kern_time.c revision 1.89
1/*	$NetBSD: kern_time.c,v 1.89 2005/05/29 22:24:15 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.89 2005/05/29 22:24:15 christos Exp $");
72
73#include "fs_nfs.h"
74#include "opt_nfs.h"
75#include "opt_nfsserver.h"
76
77#include <sys/param.h>
78#include <sys/resourcevar.h>
79#include <sys/kernel.h>
80#include <sys/systm.h>
81#include <sys/malloc.h>
82#include <sys/proc.h>
83#include <sys/sa.h>
84#include <sys/savar.h>
85#include <sys/vnode.h>
86#include <sys/signalvar.h>
87#include <sys/syslog.h>
88
89#include <sys/mount.h>
90#include <sys/syscallargs.h>
91
92#include <uvm/uvm_extern.h>
93
94#if defined(NFS) || defined(NFSSERVER)
95#include <nfs/rpcv2.h>
96#include <nfs/nfsproto.h>
97#include <nfs/nfs_var.h>
98#endif
99
100#include <machine/cpu.h>
101
102static void timerupcall(struct lwp *, void *);
103
104
105/* Time of day and interval timer support.
106 *
107 * These routines provide the kernel entry points to get and set
108 * the time-of-day and per-process interval timers.  Subroutines
109 * here provide support for adding and subtracting timeval structures
110 * and decrementing interval timers, optionally reloading the interval
111 * timers when they expire.
112 */
113
114/* This function is used by clock_settime and settimeofday */
115int
116settime(struct timeval *tv)
117{
118	struct timeval delta;
119	struct cpu_info *ci;
120	int s;
121
122	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123	s = splclock();
124	timersub(tv, &time, &delta);
125	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126		splx(s);
127		return (EPERM);
128	}
129#ifdef notyet
130	if ((delta.tv_sec < 86400) && securelevel > 0) {
131		splx(s);
132		return (EPERM);
133	}
134#endif
135	time = *tv;
136	(void) spllowersoftclock();
137	timeradd(&boottime, &delta, &boottime);
138	/*
139	 * XXXSMP
140	 * This is wrong.  We should traverse a list of all
141	 * CPUs and add the delta to the runtime of those
142	 * CPUs which have a process on them.
143	 */
144	ci = curcpu();
145	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146	    &ci->ci_schedstate.spc_runtime);
147#	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148		nqnfs_lease_updatetime(delta.tv_sec);
149#	endif
150	splx(s);
151	resettodr();
152	return (0);
153}
154
155/* ARGSUSED */
156int
157sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
158{
159	struct sys_clock_gettime_args /* {
160		syscallarg(clockid_t) clock_id;
161		syscallarg(struct timespec *) tp;
162	} */ *uap = v;
163	clockid_t clock_id;
164	struct timeval atv;
165	struct timespec ats;
166	int s;
167
168	clock_id = SCARG(uap, clock_id);
169	switch (clock_id) {
170	case CLOCK_REALTIME:
171		microtime(&atv);
172		TIMEVAL_TO_TIMESPEC(&atv,&ats);
173		break;
174	case CLOCK_MONOTONIC:
175		/* XXX "hz" granularity */
176		s = splclock();
177		atv = mono_time;
178		splx(s);
179		TIMEVAL_TO_TIMESPEC(&atv,&ats);
180		break;
181	default:
182		return (EINVAL);
183	}
184
185	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186}
187
188/* ARGSUSED */
189int
190sys_clock_settime(l, v, retval)
191	struct lwp *l;
192	void *v;
193	register_t *retval;
194{
195	struct sys_clock_settime_args /* {
196		syscallarg(clockid_t) clock_id;
197		syscallarg(const struct timespec *) tp;
198	} */ *uap = v;
199	struct proc *p = l->l_proc;
200	int error;
201
202	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
203		return (error);
204
205	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
206}
207
208
209int
210clock_settime1(clock_id, tp)
211	clockid_t clock_id;
212	const struct timespec *tp;
213{
214	struct timespec ats;
215	struct timeval atv;
216	int error;
217
218	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
219		return (error);
220
221	switch (clock_id) {
222	case CLOCK_REALTIME:
223		TIMESPEC_TO_TIMEVAL(&atv, &ats);
224		if ((error = settime(&atv)) != 0)
225			return (error);
226		break;
227	case CLOCK_MONOTONIC:
228		return (EINVAL);	/* read-only clock */
229	default:
230		return (EINVAL);
231	}
232
233	return 0;
234}
235
236int
237sys_clock_getres(struct lwp *l, void *v, register_t *retval)
238{
239	struct sys_clock_getres_args /* {
240		syscallarg(clockid_t) clock_id;
241		syscallarg(struct timespec *) tp;
242	} */ *uap = v;
243	clockid_t clock_id;
244	struct timespec ts;
245	int error = 0;
246
247	clock_id = SCARG(uap, clock_id);
248	switch (clock_id) {
249	case CLOCK_REALTIME:
250	case CLOCK_MONOTONIC:
251		ts.tv_sec = 0;
252		ts.tv_nsec = 1000000000 / hz;
253		break;
254	default:
255		return (EINVAL);
256	}
257
258	if (SCARG(uap, tp))
259		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
260
261	return error;
262}
263
264/* ARGSUSED */
265int
266sys_nanosleep(struct lwp *l, void *v, register_t *retval)
267{
268	static int nanowait;
269	struct sys_nanosleep_args/* {
270		syscallarg(struct timespec *) rqtp;
271		syscallarg(struct timespec *) rmtp;
272	} */ *uap = v;
273	struct timespec rqt;
274	struct timespec rmt;
275	struct timeval atv, utv;
276	int error, s, timo;
277
278	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
279	if (error)
280		return (error);
281
282	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
283	if (itimerfix(&atv))
284		return (EINVAL);
285
286	s = splclock();
287	timeradd(&atv,&time,&atv);
288	timo = hzto(&atv);
289	/*
290	 * Avoid inadvertantly sleeping forever
291	 */
292	if (timo == 0)
293		timo = 1;
294	splx(s);
295
296	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
297	if (error == ERESTART)
298		error = EINTR;
299	if (error == EWOULDBLOCK)
300		error = 0;
301
302	if (SCARG(uap, rmtp)) {
303		int error1;
304
305		s = splclock();
306		utv = time;
307		splx(s);
308
309		timersub(&atv, &utv, &utv);
310		if (utv.tv_sec < 0)
311			timerclear(&utv);
312
313		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
314		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
315			sizeof(rmt));
316		if (error1)
317			return (error1);
318	}
319
320	return error;
321}
322
323/* ARGSUSED */
324int
325sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
326{
327	struct sys_gettimeofday_args /* {
328		syscallarg(struct timeval *) tp;
329		syscallarg(void *) tzp;		really "struct timezone *"
330	} */ *uap = v;
331	struct timeval atv;
332	int error = 0;
333	struct timezone tzfake;
334
335	if (SCARG(uap, tp)) {
336		microtime(&atv);
337		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
338		if (error)
339			return (error);
340	}
341	if (SCARG(uap, tzp)) {
342		/*
343		 * NetBSD has no kernel notion of time zone, so we just
344		 * fake up a timezone struct and return it if demanded.
345		 */
346		tzfake.tz_minuteswest = 0;
347		tzfake.tz_dsttime = 0;
348		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
349	}
350	return (error);
351}
352
353/* ARGSUSED */
354int
355sys_settimeofday(struct lwp *l, void *v, register_t *retval)
356{
357	struct sys_settimeofday_args /* {
358		syscallarg(const struct timeval *) tv;
359		syscallarg(const void *) tzp;	really "const struct timezone *"
360	} */ *uap = v;
361	struct proc *p = l->l_proc;
362	int error;
363
364	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
365		return (error);
366
367	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
368}
369
370int
371settimeofday1(utv, utzp, p)
372	const struct timeval *utv;
373	const struct timezone *utzp;
374	struct proc *p;
375{
376	struct timeval atv;
377	struct timezone atz;
378	struct timeval *tv = NULL;
379	struct timezone *tzp = NULL;
380	int error;
381
382	/* Verify all parameters before changing time. */
383	if (utv) {
384		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
385			return (error);
386		tv = &atv;
387	}
388	/* XXX since we don't use tz, probably no point in doing copyin. */
389	if (utzp) {
390		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
391			return (error);
392		tzp = &atz;
393	}
394
395	if (tv)
396		if ((error = settime(tv)) != 0)
397			return (error);
398	/*
399	 * NetBSD has no kernel notion of time zone, and only an
400	 * obsolete program would try to set it, so we log a warning.
401	 */
402	if (tzp)
403		log(LOG_WARNING, "pid %d attempted to set the "
404		    "(obsolete) kernel time zone\n", p->p_pid);
405	return (0);
406}
407
408int	tickdelta;			/* current clock skew, us. per tick */
409long	timedelta;			/* unapplied time correction, us. */
410long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
411int	time_adjusted;			/* set if an adjustment is made */
412
413/* ARGSUSED */
414int
415sys_adjtime(struct lwp *l, void *v, register_t *retval)
416{
417	struct sys_adjtime_args /* {
418		syscallarg(const struct timeval *) delta;
419		syscallarg(struct timeval *) olddelta;
420	} */ *uap = v;
421	struct proc *p = l->l_proc;
422	int error;
423
424	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
425		return (error);
426
427	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
428}
429
430int
431adjtime1(delta, olddelta, p)
432	const struct timeval *delta;
433	struct timeval *olddelta;
434	struct proc *p;
435{
436	struct timeval atv;
437	long ndelta, ntickdelta, odelta;
438	int error;
439	int s;
440
441	error = copyin(delta, &atv, sizeof(struct timeval));
442	if (error)
443		return (error);
444
445	/*
446	 * Compute the total correction and the rate at which to apply it.
447	 * Round the adjustment down to a whole multiple of the per-tick
448	 * delta, so that after some number of incremental changes in
449	 * hardclock(), tickdelta will become zero, lest the correction
450	 * overshoot and start taking us away from the desired final time.
451	 */
452	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
453	if (ndelta > bigadj || ndelta < -bigadj)
454		ntickdelta = 10 * tickadj;
455	else
456		ntickdelta = tickadj;
457	if (ndelta % ntickdelta)
458		ndelta = ndelta / ntickdelta * ntickdelta;
459
460	/*
461	 * To make hardclock()'s job easier, make the per-tick delta negative
462	 * if we want time to run slower; then hardclock can simply compute
463	 * tick + tickdelta, and subtract tickdelta from timedelta.
464	 */
465	if (ndelta < 0)
466		ntickdelta = -ntickdelta;
467	if (ndelta != 0)
468		/* We need to save the system clock time during shutdown */
469		time_adjusted |= 1;
470	s = splclock();
471	odelta = timedelta;
472	timedelta = ndelta;
473	tickdelta = ntickdelta;
474	splx(s);
475
476	if (olddelta) {
477		atv.tv_sec = odelta / 1000000;
478		atv.tv_usec = odelta % 1000000;
479		error = copyout(&atv, olddelta, sizeof(struct timeval));
480	}
481	return error;
482}
483
484/*
485 * Interval timer support. Both the BSD getitimer() family and the POSIX
486 * timer_*() family of routines are supported.
487 *
488 * All timers are kept in an array pointed to by p_timers, which is
489 * allocated on demand - many processes don't use timers at all. The
490 * first three elements in this array are reserved for the BSD timers:
491 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
492 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
493 * syscall.
494 *
495 * Realtime timers are kept in the ptimer structure as an absolute
496 * time; virtual time timers are kept as a linked list of deltas.
497 * Virtual time timers are processed in the hardclock() routine of
498 * kern_clock.c.  The real time timer is processed by a callout
499 * routine, called from the softclock() routine.  Since a callout may
500 * be delayed in real time due to interrupt processing in the system,
501 * it is possible for the real time timeout routine (realtimeexpire,
502 * given below), to be delayed in real time past when it is supposed
503 * to occur.  It does not suffice, therefore, to reload the real timer
504 * .it_value from the real time timers .it_interval.  Rather, we
505 * compute the next time in absolute time the timer should go off.  */
506
507/* Allocate a POSIX realtime timer. */
508int
509sys_timer_create(struct lwp *l, void *v, register_t *retval)
510{
511	struct sys_timer_create_args /* {
512		syscallarg(clockid_t) clock_id;
513		syscallarg(struct sigevent *) evp;
514		syscallarg(timer_t *) timerid;
515	} */ *uap = v;
516	struct proc *p = l->l_proc;
517	clockid_t id;
518	struct sigevent *evp;
519	struct ptimer *pt;
520	timer_t timerid;
521	int error;
522
523	id = SCARG(uap, clock_id);
524	if (id < CLOCK_REALTIME ||
525	    id > CLOCK_PROF)
526		return (EINVAL);
527
528	if (p->p_timers == NULL)
529		timers_alloc(p);
530
531	/* Find a free timer slot, skipping those reserved for setitimer(). */
532	for (timerid = 3; timerid < TIMER_MAX; timerid++)
533		if (p->p_timers->pts_timers[timerid] == NULL)
534			break;
535
536	if (timerid == TIMER_MAX)
537		return EAGAIN;
538
539	pt = pool_get(&ptimer_pool, PR_WAITOK);
540	evp = SCARG(uap, evp);
541	if (evp) {
542		if (((error =
543		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
544		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
545			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
546			pool_put(&ptimer_pool, pt);
547			return (error ? error : EINVAL);
548		}
549	} else {
550		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
551		switch (id) {
552		case CLOCK_REALTIME:
553			pt->pt_ev.sigev_signo = SIGALRM;
554			break;
555		case CLOCK_VIRTUAL:
556			pt->pt_ev.sigev_signo = SIGVTALRM;
557			break;
558		case CLOCK_PROF:
559			pt->pt_ev.sigev_signo = SIGPROF;
560			break;
561		}
562		pt->pt_ev.sigev_value.sival_int = timerid;
563	}
564	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
565	pt->pt_info.ksi_errno = 0;
566	pt->pt_info.ksi_code = 0;
567	pt->pt_info.ksi_pid = p->p_pid;
568	pt->pt_info.ksi_uid = p->p_cred->p_ruid;
569	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
570
571	pt->pt_type = id;
572	pt->pt_proc = p;
573	pt->pt_overruns = 0;
574	pt->pt_poverruns = 0;
575	pt->pt_entry = timerid;
576	timerclear(&pt->pt_time.it_value);
577	if (id == CLOCK_REALTIME)
578		callout_init(&pt->pt_ch);
579	else
580		pt->pt_active = 0;
581
582	p->p_timers->pts_timers[timerid] = pt;
583
584	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
585}
586
587
588/* Delete a POSIX realtime timer */
589int
590sys_timer_delete(struct lwp *l, void *v, register_t *retval)
591{
592	struct sys_timer_delete_args /*  {
593		syscallarg(timer_t) timerid;
594	} */ *uap = v;
595	struct proc *p = l->l_proc;
596	timer_t timerid;
597	struct ptimer *pt, *ptn;
598	int s;
599
600	timerid = SCARG(uap, timerid);
601
602	if ((p->p_timers == NULL) ||
603	    (timerid < 2) || (timerid >= TIMER_MAX) ||
604	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
605		return (EINVAL);
606
607	if (pt->pt_type == CLOCK_REALTIME)
608		callout_stop(&pt->pt_ch);
609	else if (pt->pt_active) {
610		s = splclock();
611		ptn = LIST_NEXT(pt, pt_list);
612		LIST_REMOVE(pt, pt_list);
613		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
614			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
615			    &ptn->pt_time.it_value);
616		splx(s);
617	}
618
619	p->p_timers->pts_timers[timerid] = NULL;
620	pool_put(&ptimer_pool, pt);
621
622	return (0);
623}
624
625/*
626 * Set up the given timer. The value in pt->pt_time.it_value is taken
627 * to be an absolute time for CLOCK_REALTIME timers and a relative
628 * time for virtual timers.
629 * Must be called at splclock().
630 */
631void
632timer_settime(struct ptimer *pt)
633{
634	struct ptimer *ptn, *pptn;
635	struct ptlist *ptl;
636
637	if (pt->pt_type == CLOCK_REALTIME) {
638		callout_stop(&pt->pt_ch);
639		if (timerisset(&pt->pt_time.it_value)) {
640			/*
641			 * Don't need to check hzto() return value, here.
642			 * callout_reset() does it for us.
643			 */
644			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
645			    realtimerexpire, pt);
646		}
647	} else {
648		if (pt->pt_active) {
649			ptn = LIST_NEXT(pt, pt_list);
650			LIST_REMOVE(pt, pt_list);
651			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
652				timeradd(&pt->pt_time.it_value,
653				    &ptn->pt_time.it_value,
654				    &ptn->pt_time.it_value);
655		}
656		if (timerisset(&pt->pt_time.it_value)) {
657			if (pt->pt_type == CLOCK_VIRTUAL)
658				ptl = &pt->pt_proc->p_timers->pts_virtual;
659			else
660				ptl = &pt->pt_proc->p_timers->pts_prof;
661
662			for (ptn = LIST_FIRST(ptl), pptn = NULL;
663			     ptn && timercmp(&pt->pt_time.it_value,
664				 &ptn->pt_time.it_value, >);
665			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
666				timersub(&pt->pt_time.it_value,
667				    &ptn->pt_time.it_value,
668				    &pt->pt_time.it_value);
669
670			if (pptn)
671				LIST_INSERT_AFTER(pptn, pt, pt_list);
672			else
673				LIST_INSERT_HEAD(ptl, pt, pt_list);
674
675			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
676				timersub(&ptn->pt_time.it_value,
677				    &pt->pt_time.it_value,
678				    &ptn->pt_time.it_value);
679
680			pt->pt_active = 1;
681		} else
682			pt->pt_active = 0;
683	}
684}
685
686void
687timer_gettime(struct ptimer *pt, struct itimerval *aitv)
688{
689	struct ptimer *ptn;
690
691	*aitv = pt->pt_time;
692	if (pt->pt_type == CLOCK_REALTIME) {
693		/*
694		 * Convert from absolute to relative time in .it_value
695		 * part of real time timer.  If time for real time
696		 * timer has passed return 0, else return difference
697		 * between current time and time for the timer to go
698		 * off.
699		 */
700		if (timerisset(&aitv->it_value)) {
701			if (timercmp(&aitv->it_value, &time, <))
702				timerclear(&aitv->it_value);
703			else
704				timersub(&aitv->it_value, &time,
705				    &aitv->it_value);
706		}
707	} else if (pt->pt_active) {
708		if (pt->pt_type == CLOCK_VIRTUAL)
709			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
710		else
711			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
712		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
713			timeradd(&aitv->it_value,
714			    &ptn->pt_time.it_value, &aitv->it_value);
715		KASSERT(ptn != NULL); /* pt should be findable on the list */
716	} else
717		timerclear(&aitv->it_value);
718}
719
720
721
722/* Set and arm a POSIX realtime timer */
723int
724sys_timer_settime(struct lwp *l, void *v, register_t *retval)
725{
726	struct sys_timer_settime_args /* {
727		syscallarg(timer_t) timerid;
728		syscallarg(int) flags;
729		syscallarg(const struct itimerspec *) value;
730		syscallarg(struct itimerspec *) ovalue;
731	} */ *uap = v;
732	struct proc *p = l->l_proc;
733	int error, s, timerid;
734	struct itimerval val, oval;
735	struct itimerspec value, ovalue;
736	struct ptimer *pt;
737
738	timerid = SCARG(uap, timerid);
739
740	if ((p->p_timers == NULL) ||
741	    (timerid < 2) || (timerid >= TIMER_MAX) ||
742	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
743		return (EINVAL);
744
745	if ((error = copyin(SCARG(uap, value), &value,
746	    sizeof(struct itimerspec))) != 0)
747		return (error);
748
749	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
750	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
751	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
752		return (EINVAL);
753
754	oval = pt->pt_time;
755	pt->pt_time = val;
756
757	s = splclock();
758	/*
759	 * If we've been passed a relative time for a realtime timer,
760	 * convert it to absolute; if an absolute time for a virtual
761	 * timer, convert it to relative and make sure we don't set it
762	 * to zero, which would cancel the timer, or let it go
763	 * negative, which would confuse the comparison tests.
764	 */
765	if (timerisset(&pt->pt_time.it_value)) {
766		if (pt->pt_type == CLOCK_REALTIME) {
767			if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
768				timeradd(&pt->pt_time.it_value, &time,
769				    &pt->pt_time.it_value);
770		} else {
771			if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
772				timersub(&pt->pt_time.it_value, &time,
773				    &pt->pt_time.it_value);
774				if (!timerisset(&pt->pt_time.it_value) ||
775				    pt->pt_time.it_value.tv_sec < 0) {
776					pt->pt_time.it_value.tv_sec = 0;
777					pt->pt_time.it_value.tv_usec = 1;
778				}
779			}
780		}
781	}
782
783	timer_settime(pt);
784	splx(s);
785
786	if (SCARG(uap, ovalue)) {
787		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
788		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
789		return copyout(&ovalue, SCARG(uap, ovalue),
790		    sizeof(struct itimerspec));
791	}
792
793	return (0);
794}
795
796/* Return the time remaining until a POSIX timer fires. */
797int
798sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
799{
800	struct sys_timer_gettime_args /* {
801		syscallarg(timer_t) timerid;
802		syscallarg(struct itimerspec *) value;
803	} */ *uap = v;
804	struct itimerval aitv;
805	struct itimerspec its;
806	struct proc *p = l->l_proc;
807	int s, timerid;
808	struct ptimer *pt;
809
810	timerid = SCARG(uap, timerid);
811
812	if ((p->p_timers == NULL) ||
813	    (timerid < 2) || (timerid >= TIMER_MAX) ||
814	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
815		return (EINVAL);
816
817	s = splclock();
818	timer_gettime(pt, &aitv);
819	splx(s);
820
821	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
822	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
823
824	return copyout(&its, SCARG(uap, value), sizeof(its));
825}
826
827/*
828 * Return the count of the number of times a periodic timer expired
829 * while a notification was already pending. The counter is reset when
830 * a timer expires and a notification can be posted.
831 */
832int
833sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
834{
835	struct sys_timer_getoverrun_args /* {
836		syscallarg(timer_t) timerid;
837	} */ *uap = v;
838	struct proc *p = l->l_proc;
839	int timerid;
840	struct ptimer *pt;
841
842	timerid = SCARG(uap, timerid);
843
844	if ((p->p_timers == NULL) ||
845	    (timerid < 2) || (timerid >= TIMER_MAX) ||
846	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
847		return (EINVAL);
848
849	*retval = pt->pt_poverruns;
850
851	return (0);
852}
853
854/* Glue function that triggers an upcall; called from userret(). */
855static void
856timerupcall(struct lwp *l, void *arg)
857{
858	struct ptimers *pt = (struct ptimers *)arg;
859	unsigned int i, fired, done;
860	extern struct pool siginfo_pool;	/* XXX Ew. */
861
862	KDASSERT(l->l_proc->p_sa);
863	/* Bail out if we do not own the virtual processor */
864	if (l->l_savp->savp_lwp != l)
865		return ;
866
867	KERNEL_PROC_LOCK(l);
868
869	fired = pt->pts_fired;
870	done = 0;
871	while ((i = ffs(fired)) != 0) {
872		siginfo_t *si;
873		int mask = 1 << --i;
874		int f;
875
876		f = l->l_flag & L_SA;
877		l->l_flag &= ~L_SA;
878		si = pool_get(&siginfo_pool, PR_WAITOK);
879		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
880		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
881		    sizeof(*si), si) != 0) {
882			pool_put(&siginfo_pool, si);
883			/* XXX What do we do here?? */
884		} else
885			done |= mask;
886		fired &= ~mask;
887		l->l_flag |= f;
888	}
889	pt->pts_fired &= ~done;
890	if (pt->pts_fired == 0)
891		l->l_proc->p_userret = NULL;
892
893	KERNEL_PROC_UNLOCK(l);
894}
895
896
897/*
898 * Real interval timer expired:
899 * send process whose timer expired an alarm signal.
900 * If time is not set up to reload, then just return.
901 * Else compute next time timer should go off which is > current time.
902 * This is where delay in processing this timeout causes multiple
903 * SIGALRM calls to be compressed into one.
904 */
905void
906realtimerexpire(void *arg)
907{
908	struct ptimer *pt;
909	int s;
910
911	pt = (struct ptimer *)arg;
912
913	itimerfire(pt);
914
915	if (!timerisset(&pt->pt_time.it_interval)) {
916		timerclear(&pt->pt_time.it_value);
917		return;
918	}
919	for (;;) {
920		s = splclock();
921		timeradd(&pt->pt_time.it_value,
922		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
923		if (timercmp(&pt->pt_time.it_value, &time, >)) {
924			/*
925			 * Don't need to check hzto() return value, here.
926			 * callout_reset() does it for us.
927			 */
928			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
929			    realtimerexpire, pt);
930			splx(s);
931			return;
932		}
933		splx(s);
934		pt->pt_overruns++;
935	}
936}
937
938/* BSD routine to get the value of an interval timer. */
939/* ARGSUSED */
940int
941sys_getitimer(struct lwp *l, void *v, register_t *retval)
942{
943	struct sys_getitimer_args /* {
944		syscallarg(int) which;
945		syscallarg(struct itimerval *) itv;
946	} */ *uap = v;
947	struct proc *p = l->l_proc;
948	struct itimerval aitv;
949	int s, which;
950
951	which = SCARG(uap, which);
952
953	if ((u_int)which > ITIMER_PROF)
954		return (EINVAL);
955
956	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
957		timerclear(&aitv.it_value);
958		timerclear(&aitv.it_interval);
959	} else {
960		s = splclock();
961		timer_gettime(p->p_timers->pts_timers[which], &aitv);
962		splx(s);
963	}
964
965	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
966
967}
968
969/* BSD routine to set/arm an interval timer. */
970/* ARGSUSED */
971int
972sys_setitimer(struct lwp *l, void *v, register_t *retval)
973{
974	struct sys_setitimer_args /* {
975		syscallarg(int) which;
976		syscallarg(const struct itimerval *) itv;
977		syscallarg(struct itimerval *) oitv;
978	} */ *uap = v;
979	struct proc *p = l->l_proc;
980	int which = SCARG(uap, which);
981	struct sys_getitimer_args getargs;
982	struct itimerval aitv;
983	const struct itimerval *itvp;
984	struct ptimer *pt;
985	int s, error;
986
987	if ((u_int)which > ITIMER_PROF)
988		return (EINVAL);
989	itvp = SCARG(uap, itv);
990	if (itvp &&
991	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
992		return (error);
993	if (SCARG(uap, oitv) != NULL) {
994		SCARG(&getargs, which) = which;
995		SCARG(&getargs, itv) = SCARG(uap, oitv);
996		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
997			return (error);
998	}
999	if (itvp == 0)
1000		return (0);
1001	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
1002		return (EINVAL);
1003
1004	/*
1005	 * Don't bother allocating data structures if the process just
1006	 * wants to clear the timer.
1007	 */
1008	if (!timerisset(&aitv.it_value) &&
1009	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1010		return (0);
1011
1012	if (p->p_timers == NULL)
1013		timers_alloc(p);
1014	if (p->p_timers->pts_timers[which] == NULL) {
1015		pt = pool_get(&ptimer_pool, PR_WAITOK);
1016		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1017		pt->pt_ev.sigev_value.sival_int = which;
1018		pt->pt_overruns = 0;
1019		pt->pt_proc = p;
1020		pt->pt_type = which;
1021		pt->pt_entry = which;
1022		switch (which) {
1023		case ITIMER_REAL:
1024			callout_init(&pt->pt_ch);
1025			pt->pt_ev.sigev_signo = SIGALRM;
1026			break;
1027		case ITIMER_VIRTUAL:
1028			pt->pt_active = 0;
1029			pt->pt_ev.sigev_signo = SIGVTALRM;
1030			break;
1031		case ITIMER_PROF:
1032			pt->pt_active = 0;
1033			pt->pt_ev.sigev_signo = SIGPROF;
1034			break;
1035		}
1036	} else
1037		pt = p->p_timers->pts_timers[which];
1038
1039	pt->pt_time = aitv;
1040	p->p_timers->pts_timers[which] = pt;
1041
1042	s = splclock();
1043	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1044		/* Convert to absolute time */
1045		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1046	}
1047	timer_settime(pt);
1048	splx(s);
1049
1050	return (0);
1051}
1052
1053/* Utility routines to manage the array of pointers to timers. */
1054void
1055timers_alloc(struct proc *p)
1056{
1057	int i;
1058	struct ptimers *pts;
1059
1060	pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1061	LIST_INIT(&pts->pts_virtual);
1062	LIST_INIT(&pts->pts_prof);
1063	for (i = 0; i < TIMER_MAX; i++)
1064		pts->pts_timers[i] = NULL;
1065	pts->pts_fired = 0;
1066	p->p_timers = pts;
1067}
1068
1069/*
1070 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1071 * then clean up all timers and free all the data structures. If
1072 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1073 * by timer_create(), not the BSD setitimer() timers, and only free the
1074 * structure if none of those remain.
1075 */
1076void
1077timers_free(struct proc *p, int which)
1078{
1079	int i, s;
1080	struct ptimers *pts;
1081	struct ptimer *pt, *ptn;
1082	struct timeval tv;
1083
1084	if (p->p_timers) {
1085		pts = p->p_timers;
1086		if (which == TIMERS_ALL)
1087			i = 0;
1088		else {
1089			s = splclock();
1090			timerclear(&tv);
1091			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1092			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1093			     ptn = LIST_NEXT(ptn, pt_list))
1094				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1095			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1096			if (ptn) {
1097				timeradd(&tv, &ptn->pt_time.it_value,
1098				    &ptn->pt_time.it_value);
1099				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1100				    ptn, pt_list);
1101			}
1102
1103			timerclear(&tv);
1104			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1105			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1106			     ptn = LIST_NEXT(ptn, pt_list))
1107				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1108			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1109			if (ptn) {
1110				timeradd(&tv, &ptn->pt_time.it_value,
1111				    &ptn->pt_time.it_value);
1112				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1113				    pt_list);
1114			}
1115			splx(s);
1116			i = 3;
1117		}
1118		for ( ; i < TIMER_MAX; i++)
1119			if ((pt = pts->pts_timers[i]) != NULL) {
1120				if (pt->pt_type == CLOCK_REALTIME)
1121					callout_stop(&pt->pt_ch);
1122				pts->pts_timers[i] = NULL;
1123				pool_put(&ptimer_pool, pt);
1124			}
1125		if ((pts->pts_timers[0] == NULL) &&
1126		    (pts->pts_timers[1] == NULL) &&
1127		    (pts->pts_timers[2] == NULL)) {
1128			p->p_timers = NULL;
1129			free(pts, M_SUBPROC);
1130		}
1131	}
1132}
1133
1134/*
1135 * Check that a proposed value to load into the .it_value or
1136 * .it_interval part of an interval timer is acceptable, and
1137 * fix it to have at least minimal value (i.e. if it is less
1138 * than the resolution of the clock, round it up.)
1139 */
1140int
1141itimerfix(struct timeval *tv)
1142{
1143
1144	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1145		return (EINVAL);
1146	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1147		tv->tv_usec = tick;
1148	return (0);
1149}
1150
1151/*
1152 * Decrement an interval timer by a specified number
1153 * of microseconds, which must be less than a second,
1154 * i.e. < 1000000.  If the timer expires, then reload
1155 * it.  In this case, carry over (usec - old value) to
1156 * reduce the value reloaded into the timer so that
1157 * the timer does not drift.  This routine assumes
1158 * that it is called in a context where the timers
1159 * on which it is operating cannot change in value.
1160 */
1161int
1162itimerdecr(struct ptimer *pt, int usec)
1163{
1164	struct itimerval *itp;
1165
1166	itp = &pt->pt_time;
1167	if (itp->it_value.tv_usec < usec) {
1168		if (itp->it_value.tv_sec == 0) {
1169			/* expired, and already in next interval */
1170			usec -= itp->it_value.tv_usec;
1171			goto expire;
1172		}
1173		itp->it_value.tv_usec += 1000000;
1174		itp->it_value.tv_sec--;
1175	}
1176	itp->it_value.tv_usec -= usec;
1177	usec = 0;
1178	if (timerisset(&itp->it_value))
1179		return (1);
1180	/* expired, exactly at end of interval */
1181expire:
1182	if (timerisset(&itp->it_interval)) {
1183		itp->it_value = itp->it_interval;
1184		itp->it_value.tv_usec -= usec;
1185		if (itp->it_value.tv_usec < 0) {
1186			itp->it_value.tv_usec += 1000000;
1187			itp->it_value.tv_sec--;
1188		}
1189		timer_settime(pt);
1190	} else
1191		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1192	return (0);
1193}
1194
1195void
1196itimerfire(struct ptimer *pt)
1197{
1198	struct proc *p = pt->pt_proc;
1199	struct sadata_vp *vp;
1200	int s;
1201	unsigned int i;
1202
1203	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1204		/*
1205		 * No RT signal infrastructure exists at this time;
1206		 * just post the signal number and throw away the
1207		 * value.
1208		 */
1209		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1210			pt->pt_overruns++;
1211		else {
1212			ksiginfo_t ksi;
1213			(void)memset(&ksi, 0, sizeof(ksi));
1214			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1215			ksi.ksi_code = SI_TIMER;
1216			ksi.ksi_sigval = pt->pt_ev.sigev_value;
1217			pt->pt_poverruns = pt->pt_overruns;
1218			pt->pt_overruns = 0;
1219			kpsignal(p, &ksi, NULL);
1220		}
1221	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1222		/* Cause the process to generate an upcall when it returns. */
1223
1224		if (p->p_userret == NULL) {
1225			/*
1226			 * XXX stop signals can be processed inside tsleep,
1227			 * which can be inside sa_yield's inner loop, which
1228			 * makes testing for sa_idle alone insuffucent to
1229			 * determine if we really should call setrunnable.
1230			 */
1231			pt->pt_poverruns = pt->pt_overruns;
1232			pt->pt_overruns = 0;
1233			i = 1 << pt->pt_entry;
1234			p->p_timers->pts_fired = i;
1235			p->p_userret = timerupcall;
1236			p->p_userret_arg = p->p_timers;
1237
1238			SCHED_LOCK(s);
1239			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1240				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1241					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1242					sched_wakeup(vp->savp_lwp);
1243					break;
1244				}
1245			}
1246			SCHED_UNLOCK(s);
1247		} else if (p->p_userret == timerupcall) {
1248			i = 1 << pt->pt_entry;
1249			if ((p->p_timers->pts_fired & i) == 0) {
1250				pt->pt_poverruns = pt->pt_overruns;
1251				pt->pt_overruns = 0;
1252				p->p_timers->pts_fired |= i;
1253			} else
1254				pt->pt_overruns++;
1255		} else {
1256			pt->pt_overruns++;
1257			if ((p->p_flag & P_WEXIT) == 0)
1258				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1259				    p->p_pid, pt->pt_overruns,
1260				    pt->pt_ev.sigev_value.sival_int,
1261				    p->p_userret);
1262		}
1263	}
1264
1265}
1266
1267/*
1268 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1269 * for usage and rationale.
1270 */
1271int
1272ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1273{
1274	struct timeval tv, delta;
1275	int s, rv = 0;
1276
1277	s = splclock();
1278	tv = mono_time;
1279	splx(s);
1280
1281	timersub(&tv, lasttime, &delta);
1282
1283	/*
1284	 * check for 0,0 is so that the message will be seen at least once,
1285	 * even if interval is huge.
1286	 */
1287	if (timercmp(&delta, mininterval, >=) ||
1288	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1289		*lasttime = tv;
1290		rv = 1;
1291	}
1292
1293	return (rv);
1294}
1295
1296/*
1297 * ppsratecheck(): packets (or events) per second limitation.
1298 */
1299int
1300ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1301{
1302	struct timeval tv, delta;
1303	int s, rv;
1304
1305	s = splclock();
1306	tv = mono_time;
1307	splx(s);
1308
1309	timersub(&tv, lasttime, &delta);
1310
1311	/*
1312	 * check for 0,0 is so that the message will be seen at least once.
1313	 * if more than one second have passed since the last update of
1314	 * lasttime, reset the counter.
1315	 *
1316	 * we do increment *curpps even in *curpps < maxpps case, as some may
1317	 * try to use *curpps for stat purposes as well.
1318	 */
1319	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1320	    delta.tv_sec >= 1) {
1321		*lasttime = tv;
1322		*curpps = 0;
1323	}
1324	if (maxpps < 0)
1325		rv = 1;
1326	else if (*curpps < maxpps)
1327		rv = 1;
1328	else
1329		rv = 0;
1330
1331#if 1 /*DIAGNOSTIC?*/
1332	/* be careful about wrap-around */
1333	if (*curpps + 1 > *curpps)
1334		*curpps = *curpps + 1;
1335#else
1336	/*
1337	 * assume that there's not too many calls to this function.
1338	 * not sure if the assumption holds, as it depends on *caller's*
1339	 * behavior, not the behavior of this function.
1340	 * IMHO it is wrong to make assumption on the caller's behavior,
1341	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1342	 */
1343	*curpps = *curpps + 1;
1344#endif
1345
1346	return (rv);
1347}
1348