kern_time.c revision 1.82
1/*	$NetBSD: kern_time.c,v 1.82 2004/03/14 01:08:47 cl Exp $	*/
2
3/*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.82 2004/03/14 01:08:47 cl Exp $");
72
73#include "fs_nfs.h"
74#include "opt_nfs.h"
75#include "opt_nfsserver.h"
76
77#include <sys/param.h>
78#include <sys/resourcevar.h>
79#include <sys/kernel.h>
80#include <sys/systm.h>
81#include <sys/malloc.h>
82#include <sys/proc.h>
83#include <sys/sa.h>
84#include <sys/savar.h>
85#include <sys/vnode.h>
86#include <sys/signalvar.h>
87#include <sys/syslog.h>
88
89#include <sys/mount.h>
90#include <sys/syscallargs.h>
91
92#include <uvm/uvm_extern.h>
93
94#if defined(NFS) || defined(NFSSERVER)
95#include <nfs/rpcv2.h>
96#include <nfs/nfsproto.h>
97#include <nfs/nfs_var.h>
98#endif
99
100#include <machine/cpu.h>
101
102static void timerupcall(struct lwp *, void *);
103
104
105/* Time of day and interval timer support.
106 *
107 * These routines provide the kernel entry points to get and set
108 * the time-of-day and per-process interval timers.  Subroutines
109 * here provide support for adding and subtracting timeval structures
110 * and decrementing interval timers, optionally reloading the interval
111 * timers when they expire.
112 */
113
114/* This function is used by clock_settime and settimeofday */
115int
116settime(struct timeval *tv)
117{
118	struct timeval delta;
119	struct cpu_info *ci;
120	int s;
121
122	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
123	s = splclock();
124	timersub(tv, &time, &delta);
125	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
126		splx(s);
127		return (EPERM);
128	}
129#ifdef notyet
130	if ((delta.tv_sec < 86400) && securelevel > 0) {
131		splx(s);
132		return (EPERM);
133	}
134#endif
135	time = *tv;
136	(void) spllowersoftclock();
137	timeradd(&boottime, &delta, &boottime);
138	/*
139	 * XXXSMP
140	 * This is wrong.  We should traverse a list of all
141	 * CPUs and add the delta to the runtime of those
142	 * CPUs which have a process on them.
143	 */
144	ci = curcpu();
145	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
146	    &ci->ci_schedstate.spc_runtime);
147#	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
148		nqnfs_lease_updatetime(delta.tv_sec);
149#	endif
150	splx(s);
151	resettodr();
152	return (0);
153}
154
155/* ARGSUSED */
156int
157sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
158{
159	struct sys_clock_gettime_args /* {
160		syscallarg(clockid_t) clock_id;
161		syscallarg(struct timespec *) tp;
162	} */ *uap = v;
163	clockid_t clock_id;
164	struct timeval atv;
165	struct timespec ats;
166	int s;
167
168	clock_id = SCARG(uap, clock_id);
169	switch (clock_id) {
170	case CLOCK_REALTIME:
171		microtime(&atv);
172		TIMEVAL_TO_TIMESPEC(&atv,&ats);
173		break;
174	case CLOCK_MONOTONIC:
175		/* XXX "hz" granularity */
176		s = splclock();
177		atv = mono_time;
178		splx(s);
179		TIMEVAL_TO_TIMESPEC(&atv,&ats);
180		break;
181	default:
182		return (EINVAL);
183	}
184
185	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186}
187
188/* ARGSUSED */
189int
190sys_clock_settime(l, v, retval)
191	struct lwp *l;
192	void *v;
193	register_t *retval;
194{
195	struct sys_clock_settime_args /* {
196		syscallarg(clockid_t) clock_id;
197		syscallarg(const struct timespec *) tp;
198	} */ *uap = v;
199	struct proc *p = l->l_proc;
200	int error;
201
202	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
203		return (error);
204
205	return (clock_settime1(SCARG(uap, clock_id), SCARG(uap, tp)));
206}
207
208
209int
210clock_settime1(clock_id, tp)
211	clockid_t clock_id;
212	const struct timespec *tp;
213{
214	struct timespec ats;
215	struct timeval atv;
216	int error;
217
218	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
219		return (error);
220
221	switch (clock_id) {
222	case CLOCK_REALTIME:
223		TIMESPEC_TO_TIMEVAL(&atv, &ats);
224		if ((error = settime(&atv)) != 0)
225			return (error);
226		break;
227	case CLOCK_MONOTONIC:
228		return (EINVAL);	/* read-only clock */
229	default:
230		return (EINVAL);
231	}
232
233	return 0;
234}
235
236int
237sys_clock_getres(struct lwp *l, void *v, register_t *retval)
238{
239	struct sys_clock_getres_args /* {
240		syscallarg(clockid_t) clock_id;
241		syscallarg(struct timespec *) tp;
242	} */ *uap = v;
243	clockid_t clock_id;
244	struct timespec ts;
245	int error = 0;
246
247	clock_id = SCARG(uap, clock_id);
248	switch (clock_id) {
249	case CLOCK_REALTIME:
250	case CLOCK_MONOTONIC:
251		ts.tv_sec = 0;
252		ts.tv_nsec = 1000000000 / hz;
253		break;
254	default:
255		return (EINVAL);
256	}
257
258	if (SCARG(uap, tp))
259		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
260
261	return error;
262}
263
264/* ARGSUSED */
265int
266sys_nanosleep(struct lwp *l, void *v, register_t *retval)
267{
268	static int nanowait;
269	struct sys_nanosleep_args/* {
270		syscallarg(struct timespec *) rqtp;
271		syscallarg(struct timespec *) rmtp;
272	} */ *uap = v;
273	struct timespec rqt;
274	struct timespec rmt;
275	struct timeval atv, utv;
276	int error, s, timo;
277
278	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
279		       sizeof(struct timespec));
280	if (error)
281		return (error);
282
283	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
284	if (itimerfix(&atv))
285		return (EINVAL);
286
287	s = splclock();
288	timeradd(&atv,&time,&atv);
289	timo = hzto(&atv);
290	/*
291	 * Avoid inadvertantly sleeping forever
292	 */
293	if (timo == 0)
294		timo = 1;
295	splx(s);
296
297	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
298	if (error == ERESTART)
299		error = EINTR;
300	if (error == EWOULDBLOCK)
301		error = 0;
302
303	if (SCARG(uap, rmtp)) {
304		int error;
305
306		s = splclock();
307		utv = time;
308		splx(s);
309
310		timersub(&atv, &utv, &utv);
311		if (utv.tv_sec < 0)
312			timerclear(&utv);
313
314		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
315		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
316			sizeof(rmt));
317		if (error)
318			return (error);
319	}
320
321	return error;
322}
323
324/* ARGSUSED */
325int
326sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
327{
328	struct sys_gettimeofday_args /* {
329		syscallarg(struct timeval *) tp;
330		syscallarg(struct timezone *) tzp;
331	} */ *uap = v;
332	struct timeval atv;
333	int error = 0;
334	struct timezone tzfake;
335
336	if (SCARG(uap, tp)) {
337		microtime(&atv);
338		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
339		if (error)
340			return (error);
341	}
342	if (SCARG(uap, tzp)) {
343		/*
344		 * NetBSD has no kernel notion of time zone, so we just
345		 * fake up a timezone struct and return it if demanded.
346		 */
347		tzfake.tz_minuteswest = 0;
348		tzfake.tz_dsttime = 0;
349		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
350	}
351	return (error);
352}
353
354/* ARGSUSED */
355int
356sys_settimeofday(struct lwp *l, void *v, register_t *retval)
357{
358	struct sys_settimeofday_args /* {
359		syscallarg(const struct timeval *) tv;
360		syscallarg(const struct timezone *) tzp;
361	} */ *uap = v;
362	struct proc *p = l->l_proc;
363	int error;
364
365	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
366		return (error);
367
368	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
369}
370
371int
372settimeofday1(utv, utzp, p)
373	const struct timeval *utv;
374	const struct timezone *utzp;
375	struct proc *p;
376{
377	struct timeval atv;
378	struct timezone atz;
379	struct timeval *tv = NULL;
380	struct timezone *tzp = NULL;
381	int error;
382
383	/* Verify all parameters before changing time. */
384	if (utv) {
385		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
386			return (error);
387		tv = &atv;
388	}
389	/* XXX since we don't use tz, probably no point in doing copyin. */
390	if (utzp) {
391		if ((error = copyin(utzp, &atz, sizeof(atz))) != 0)
392			return (error);
393		tzp = &atz;
394	}
395
396	if (tv)
397		if ((error = settime(tv)) != 0)
398			return (error);
399	/*
400	 * NetBSD has no kernel notion of time zone, and only an
401	 * obsolete program would try to set it, so we log a warning.
402	 */
403	if (tzp)
404		log(LOG_WARNING, "pid %d attempted to set the "
405		    "(obsolete) kernel time zone\n", p->p_pid);
406	return (0);
407}
408
409int	tickdelta;			/* current clock skew, us. per tick */
410long	timedelta;			/* unapplied time correction, us. */
411long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
412int	time_adjusted;			/* set if an adjustment is made */
413
414/* ARGSUSED */
415int
416sys_adjtime(struct lwp *l, void *v, register_t *retval)
417{
418	struct sys_adjtime_args /* {
419		syscallarg(const struct timeval *) delta;
420		syscallarg(struct timeval *) olddelta;
421	} */ *uap = v;
422	struct proc *p = l->l_proc;
423	int error;
424
425	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
426		return (error);
427
428	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
429}
430
431int
432adjtime1(delta, olddelta, p)
433	const struct timeval *delta;
434	struct timeval *olddelta;
435	struct proc *p;
436{
437	struct timeval atv;
438	long ndelta, ntickdelta, odelta;
439	int error;
440	int s;
441
442	error = copyin(delta, &atv, sizeof(struct timeval));
443	if (error)
444		return (error);
445
446	/*
447	 * Compute the total correction and the rate at which to apply it.
448	 * Round the adjustment down to a whole multiple of the per-tick
449	 * delta, so that after some number of incremental changes in
450	 * hardclock(), tickdelta will become zero, lest the correction
451	 * overshoot and start taking us away from the desired final time.
452	 */
453	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
454	if (ndelta > bigadj || ndelta < -bigadj)
455		ntickdelta = 10 * tickadj;
456	else
457		ntickdelta = tickadj;
458	if (ndelta % ntickdelta)
459		ndelta = ndelta / ntickdelta * ntickdelta;
460
461	/*
462	 * To make hardclock()'s job easier, make the per-tick delta negative
463	 * if we want time to run slower; then hardclock can simply compute
464	 * tick + tickdelta, and subtract tickdelta from timedelta.
465	 */
466	if (ndelta < 0)
467		ntickdelta = -ntickdelta;
468	if (ndelta != 0)
469		/* We need to save the system clock time during shutdown */
470		time_adjusted |= 1;
471	s = splclock();
472	odelta = timedelta;
473	timedelta = ndelta;
474	tickdelta = ntickdelta;
475	splx(s);
476
477	if (olddelta) {
478		atv.tv_sec = odelta / 1000000;
479		atv.tv_usec = odelta % 1000000;
480		error = copyout(&atv, olddelta, sizeof(struct timeval));
481	}
482	return error;
483}
484
485/*
486 * Interval timer support. Both the BSD getitimer() family and the POSIX
487 * timer_*() family of routines are supported.
488 *
489 * All timers are kept in an array pointed to by p_timers, which is
490 * allocated on demand - many processes don't use timers at all. The
491 * first three elements in this array are reserved for the BSD timers:
492 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
493 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
494 * syscall.
495 *
496 * Realtime timers are kept in the ptimer structure as an absolute
497 * time; virtual time timers are kept as a linked list of deltas.
498 * Virtual time timers are processed in the hardclock() routine of
499 * kern_clock.c.  The real time timer is processed by a callout
500 * routine, called from the softclock() routine.  Since a callout may
501 * be delayed in real time due to interrupt processing in the system,
502 * it is possible for the real time timeout routine (realtimeexpire,
503 * given below), to be delayed in real time past when it is supposed
504 * to occur.  It does not suffice, therefore, to reload the real timer
505 * .it_value from the real time timers .it_interval.  Rather, we
506 * compute the next time in absolute time the timer should go off.  */
507
508/* Allocate a POSIX realtime timer. */
509int
510sys_timer_create(struct lwp *l, void *v, register_t *retval)
511{
512	struct sys_timer_create_args /* {
513		syscallarg(clockid_t) clock_id;
514		syscallarg(struct sigevent *) evp;
515		syscallarg(timer_t *) timerid;
516	} */ *uap = v;
517	struct proc *p = l->l_proc;
518	clockid_t id;
519	struct sigevent *evp;
520	struct ptimer *pt;
521	timer_t timerid;
522	int error;
523
524	id = SCARG(uap, clock_id);
525	if (id < CLOCK_REALTIME ||
526	    id > CLOCK_PROF)
527		return (EINVAL);
528
529	if (p->p_timers == NULL)
530		timers_alloc(p);
531
532	/* Find a free timer slot, skipping those reserved for setitimer(). */
533	for (timerid = 3; timerid < TIMER_MAX; timerid++)
534		if (p->p_timers->pts_timers[timerid] == NULL)
535			break;
536
537	if (timerid == TIMER_MAX)
538		return EAGAIN;
539
540	pt = pool_get(&ptimer_pool, PR_WAITOK);
541	evp = SCARG(uap, evp);
542	if (evp) {
543		if (((error =
544		    copyin(evp, &pt->pt_ev, sizeof (pt->pt_ev))) != 0) ||
545		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
546			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
547			pool_put(&ptimer_pool, pt);
548			return (error ? error : EINVAL);
549		}
550	} else {
551		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
552		switch (id) {
553		case CLOCK_REALTIME:
554			pt->pt_ev.sigev_signo = SIGALRM;
555			break;
556		case CLOCK_VIRTUAL:
557			pt->pt_ev.sigev_signo = SIGVTALRM;
558			break;
559		case CLOCK_PROF:
560			pt->pt_ev.sigev_signo = SIGPROF;
561			break;
562		}
563		pt->pt_ev.sigev_value.sival_int = timerid;
564	}
565	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
566	pt->pt_info.ksi_errno = 0;
567	pt->pt_info.ksi_code = 0;
568	pt->pt_info.ksi_pid = p->p_pid;
569	pt->pt_info.ksi_uid = p->p_cred->p_ruid;
570	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
571
572	pt->pt_type = id;
573	pt->pt_proc = p;
574	pt->pt_overruns = 0;
575	pt->pt_poverruns = 0;
576	pt->pt_entry = timerid;
577	timerclear(&pt->pt_time.it_value);
578	if (id == CLOCK_REALTIME)
579		callout_init(&pt->pt_ch);
580	else
581		pt->pt_active = 0;
582
583	p->p_timers->pts_timers[timerid] = pt;
584
585	return copyout(&timerid, SCARG(uap, timerid), sizeof(timerid));
586}
587
588
589/* Delete a POSIX realtime timer */
590int
591sys_timer_delete(struct lwp *l, void *v, register_t *retval)
592{
593	struct sys_timer_delete_args /*  {
594		syscallarg(timer_t) timerid;
595	} */ *uap = v;
596	struct proc *p = l->l_proc;
597	timer_t timerid;
598	struct ptimer *pt, *ptn;
599	int s;
600
601	timerid = SCARG(uap, timerid);
602
603	if ((p->p_timers == NULL) ||
604	    (timerid < 2) || (timerid >= TIMER_MAX) ||
605	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
606		return (EINVAL);
607
608	if (pt->pt_type == CLOCK_REALTIME)
609		callout_stop(&pt->pt_ch);
610	else if (pt->pt_active) {
611		s = splclock();
612		ptn = LIST_NEXT(pt, pt_list);
613		LIST_REMOVE(pt, pt_list);
614		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
615			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
616			    &ptn->pt_time.it_value);
617		splx(s);
618	}
619
620	p->p_timers->pts_timers[timerid] = NULL;
621	pool_put(&ptimer_pool, pt);
622
623	return (0);
624}
625
626/*
627 * Set up the given timer. The value in pt->pt_time.it_value is taken
628 * to be an absolute time for CLOCK_REALTIME timers and a relative
629 * time for virtual timers.
630 * Must be called at splclock().
631 */
632void
633timer_settime(struct ptimer *pt)
634{
635	struct ptimer *ptn, *pptn;
636	struct ptlist *ptl;
637
638	if (pt->pt_type == CLOCK_REALTIME) {
639		callout_stop(&pt->pt_ch);
640		if (timerisset(&pt->pt_time.it_value)) {
641			/*
642			 * Don't need to check hzto() return value, here.
643			 * callout_reset() does it for us.
644			 */
645			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
646			    realtimerexpire, pt);
647		}
648	} else {
649		if (pt->pt_active) {
650			ptn = LIST_NEXT(pt, pt_list);
651			LIST_REMOVE(pt, pt_list);
652			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
653				timeradd(&pt->pt_time.it_value,
654				    &ptn->pt_time.it_value,
655				    &ptn->pt_time.it_value);
656		}
657		if (timerisset(&pt->pt_time.it_value)) {
658			if (pt->pt_type == CLOCK_VIRTUAL)
659				ptl = &pt->pt_proc->p_timers->pts_virtual;
660			else
661				ptl = &pt->pt_proc->p_timers->pts_prof;
662
663			for (ptn = LIST_FIRST(ptl), pptn = NULL;
664			     ptn && timercmp(&pt->pt_time.it_value,
665				 &ptn->pt_time.it_value, >);
666			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
667				timersub(&pt->pt_time.it_value,
668				    &ptn->pt_time.it_value,
669				    &pt->pt_time.it_value);
670
671			if (pptn)
672				LIST_INSERT_AFTER(pptn, pt, pt_list);
673			else
674				LIST_INSERT_HEAD(ptl, pt, pt_list);
675
676			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
677				timersub(&ptn->pt_time.it_value,
678				    &pt->pt_time.it_value,
679				    &ptn->pt_time.it_value);
680
681			pt->pt_active = 1;
682		} else
683			pt->pt_active = 0;
684	}
685}
686
687void
688timer_gettime(struct ptimer *pt, struct itimerval *aitv)
689{
690	struct ptimer *ptn;
691
692	*aitv = pt->pt_time;
693	if (pt->pt_type == CLOCK_REALTIME) {
694		/*
695		 * Convert from absolute to relative time in .it_value
696		 * part of real time timer.  If time for real time
697		 * timer has passed return 0, else return difference
698		 * between current time and time for the timer to go
699		 * off.
700		 */
701		if (timerisset(&aitv->it_value)) {
702			if (timercmp(&aitv->it_value, &time, <))
703				timerclear(&aitv->it_value);
704			else
705				timersub(&aitv->it_value, &time,
706				    &aitv->it_value);
707		}
708	} else if (pt->pt_active) {
709		if (pt->pt_type == CLOCK_VIRTUAL)
710			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
711		else
712			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
713		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
714			timeradd(&aitv->it_value,
715			    &ptn->pt_time.it_value, &aitv->it_value);
716		KASSERT(ptn != NULL); /* pt should be findable on the list */
717	} else
718		timerclear(&aitv->it_value);
719}
720
721
722
723/* Set and arm a POSIX realtime timer */
724int
725sys_timer_settime(struct lwp *l, void *v, register_t *retval)
726{
727	struct sys_timer_settime_args /* {
728		syscallarg(timer_t) timerid;
729		syscallarg(int) flags;
730		syscallarg(const struct itimerspec *) value;
731		syscallarg(struct itimerspec *) ovalue;
732	} */ *uap = v;
733	struct proc *p = l->l_proc;
734	int error, s, timerid;
735	struct itimerval val, oval;
736	struct itimerspec value, ovalue;
737	struct ptimer *pt;
738
739	timerid = SCARG(uap, timerid);
740
741	if ((p->p_timers == NULL) ||
742	    (timerid < 2) || (timerid >= TIMER_MAX) ||
743	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
744		return (EINVAL);
745
746	if ((error = copyin(SCARG(uap, value), &value,
747	    sizeof(struct itimerspec))) != 0)
748		return (error);
749
750	TIMESPEC_TO_TIMEVAL(&val.it_value, &value.it_value);
751	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value.it_interval);
752	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
753		return (EINVAL);
754
755	oval = pt->pt_time;
756	pt->pt_time = val;
757
758	s = splclock();
759	/*
760	 * If we've been passed a relative time for a realtime timer,
761	 * convert it to absolute; if an absolute time for a virtual
762	 * timer, convert it to relative and make sure we don't set it
763	 * to zero, which would cancel the timer, or let it go
764	 * negative, which would confuse the comparison tests.
765	 */
766	if (timerisset(&pt->pt_time.it_value)) {
767		if (pt->pt_type == CLOCK_REALTIME) {
768			if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0)
769				timeradd(&pt->pt_time.it_value, &time,
770				    &pt->pt_time.it_value);
771		} else {
772			if ((SCARG(uap, flags) & TIMER_ABSTIME) != 0) {
773				timersub(&pt->pt_time.it_value, &time,
774				    &pt->pt_time.it_value);
775				if (!timerisset(&pt->pt_time.it_value) ||
776				    pt->pt_time.it_value.tv_sec < 0) {
777					pt->pt_time.it_value.tv_sec = 0;
778					pt->pt_time.it_value.tv_usec = 1;
779				}
780			}
781		}
782	}
783
784	timer_settime(pt);
785	splx(s);
786
787	if (SCARG(uap, ovalue)) {
788		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue.it_value);
789		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue.it_interval);
790		return copyout(&ovalue, SCARG(uap, ovalue),
791		    sizeof(struct itimerspec));
792	}
793
794	return (0);
795}
796
797/* Return the time remaining until a POSIX timer fires. */
798int
799sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
800{
801	struct sys_timer_gettime_args /* {
802		syscallarg(timer_t) timerid;
803		syscallarg(struct itimerspec *) value;
804	} */ *uap = v;
805	struct itimerval aitv;
806	struct itimerspec its;
807	struct proc *p = l->l_proc;
808	int s, timerid;
809	struct ptimer *pt;
810
811	timerid = SCARG(uap, timerid);
812
813	if ((p->p_timers == NULL) ||
814	    (timerid < 2) || (timerid >= TIMER_MAX) ||
815	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
816		return (EINVAL);
817
818	s = splclock();
819	timer_gettime(pt, &aitv);
820	splx(s);
821
822	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its.it_interval);
823	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its.it_value);
824
825	return copyout(&its, SCARG(uap, value), sizeof(its));
826}
827
828/*
829 * Return the count of the number of times a periodic timer expired
830 * while a notification was already pending. The counter is reset when
831 * a timer expires and a notification can be posted.
832 */
833int
834sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
835{
836	struct sys_timer_getoverrun_args /* {
837		syscallarg(timer_t) timerid;
838	} */ *uap = v;
839	struct proc *p = l->l_proc;
840	int timerid;
841	struct ptimer *pt;
842
843	timerid = SCARG(uap, timerid);
844
845	if ((p->p_timers == NULL) ||
846	    (timerid < 2) || (timerid >= TIMER_MAX) ||
847	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
848		return (EINVAL);
849
850	*retval = pt->pt_poverruns;
851
852	return (0);
853}
854
855/* Glue function that triggers an upcall; called from userret(). */
856static void
857timerupcall(struct lwp *l, void *arg)
858{
859	struct ptimers *pt = (struct ptimers *)arg;
860	unsigned int i, fired, done;
861	extern struct pool siginfo_pool;	/* XXX Ew. */
862
863	KDASSERT(l->l_proc->p_sa);
864	/* Bail out if we do not own the virtual processor */
865	if (l->l_savp->savp_lwp != l)
866		return ;
867
868	KERNEL_PROC_LOCK(l);
869
870	fired = pt->pts_fired;
871	done = 0;
872	while ((i = ffs(fired)) != 0) {
873		siginfo_t *si;
874		int mask = 1 << --i;
875		int f;
876
877		f = l->l_flag & L_SA;
878		l->l_flag &= ~L_SA;
879		si = pool_get(&siginfo_pool, PR_WAITOK);
880		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
881		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
882		    sizeof(*si), si) == 0)
883			done |= mask;
884		fired &= ~mask;
885		l->l_flag |= f;
886	}
887	pt->pts_fired &= ~done;
888	if (pt->pts_fired == 0)
889		l->l_proc->p_userret = NULL;
890
891	KERNEL_PROC_UNLOCK(l);
892}
893
894
895/*
896 * Real interval timer expired:
897 * send process whose timer expired an alarm signal.
898 * If time is not set up to reload, then just return.
899 * Else compute next time timer should go off which is > current time.
900 * This is where delay in processing this timeout causes multiple
901 * SIGALRM calls to be compressed into one.
902 */
903void
904realtimerexpire(void *arg)
905{
906	struct ptimer *pt;
907	int s;
908
909	pt = (struct ptimer *)arg;
910
911	itimerfire(pt);
912
913	if (!timerisset(&pt->pt_time.it_interval)) {
914		timerclear(&pt->pt_time.it_value);
915		return;
916	}
917	for (;;) {
918		s = splclock();
919		timeradd(&pt->pt_time.it_value,
920		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
921		if (timercmp(&pt->pt_time.it_value, &time, >)) {
922			/*
923			 * Don't need to check hzto() return value, here.
924			 * callout_reset() does it for us.
925			 */
926			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
927			    realtimerexpire, pt);
928			splx(s);
929			return;
930		}
931		splx(s);
932		pt->pt_overruns++;
933	}
934}
935
936/* BSD routine to get the value of an interval timer. */
937/* ARGSUSED */
938int
939sys_getitimer(struct lwp *l, void *v, register_t *retval)
940{
941	struct sys_getitimer_args /* {
942		syscallarg(int) which;
943		syscallarg(struct itimerval *) itv;
944	} */ *uap = v;
945	struct proc *p = l->l_proc;
946	struct itimerval aitv;
947	int s, which;
948
949	which = SCARG(uap, which);
950
951	if ((u_int)which > ITIMER_PROF)
952		return (EINVAL);
953
954	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
955		timerclear(&aitv.it_value);
956		timerclear(&aitv.it_interval);
957	} else {
958		s = splclock();
959		timer_gettime(p->p_timers->pts_timers[which], &aitv);
960		splx(s);
961	}
962
963	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
964
965}
966
967/* BSD routine to set/arm an interval timer. */
968/* ARGSUSED */
969int
970sys_setitimer(struct lwp *l, void *v, register_t *retval)
971{
972	struct sys_setitimer_args /* {
973		syscallarg(int) which;
974		syscallarg(const struct itimerval *) itv;
975		syscallarg(struct itimerval *) oitv;
976	} */ *uap = v;
977	struct proc *p = l->l_proc;
978	int which = SCARG(uap, which);
979	struct sys_getitimer_args getargs;
980	struct itimerval aitv;
981	const struct itimerval *itvp;
982	struct ptimer *pt;
983	int s, error;
984
985	if ((u_int)which > ITIMER_PROF)
986		return (EINVAL);
987	itvp = SCARG(uap, itv);
988	if (itvp &&
989	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
990		return (error);
991	if (SCARG(uap, oitv) != NULL) {
992		SCARG(&getargs, which) = which;
993		SCARG(&getargs, itv) = SCARG(uap, oitv);
994		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
995			return (error);
996	}
997	if (itvp == 0)
998		return (0);
999	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
1000		return (EINVAL);
1001
1002	/*
1003	 * Don't bother allocating data structures if the process just
1004	 * wants to clear the timer.
1005	 */
1006	if (!timerisset(&aitv.it_value) &&
1007	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1008		return (0);
1009
1010	if (p->p_timers == NULL)
1011		timers_alloc(p);
1012	if (p->p_timers->pts_timers[which] == NULL) {
1013		pt = pool_get(&ptimer_pool, PR_WAITOK);
1014		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1015		pt->pt_ev.sigev_value.sival_int = which;
1016		pt->pt_overruns = 0;
1017		pt->pt_proc = p;
1018		pt->pt_type = which;
1019		pt->pt_entry = which;
1020		switch (which) {
1021		case ITIMER_REAL:
1022			callout_init(&pt->pt_ch);
1023			pt->pt_ev.sigev_signo = SIGALRM;
1024			break;
1025		case ITIMER_VIRTUAL:
1026			pt->pt_active = 0;
1027			pt->pt_ev.sigev_signo = SIGVTALRM;
1028			break;
1029		case ITIMER_PROF:
1030			pt->pt_active = 0;
1031			pt->pt_ev.sigev_signo = SIGPROF;
1032			break;
1033		}
1034	} else
1035		pt = p->p_timers->pts_timers[which];
1036
1037	pt->pt_time = aitv;
1038	p->p_timers->pts_timers[which] = pt;
1039
1040	s = splclock();
1041	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1042		/* Convert to absolute time */
1043		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1044	}
1045	timer_settime(pt);
1046	splx(s);
1047
1048	return (0);
1049}
1050
1051/* Utility routines to manage the array of pointers to timers. */
1052void
1053timers_alloc(struct proc *p)
1054{
1055	int i;
1056	struct ptimers *pts;
1057
1058	pts = malloc(sizeof (struct ptimers), M_SUBPROC, 0);
1059	LIST_INIT(&pts->pts_virtual);
1060	LIST_INIT(&pts->pts_prof);
1061	for (i = 0; i < TIMER_MAX; i++)
1062		pts->pts_timers[i] = NULL;
1063	pts->pts_fired = 0;
1064	p->p_timers = pts;
1065}
1066
1067/*
1068 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1069 * then clean up all timers and free all the data structures. If
1070 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1071 * by timer_create(), not the BSD setitimer() timers, and only free the
1072 * structure if none of those remain.
1073 */
1074void
1075timers_free(struct proc *p, int which)
1076{
1077	int i, s;
1078	struct ptimers *pts;
1079	struct ptimer *pt, *ptn;
1080	struct timeval tv;
1081
1082	if (p->p_timers) {
1083		pts = p->p_timers;
1084		if (which == TIMERS_ALL)
1085			i = 0;
1086		else {
1087			s = splclock();
1088			timerclear(&tv);
1089			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1090			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1091			     ptn = LIST_NEXT(ptn, pt_list))
1092				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1093			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1094			if (ptn) {
1095				timeradd(&tv, &ptn->pt_time.it_value,
1096				    &ptn->pt_time.it_value);
1097				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1098				    ptn, pt_list);
1099			}
1100
1101			timerclear(&tv);
1102			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1103			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1104			     ptn = LIST_NEXT(ptn, pt_list))
1105				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1106			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1107			if (ptn) {
1108				timeradd(&tv, &ptn->pt_time.it_value,
1109				    &ptn->pt_time.it_value);
1110				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1111				    pt_list);
1112			}
1113			splx(s);
1114			i = 3;
1115		}
1116		for ( ; i < TIMER_MAX; i++)
1117			if ((pt = pts->pts_timers[i]) != NULL) {
1118				if (pt->pt_type == CLOCK_REALTIME)
1119					callout_stop(&pt->pt_ch);
1120				pts->pts_timers[i] = NULL;
1121				pool_put(&ptimer_pool, pt);
1122			}
1123		if ((pts->pts_timers[0] == NULL) &&
1124		    (pts->pts_timers[1] == NULL) &&
1125		    (pts->pts_timers[2] == NULL)) {
1126			p->p_timers = NULL;
1127			free(pts, M_SUBPROC);
1128		}
1129	}
1130}
1131
1132/*
1133 * Check that a proposed value to load into the .it_value or
1134 * .it_interval part of an interval timer is acceptable, and
1135 * fix it to have at least minimal value (i.e. if it is less
1136 * than the resolution of the clock, round it up.)
1137 */
1138int
1139itimerfix(struct timeval *tv)
1140{
1141
1142	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1143		return (EINVAL);
1144	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1145		tv->tv_usec = tick;
1146	return (0);
1147}
1148
1149/*
1150 * Decrement an interval timer by a specified number
1151 * of microseconds, which must be less than a second,
1152 * i.e. < 1000000.  If the timer expires, then reload
1153 * it.  In this case, carry over (usec - old value) to
1154 * reduce the value reloaded into the timer so that
1155 * the timer does not drift.  This routine assumes
1156 * that it is called in a context where the timers
1157 * on which it is operating cannot change in value.
1158 */
1159int
1160itimerdecr(struct ptimer *pt, int usec)
1161{
1162	struct itimerval *itp;
1163
1164	itp = &pt->pt_time;
1165	if (itp->it_value.tv_usec < usec) {
1166		if (itp->it_value.tv_sec == 0) {
1167			/* expired, and already in next interval */
1168			usec -= itp->it_value.tv_usec;
1169			goto expire;
1170		}
1171		itp->it_value.tv_usec += 1000000;
1172		itp->it_value.tv_sec--;
1173	}
1174	itp->it_value.tv_usec -= usec;
1175	usec = 0;
1176	if (timerisset(&itp->it_value))
1177		return (1);
1178	/* expired, exactly at end of interval */
1179expire:
1180	if (timerisset(&itp->it_interval)) {
1181		itp->it_value = itp->it_interval;
1182		itp->it_value.tv_usec -= usec;
1183		if (itp->it_value.tv_usec < 0) {
1184			itp->it_value.tv_usec += 1000000;
1185			itp->it_value.tv_sec--;
1186		}
1187		timer_settime(pt);
1188	} else
1189		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1190	return (0);
1191}
1192
1193void
1194itimerfire(struct ptimer *pt)
1195{
1196	struct proc *p = pt->pt_proc;
1197	struct sadata_vp *vp;
1198	int s;
1199	unsigned int i;
1200
1201	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1202		/*
1203		 * No RT signal infrastructure exists at this time;
1204		 * just post the signal number and throw away the
1205		 * value.
1206		 */
1207		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1208			pt->pt_overruns++;
1209		else {
1210			ksiginfo_t ksi;
1211			(void)memset(&ksi, 0, sizeof(ksi));
1212			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1213			ksi.ksi_code = SI_TIMER;
1214			ksi.ksi_sigval = pt->pt_ev.sigev_value;
1215			pt->pt_poverruns = pt->pt_overruns;
1216			pt->pt_overruns = 0;
1217			kpsignal(p, &ksi, NULL);
1218		}
1219	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1220		/* Cause the process to generate an upcall when it returns. */
1221
1222		if (p->p_userret == NULL) {
1223			/*
1224			 * XXX stop signals can be processed inside tsleep,
1225			 * which can be inside sa_yield's inner loop, which
1226			 * makes testing for sa_idle alone insuffucent to
1227			 * determine if we really should call setrunnable.
1228			 */
1229			pt->pt_poverruns = pt->pt_overruns;
1230			pt->pt_overruns = 0;
1231			i = 1 << pt->pt_entry;
1232			p->p_timers->pts_fired = i;
1233			p->p_userret = timerupcall;
1234			p->p_userret_arg = p->p_timers;
1235
1236			SCHED_LOCK(s);
1237			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1238				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1239					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1240					sched_wakeup(vp->savp_lwp);
1241					break;
1242				}
1243			}
1244			SCHED_UNLOCK(s);
1245		} else if (p->p_userret == timerupcall) {
1246			i = 1 << pt->pt_entry;
1247			if ((p->p_timers->pts_fired & i) == 0) {
1248				pt->pt_poverruns = pt->pt_overruns;
1249				pt->pt_overruns = 0;
1250				p->p_timers->pts_fired |= i;
1251			} else
1252				pt->pt_overruns++;
1253		} else {
1254			pt->pt_overruns++;
1255			if ((p->p_flag & P_WEXIT) == 0)
1256				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1257				    p->p_pid, pt->pt_overruns,
1258				    pt->pt_ev.sigev_value.sival_int,
1259				    p->p_userret);
1260		}
1261	}
1262
1263}
1264
1265/*
1266 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1267 * for usage and rationale.
1268 */
1269int
1270ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1271{
1272	struct timeval tv, delta;
1273	int s, rv = 0;
1274
1275	s = splclock();
1276	tv = mono_time;
1277	splx(s);
1278
1279	timersub(&tv, lasttime, &delta);
1280
1281	/*
1282	 * check for 0,0 is so that the message will be seen at least once,
1283	 * even if interval is huge.
1284	 */
1285	if (timercmp(&delta, mininterval, >=) ||
1286	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1287		*lasttime = tv;
1288		rv = 1;
1289	}
1290
1291	return (rv);
1292}
1293
1294/*
1295 * ppsratecheck(): packets (or events) per second limitation.
1296 */
1297int
1298ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1299{
1300	struct timeval tv, delta;
1301	int s, rv;
1302
1303	s = splclock();
1304	tv = mono_time;
1305	splx(s);
1306
1307	timersub(&tv, lasttime, &delta);
1308
1309	/*
1310	 * check for 0,0 is so that the message will be seen at least once.
1311	 * if more than one second have passed since the last update of
1312	 * lasttime, reset the counter.
1313	 *
1314	 * we do increment *curpps even in *curpps < maxpps case, as some may
1315	 * try to use *curpps for stat purposes as well.
1316	 */
1317	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1318	    delta.tv_sec >= 1) {
1319		*lasttime = tv;
1320		*curpps = 0;
1321	}
1322	if (maxpps < 0)
1323		rv = 1;
1324	else if (*curpps < maxpps)
1325		rv = 1;
1326	else
1327		rv = 0;
1328
1329#if 1 /*DIAGNOSTIC?*/
1330	/* be careful about wrap-around */
1331	if (*curpps + 1 > *curpps)
1332		*curpps = *curpps + 1;
1333#else
1334	/*
1335	 * assume that there's not too many calls to this function.
1336	 * not sure if the assumption holds, as it depends on *caller's*
1337	 * behavior, not the behavior of this function.
1338	 * IMHO it is wrong to make assumption on the caller's behavior,
1339	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1340	 */
1341	*curpps = *curpps + 1;
1342#endif
1343
1344	return (rv);
1345}
1346