. */
851
852	KDASSERT(l->l_proc->p_sa);
853	/* Bail out if we do not own the virtual processor */
854	if (l->l_savp->savp_lwp != l)
855		return ;
856
857	KERNEL_PROC_LOCK(l);
858
859	fired = pt->pts_fired;
860	done = 0;
861	while ((i = ffs(fired)) != 0) {
862		siginfo_t *si;
863		int mask = 1 << --i;
864		int f;
865
866		f = l->l_flag & L_SA;
867		l->l_flag &= ~L_SA;
868		si = pool_get(&siginfo_pool, PR_WAITOK);
869		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
870		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
871		    sizeof(*si), si) != 0) {
872			pool_put(&siginfo_pool, si);
873			/* XXX What do we do here?? */
874		} else
875			done |= mask;
876		fired &= ~mask;
877		l->l_flag |= f;
878	}
879	pt->pts_fired &= ~done;
880	if (pt->pts_fired == 0)
881		l->l_proc->p_userret = NULL;
882
883	KERNEL_PROC_UNLOCK(l);
884}
885
886
887/*
888 * Real interval timer expired:
889 * send process whose timer expired an alarm signal.
890 * If time is not set up to reload, then just return.
891 * Else compute next time timer should go off which is > current time.
892 * This is where delay in processing this timeout causes multiple
893 * SIGALRM calls to be compressed into one.
894 */
895void
896realtimerexpire(void *arg)
897{
898	struct ptimer *pt;
899	int s;
900
901	pt = (struct ptimer *)arg;
902
903	itimerfire(pt);
904
905	if (!timerisset(&pt->pt_time.it_interval)) {
906		timerclear(&pt->pt_time.it_value);
907		return;
908	}
909	for (;;) {
910		s = splclock();
911		timeradd(&pt->pt_time.it_value,
912		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
913		if (timercmp(&pt->pt_time.it_value, &time, >)) {
914			/*
915			 * Don't need to check hzto() return value, here.
916			 * callout_reset() does it for us.
917			 */
918			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
919			    realtimerexpire, pt);
920			splx(s);
921			return;
922		}
923		splx(s);
924		pt->pt_overruns++;
925	}
926}
927
928/* BSD routine to get the value of an interval timer. */
929/* ARGSUSED */
930int
931sys_getitimer(struct lwp *l, void *v, register_t *retval)
932{
933	struct sys_getitimer_args /* {
934		syscallarg(int) which;
935		syscallarg(struct itimerval *) itv;
936	} */ *uap = v;
937	struct proc *p = l->l_proc;
938	struct itimerval aitv;
939	int error;
940
941	error = dogetitimer(p, SCARG(uap, which), &aitv);
942	if (error)
943		return error;
944	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
945}
946
947int
948dogetitimer(struct proc *p, int which, struct itimerval *itvp)
949{
950	int s;
951
952	if ((u_int)which > ITIMER_PROF)
953		return (EINVAL);
954
955	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
956		timerclear(&itvp->it_value);
957		timerclear(&itvp->it_interval);
958	} else {
959		s = splclock();
960		timer_gettime(p->p_timers->pts_timers[which], itvp);
961		splx(s);
962	}
963
964	return 0;
965}
966
967/* BSD routine to set/arm an interval timer. */
968/* ARGSUSED */
969int
970sys_setitimer(struct lwp *l, void *v, register_t *retval)
971{
972	struct sys_setitimer_args /* {
973		syscallarg(int) which;
974		syscallarg(const struct itimerval *) itv;
975		syscallarg(struct itimerval *) oitv;
976	} */ *uap = v;
977	struct proc *p = l->l_proc;
978	int which = SCARG(uap, which);
979	struct sys_getitimer_args getargs;
980	const struct itimerval *itvp;
981	struct itimerval aitv;
982	int error;
983
984	if ((u_int)which > ITIMER_PROF)
985		return (EINVAL);
986	itvp = SCARG(uap, itv);
987	if (itvp &&
988	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
989		return (error);
990	if (SCARG(uap, oitv) != NULL) {
991		SCARG(&getargs, which) = which;
992		SCARG(&getargs, itv) = SCARG(uap, oitv);
993		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
994			return (error);
995	}
996	if (itvp == 0)
997		return (0);
998
999	return dosetitimer(p, which, &aitv);
1000}
1001
1002int
1003dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1004{
1005	struct ptimer *pt;
1006	int s;
1007
1008	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1009		return (EINVAL);
1010
1011	/*
1012	 * Don't bother allocating data structures if the process just
1013	 * wants to clear the timer.
1014	 */
1015	if (!timerisset(&itvp->it_value) &&
1016	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1017		return (0);
1018
1019	if (p->p_timers == NULL)
1020		timers_alloc(p);
1021	if (p->p_timers->pts_timers[which] == NULL) {
1022		pt = pool_get(&ptimer_pool, PR_WAITOK);
1023		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1024		pt->pt_ev.sigev_value.sival_int = which;
1025		pt->pt_overruns = 0;
1026		pt->pt_proc = p;
1027		pt->pt_type = which;
1028		pt->pt_entry = which;
1029		switch (which) {
1030		case ITIMER_REAL:
1031			callout_init(&pt->pt_ch);
1032			pt->pt_ev.sigev_signo = SIGALRM;
1033			break;
1034		case ITIMER_VIRTUAL:
1035			pt->pt_active = 0;
1036			pt->pt_ev.sigev_signo = SIGVTALRM;
1037			break;
1038		case ITIMER_PROF:
1039			pt->pt_active = 0;
1040			pt->pt_ev.sigev_signo = SIGPROF;
1041			break;
1042		}
1043	} else
1044		pt = p->p_timers->pts_timers[which];
1045
1046	pt->pt_time = *itvp;
1047	p->p_timers->pts_timers[which] = pt;
1048
1049	s = splclock();
1050	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1051		/* Convert to absolute time */
1052		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1053	}
1054	timer_settime(pt);
1055	splx(s);
1056
1057	return (0);
1058}
1059
1060/* Utility routines to manage the array of pointers to timers. */
1061void
1062timers_alloc(struct proc *p)
1063{
1064	int i;
1065	struct ptimers *pts;
1066
1067	pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1068	LIST_INIT(&pts->pts_virtual);
1069	LIST_INIT(&pts->pts_prof);
1070	for (i = 0; i < TIMER_MAX; i++)
1071		pts->pts_timers[i] = NULL;
1072	pts->pts_fired = 0;
1073	p->p_timers = pts;
1074}
1075
1076/*
1077 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1078 * then clean up all timers and free all the data structures. If
1079 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1080 * by timer_create(), not the BSD setitimer() timers, and only free the
1081 * structure if none of those remain.
1082 */
1083void
1084timers_free(struct proc *p, int which)
1085{
1086	int i, s;
1087	struct ptimers *pts;
1088	struct ptimer *pt, *ptn;
1089	struct timeval tv;
1090
1091	if (p->p_timers) {
1092		pts = p->p_timers;
1093		if (which == TIMERS_ALL)
1094			i = 0;
1095		else {
1096			s = splclock();
1097			timerclear(&tv);
1098			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1099			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1100			     ptn = LIST_NEXT(ptn, pt_list))
1101				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1102			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1103			if (ptn) {
1104				timeradd(&tv, &ptn->pt_time.it_value,
1105				    &ptn->pt_time.it_value);
1106				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1107				    ptn, pt_list);
1108			}
1109
1110			timerclear(&tv);
1111			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1112			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1113			     ptn = LIST_NEXT(ptn, pt_list))
1114				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1115			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1116			if (ptn) {
1117				timeradd(&tv, &ptn->pt_time.it_value,
1118				    &ptn->pt_time.it_value);
1119				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1120				    pt_list);
1121			}
1122			splx(s);
1123			i = 3;
1124		}
1125		for ( ; i < TIMER_MAX; i++)
1126			if ((pt = pts->pts_timers[i]) != NULL) {
1127				if (pt->pt_type == CLOCK_REALTIME)
1128					callout_stop(&pt->pt_ch);
1129				pts->pts_timers[i] = NULL;
1130				pool_put(&ptimer_pool, pt);
1131			}
1132		if ((pts->pts_timers[0] == NULL) &&
1133		    (pts->pts_timers[1] == NULL) &&
1134		    (pts->pts_timers[2] == NULL)) {
1135			p->p_timers = NULL;
1136			free(pts, M_SUBPROC);
1137		}
1138	}
1139}
1140
1141/*
1142 * Check that a proposed value to load into the .it_value or
1143 * .it_interval part of an interval timer is acceptable, and
1144 * fix it to have at least minimal value (i.e. if it is less
1145 * than the resolution of the clock, round it up.)
1146 */
1147int
1148itimerfix(struct timeval *tv)
1149{
1150
1151	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1152		return (EINVAL);
1153	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1154		tv->tv_usec = tick;
1155	return (0);
1156}
1157
1158/*
1159 * Decrement an interval timer by a specified number
1160 * of microseconds, which must be less than a second,
1161 * i.e. < 1000000.  If the timer expires, then reload
1162 * it.  In this case, carry over (usec - old value) to
1163 * reduce the value reloaded into the timer so that
1164 * the timer does not drift.  This routine assumes
1165 * that it is called in a context where the timers
1166 * on which it is operating cannot change in value.
1167 */
1168int
1169itimerdecr(struct ptimer *pt, int usec)
1170{
1171	struct itimerval *itp;
1172
1173	itp = &pt->pt_time;
1174	if (itp->it_value.tv_usec < usec) {
1175		if (itp->it_value.tv_sec == 0) {
1176			/* expired, and already in next interval */
1177			usec -= itp->it_value.tv_usec;
1178			goto expire;
1179		}
1180		itp->it_value.tv_usec += 1000000;
1181		itp->it_value.tv_sec--;
1182	}
1183	itp->it_value.tv_usec -= usec;
1184	usec = 0;
1185	if (timerisset(&itp->it_value))
1186		return (1);
1187	/* expired, exactly at end of interval */
1188expire:
1189	if (timerisset(&itp->it_interval)) {
1190		itp->it_value = itp->it_interval;
1191		itp->it_value.tv_usec -= usec;
1192		if (itp->it_value.tv_usec < 0) {
1193			itp->it_value.tv_usec += 1000000;
1194			itp->it_value.tv_sec--;
1195		}
1196		timer_settime(pt);
1197	} else
1198		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1199	return (0);
1200}
1201
1202void
1203itimerfire(struct ptimer *pt)
1204{
1205	struct proc *p = pt->pt_proc;
1206	struct sadata_vp *vp;
1207	int s;
1208	unsigned int i;
1209
1210	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1211		/*
1212		 * No RT signal infrastructure exists at this time;
1213		 * just post the signal number and throw away the
1214		 * value.
1215		 */
1216		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1217			pt->pt_overruns++;
1218		else {
1219			ksiginfo_t ksi;
1220			(void)memset(&ksi, 0, sizeof(ksi));
1221			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1222			ksi.ksi_code = SI_TIMER;
1223			ksi.ksi_sigval = pt->pt_ev.sigev_value;
1224			pt->pt_poverruns = pt->pt_overruns;
1225			pt->pt_overruns = 0;
1226			kpsignal(p, &ksi, NULL);
1227		}
1228	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1229		/* Cause the process to generate an upcall when it returns. */
1230
1231		if (p->p_userret == NULL) {
1232			/*
1233			 * XXX stop signals can be processed inside tsleep,
1234			 * which can be inside sa_yield's inner loop, which
1235			 * makes testing for sa_idle alone insuffucent to
1236			 * determine if we really should call setrunnable.
1237			 */
1238			pt->pt_poverruns = pt->pt_overruns;
1239			pt->pt_overruns = 0;
1240			i = 1 << pt->pt_entry;
1241			p->p_timers->pts_fired = i;
1242			p->p_userret = timerupcall;
1243			p->p_userret_arg = p->p_timers;
1244
1245			SCHED_LOCK(s);
1246			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1247				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1248					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1249					sched_wakeup(vp->savp_lwp);
1250					break;
1251				}
1252			}
1253			SCHED_UNLOCK(s);
1254		} else if (p->p_userret == timerupcall) {
1255			i = 1 << pt->pt_entry;
1256			if ((p->p_timers->pts_fired & i) == 0) {
1257				pt->pt_poverruns = pt->pt_overruns;
1258				pt->pt_overruns = 0;
1259				p->p_timers->pts_fired |= i;
1260			} else
1261				pt->pt_overruns++;
1262		} else {
1263			pt->pt_overruns++;
1264			if ((p->p_flag & P_WEXIT) == 0)
1265				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1266				    p->p_pid, pt->pt_overruns,
1267				    pt->pt_ev.sigev_value.sival_int,
1268				    p->p_userret);
1269		}
1270	}
1271
1272}
1273
1274/*
1275 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1276 * for usage and rationale.
1277 */
1278int
1279ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1280{
1281	struct timeval tv, delta;
1282	int s, rv = 0;
1283
1284	s = splclock();
1285	tv = mono_time;
1286	splx(s);
1287
1288	timersub(&tv, lasttime, &delta);
1289
1290	/*
1291	 * check for 0,0 is so that the message will be seen at least once,
1292	 * even if interval is huge.
1293	 */
1294	if (timercmp(&delta, mininterval, >=) ||
1295	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1296		*lasttime = tv;
1297		rv = 1;
1298	}
1299
1300	return (rv);
1301}
1302
1303/*
1304 * ppsratecheck(): packets (or events) per second limitation.
1305 */
1306int
1307ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1308{
1309	struct timeval tv, delta;
1310	int s, rv;
1311
1312	s = splclock();
1313	tv = mono_time;
1314	splx(s);
1315
1316	timersub(&tv, lasttime, &delta);
1317
1318	/*
1319	 * check for 0,0 is so that the message will be seen at least once.
1320	 * if more than one second have passed since the last update of
1321	 * lasttime, reset the counter.
1322	 *
1323	 * we do increment *curpps even in *curpps < maxpps case, as some may
1324	 * try to use *curpps for stat purposes as well.
1325	 */
1326	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1327	    delta.tv_sec >= 1) {
1328		*lasttime = tv;
1329		*curpps = 0;
1330	}
1331	if (maxpps < 0)
1332		rv = 1;
1333	else if (*curpps < maxpps)
1334		rv = 1;
1335	else
1336		rv = 0;
1337
1338#if 1 /*DIAGNOSTIC?*/
1339	/* be careful about wrap-around */
1340	if (*curpps + 1 > *curpps)
1341		*curpps = *curpps + 1;
1342#else
1343	/*
1344	 * assume that there's not too many calls to this function.
1345	 * not sure if the assumption holds, as it depends on *caller's*
1346	 * behavior, not the behavior of this function.
1347	 * IMHO it is wrong to make assumption on the caller's behavior,
1348	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1349	 */
1350	*curpps = *curpps + 1;
1351#endif
1352
1353	return (rv);
1354}
1355