kern_time.c revision 1.55
1/*	$NetBSD: kern_time.c,v 1.55 2001/06/11 07:07:12 tron Exp $	*/
2
3/*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 *    must display the following acknowledgement:
53 *	This product includes software developed by the University of
54 *	California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 *    may be used to endorse or promote products derived from this software
57 *    without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
72 */
73
74#include "fs_nfs.h"
75#include "opt_nfs.h"
76#include "opt_nfsserver.h"
77
78#include <sys/param.h>
79#include <sys/resourcevar.h>
80#include <sys/kernel.h>
81#include <sys/systm.h>
82#include <sys/proc.h>
83#include <sys/vnode.h>
84#include <sys/signalvar.h>
85#include <sys/syslog.h>
86
87#include <sys/mount.h>
88#include <sys/syscallargs.h>
89
90#include <uvm/uvm_extern.h>
91
92#if defined(NFS) || defined(NFSSERVER)
93#include <nfs/rpcv2.h>
94#include <nfs/nfsproto.h>
95#include <nfs/nfs_var.h>
96#endif
97
98#include <machine/cpu.h>
99
100/*
101 * Time of day and interval timer support.
102 *
103 * These routines provide the kernel entry points to get and set
104 * the time-of-day and per-process interval timers.  Subroutines
105 * here provide support for adding and subtracting timeval structures
106 * and decrementing interval timers, optionally reloading the interval
107 * timers when they expire.
108 */
109
110/* This function is used by clock_settime and settimeofday */
111int
112settime(tv)
113	struct timeval *tv;
114{
115	struct timeval delta;
116	struct cpu_info *ci;
117	int s;
118
119	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
120	s = splclock();
121	timersub(tv, &time, &delta);
122	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
123		splx(s);
124		return (EPERM);
125	}
126#ifdef notyet
127	if ((delta.tv_sec < 86400) && securelevel > 0) {
128		splx(s);
129		return (EPERM);
130	}
131#endif
132	time = *tv;
133	(void) spllowersoftclock();
134	timeradd(&boottime, &delta, &boottime);
135	/*
136	 * XXXSMP
137	 * This is wrong.  We should traverse a list of all
138	 * CPUs and add the delta to the runtime of those
139	 * CPUs which have a process on them.
140	 */
141	ci = curcpu();
142	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
143	    &ci->ci_schedstate.spc_runtime);
144#	if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
145		nqnfs_lease_updatetime(delta.tv_sec);
146#	endif
147	splx(s);
148	resettodr();
149	return (0);
150}
151
152/* ARGSUSED */
153int
154sys_clock_gettime(p, v, retval)
155	struct proc *p;
156	void *v;
157	register_t *retval;
158{
159	struct sys_clock_gettime_args /* {
160		syscallarg(clockid_t) clock_id;
161		syscallarg(struct timespec *) tp;
162	} */ *uap = v;
163	clockid_t clock_id;
164	struct timeval atv;
165	struct timespec ats;
166
167	clock_id = SCARG(uap, clock_id);
168	if (clock_id != CLOCK_REALTIME)
169		return (EINVAL);
170
171	microtime(&atv);
172	TIMEVAL_TO_TIMESPEC(&atv,&ats);
173
174	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
175}
176
177/* ARGSUSED */
178int
179sys_clock_settime(p, v, retval)
180	struct proc *p;
181	void *v;
182	register_t *retval;
183{
184	struct sys_clock_settime_args /* {
185		syscallarg(clockid_t) clock_id;
186		syscallarg(const struct timespec *) tp;
187	} */ *uap = v;
188	clockid_t clock_id;
189	struct timeval atv;
190	struct timespec ats;
191	int error;
192
193	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
194		return (error);
195
196	clock_id = SCARG(uap, clock_id);
197	if (clock_id != CLOCK_REALTIME)
198		return (EINVAL);
199
200	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
201		return (error);
202
203	TIMESPEC_TO_TIMEVAL(&atv,&ats);
204	if ((error = settime(&atv)))
205		return (error);
206
207	return 0;
208}
209
210int
211sys_clock_getres(p, v, retval)
212	struct proc *p;
213	void *v;
214	register_t *retval;
215{
216	struct sys_clock_getres_args /* {
217		syscallarg(clockid_t) clock_id;
218		syscallarg(struct timespec *) tp;
219	} */ *uap = v;
220	clockid_t clock_id;
221	struct timespec ts;
222	int error = 0;
223
224	clock_id = SCARG(uap, clock_id);
225	if (clock_id != CLOCK_REALTIME)
226		return (EINVAL);
227
228	if (SCARG(uap, tp)) {
229		ts.tv_sec = 0;
230		ts.tv_nsec = 1000000000 / hz;
231
232		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
233	}
234
235	return error;
236}
237
238/* ARGSUSED */
239int
240sys_nanosleep(p, v, retval)
241	struct proc *p;
242	void *v;
243	register_t *retval;
244{
245	static int nanowait;
246	struct sys_nanosleep_args/* {
247		syscallarg(struct timespec *) rqtp;
248		syscallarg(struct timespec *) rmtp;
249	} */ *uap = v;
250	struct timespec rqt;
251	struct timespec rmt;
252	struct timeval atv, utv;
253	int error, s, timo;
254
255	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
256		       sizeof(struct timespec));
257	if (error)
258		return (error);
259
260	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
261	if (itimerfix(&atv))
262		return (EINVAL);
263
264	s = splclock();
265	timeradd(&atv,&time,&atv);
266	timo = hzto(&atv);
267	/*
268	 * Avoid inadvertantly sleeping forever
269	 */
270	if (timo == 0)
271		timo = 1;
272	splx(s);
273
274	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
275	if (error == ERESTART)
276		error = EINTR;
277	if (error == EWOULDBLOCK)
278		error = 0;
279
280	if (SCARG(uap, rmtp)) {
281		int error;
282
283		s = splclock();
284		utv = time;
285		splx(s);
286
287		timersub(&atv, &utv, &utv);
288		if (utv.tv_sec < 0)
289			timerclear(&utv);
290
291		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
292		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
293			sizeof(rmt));
294		if (error)
295			return (error);
296	}
297
298	return error;
299}
300
301/* ARGSUSED */
302int
303sys_gettimeofday(p, v, retval)
304	struct proc *p;
305	void *v;
306	register_t *retval;
307{
308	struct sys_gettimeofday_args /* {
309		syscallarg(struct timeval *) tp;
310		syscallarg(struct timezone *) tzp;
311	} */ *uap = v;
312	struct timeval atv;
313	int error = 0;
314	struct timezone tzfake;
315
316	if (SCARG(uap, tp)) {
317		microtime(&atv);
318		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
319		if (error)
320			return (error);
321	}
322	if (SCARG(uap, tzp)) {
323		/*
324		 * NetBSD has no kernel notion of time zone, so we just
325		 * fake up a timezone struct and return it if demanded.
326		 */
327		tzfake.tz_minuteswest = 0;
328		tzfake.tz_dsttime = 0;
329		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
330	}
331	return (error);
332}
333
334/* ARGSUSED */
335int
336sys_settimeofday(p, v, retval)
337	struct proc *p;
338	void *v;
339	register_t *retval;
340{
341	struct sys_settimeofday_args /* {
342		syscallarg(const struct timeval *) tv;
343		syscallarg(const struct timezone *) tzp;
344	} */ *uap = v;
345	struct timeval atv;
346	struct timezone atz;
347	int error;
348
349	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
350		return (error);
351	/* Verify all parameters before changing time. */
352	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
353	    &atv, sizeof(atv))))
354		return (error);
355	/* XXX since we don't use tz, probably no point in doing copyin. */
356	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
357	    &atz, sizeof(atz))))
358		return (error);
359	if (SCARG(uap, tv))
360		if ((error = settime(&atv)))
361			return (error);
362	/*
363	 * NetBSD has no kernel notion of time zone, and only an
364	 * obsolete program would try to set it, so we log a warning.
365	 */
366	if (SCARG(uap, tzp))
367		log(LOG_WARNING, "pid %d attempted to set the "
368		    "(obsolete) kernel time zone\n", p->p_pid);
369	return (0);
370}
371
372int	tickdelta;			/* current clock skew, us. per tick */
373long	timedelta;			/* unapplied time correction, us. */
374long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
375
376/* ARGSUSED */
377int
378sys_adjtime(p, v, retval)
379	struct proc *p;
380	void *v;
381	register_t *retval;
382{
383	struct sys_adjtime_args /* {
384		syscallarg(const struct timeval *) delta;
385		syscallarg(struct timeval *) olddelta;
386	} */ *uap = v;
387	struct timeval atv;
388	long ndelta, ntickdelta, odelta;
389	int s, error;
390
391	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
392		return (error);
393
394	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
395	if (error)
396		return (error);
397	if (SCARG(uap, olddelta) != NULL &&
398	    uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
399	     B_WRITE) == FALSE)
400		return (EFAULT);
401
402	/*
403	 * Compute the total correction and the rate at which to apply it.
404	 * Round the adjustment down to a whole multiple of the per-tick
405	 * delta, so that after some number of incremental changes in
406	 * hardclock(), tickdelta will become zero, lest the correction
407	 * overshoot and start taking us away from the desired final time.
408	 */
409	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
410	if (ndelta > bigadj || ndelta < -bigadj)
411		ntickdelta = 10 * tickadj;
412	else
413		ntickdelta = tickadj;
414	if (ndelta % ntickdelta)
415		ndelta = ndelta / ntickdelta * ntickdelta;
416
417	/*
418	 * To make hardclock()'s job easier, make the per-tick delta negative
419	 * if we want time to run slower; then hardclock can simply compute
420	 * tick + tickdelta, and subtract tickdelta from timedelta.
421	 */
422	if (ndelta < 0)
423		ntickdelta = -ntickdelta;
424	s = splclock();
425	odelta = timedelta;
426	timedelta = ndelta;
427	tickdelta = ntickdelta;
428	splx(s);
429
430	if (SCARG(uap, olddelta)) {
431		atv.tv_sec = odelta / 1000000;
432		atv.tv_usec = odelta % 1000000;
433		(void) copyout(&atv, SCARG(uap, olddelta),
434		    sizeof(struct timeval));
435	}
436	return (0);
437}
438
439/*
440 * Get value of an interval timer.  The process virtual and
441 * profiling virtual time timers are kept in the p_stats area, since
442 * they can be swapped out.  These are kept internally in the
443 * way they are specified externally: in time until they expire.
444 *
445 * The real time interval timer is kept in the process table slot
446 * for the process, and its value (it_value) is kept as an
447 * absolute time rather than as a delta, so that it is easy to keep
448 * periodic real-time signals from drifting.
449 *
450 * Virtual time timers are processed in the hardclock() routine of
451 * kern_clock.c.  The real time timer is processed by a timeout
452 * routine, called from the softclock() routine.  Since a callout
453 * may be delayed in real time due to interrupt processing in the system,
454 * it is possible for the real time timeout routine (realitexpire, given below),
455 * to be delayed in real time past when it is supposed to occur.  It
456 * does not suffice, therefore, to reload the real timer .it_value from the
457 * real time timers .it_interval.  Rather, we compute the next time in
458 * absolute time the timer should go off.
459 */
460/* ARGSUSED */
461int
462sys_getitimer(p, v, retval)
463	struct proc *p;
464	void *v;
465	register_t *retval;
466{
467	struct sys_getitimer_args /* {
468		syscallarg(int) which;
469		syscallarg(struct itimerval *) itv;
470	} */ *uap = v;
471	int which = SCARG(uap, which);
472	struct itimerval aitv;
473	int s;
474
475	if ((u_int)which > ITIMER_PROF)
476		return (EINVAL);
477	s = splclock();
478	if (which == ITIMER_REAL) {
479		/*
480		 * Convert from absolute to relative time in .it_value
481		 * part of real time timer.  If time for real time timer
482		 * has passed return 0, else return difference between
483		 * current time and time for the timer to go off.
484		 */
485		aitv = p->p_realtimer;
486		if (timerisset(&aitv.it_value)) {
487			if (timercmp(&aitv.it_value, &time, <))
488				timerclear(&aitv.it_value);
489			else
490				timersub(&aitv.it_value, &time, &aitv.it_value);
491		}
492	} else
493		aitv = p->p_stats->p_timer[which];
494	splx(s);
495	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
496}
497
498/* ARGSUSED */
499int
500sys_setitimer(p, v, retval)
501	struct proc *p;
502	void *v;
503	register_t *retval;
504{
505	struct sys_setitimer_args /* {
506		syscallarg(int) which;
507		syscallarg(const struct itimerval *) itv;
508		syscallarg(struct itimerval *) oitv;
509	} */ *uap = v;
510	int which = SCARG(uap, which);
511	struct sys_getitimer_args getargs;
512	struct itimerval aitv;
513	const struct itimerval *itvp;
514	int s, error;
515
516	if ((u_int)which > ITIMER_PROF)
517		return (EINVAL);
518	itvp = SCARG(uap, itv);
519	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
520		return (error);
521	if (SCARG(uap, oitv) != NULL) {
522		SCARG(&getargs, which) = which;
523		SCARG(&getargs, itv) = SCARG(uap, oitv);
524		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
525			return (error);
526	}
527	if (itvp == 0)
528		return (0);
529	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
530		return (EINVAL);
531	s = splclock();
532	if (which == ITIMER_REAL) {
533		callout_stop(&p->p_realit_ch);
534		if (timerisset(&aitv.it_value)) {
535			/*
536			 * Don't need to check hzto() return value, here.
537			 * callout_reset() does it for us.
538			 */
539			timeradd(&aitv.it_value, &time, &aitv.it_value);
540			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
541			    realitexpire, p);
542		}
543		p->p_realtimer = aitv;
544	} else
545		p->p_stats->p_timer[which] = aitv;
546	splx(s);
547	return (0);
548}
549
550/*
551 * Real interval timer expired:
552 * send process whose timer expired an alarm signal.
553 * If time is not set up to reload, then just return.
554 * Else compute next time timer should go off which is > current time.
555 * This is where delay in processing this timeout causes multiple
556 * SIGALRM calls to be compressed into one.
557 */
558void
559realitexpire(arg)
560	void *arg;
561{
562	struct proc *p;
563	int s;
564
565	p = (struct proc *)arg;
566	psignal(p, SIGALRM);
567	if (!timerisset(&p->p_realtimer.it_interval)) {
568		timerclear(&p->p_realtimer.it_value);
569		return;
570	}
571	for (;;) {
572		s = splclock();
573		timeradd(&p->p_realtimer.it_value,
574		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
575		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
576			/*
577			 * Don't need to check hzto() return value, here.
578			 * callout_reset() does it for us.
579			 */
580			callout_reset(&p->p_realit_ch,
581			    hzto(&p->p_realtimer.it_value), realitexpire, p);
582			splx(s);
583			return;
584		}
585		splx(s);
586	}
587}
588
589/*
590 * Check that a proposed value to load into the .it_value or
591 * .it_interval part of an interval timer is acceptable, and
592 * fix it to have at least minimal value (i.e. if it is less
593 * than the resolution of the clock, round it up.)
594 */
595int
596itimerfix(tv)
597	struct timeval *tv;
598{
599
600	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
601	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
602		return (EINVAL);
603	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
604		tv->tv_usec = tick;
605	return (0);
606}
607
608/*
609 * Decrement an interval timer by a specified number
610 * of microseconds, which must be less than a second,
611 * i.e. < 1000000.  If the timer expires, then reload
612 * it.  In this case, carry over (usec - old value) to
613 * reduce the value reloaded into the timer so that
614 * the timer does not drift.  This routine assumes
615 * that it is called in a context where the timers
616 * on which it is operating cannot change in value.
617 */
618int
619itimerdecr(itp, usec)
620	struct itimerval *itp;
621	int usec;
622{
623
624	if (itp->it_value.tv_usec < usec) {
625		if (itp->it_value.tv_sec == 0) {
626			/* expired, and already in next interval */
627			usec -= itp->it_value.tv_usec;
628			goto expire;
629		}
630		itp->it_value.tv_usec += 1000000;
631		itp->it_value.tv_sec--;
632	}
633	itp->it_value.tv_usec -= usec;
634	usec = 0;
635	if (timerisset(&itp->it_value))
636		return (1);
637	/* expired, exactly at end of interval */
638expire:
639	if (timerisset(&itp->it_interval)) {
640		itp->it_value = itp->it_interval;
641		itp->it_value.tv_usec -= usec;
642		if (itp->it_value.tv_usec < 0) {
643			itp->it_value.tv_usec += 1000000;
644			itp->it_value.tv_sec--;
645		}
646	} else
647		itp->it_value.tv_usec = 0;		/* sec is already 0 */
648	return (0);
649}
650
651/*
652 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
653 * for usage and rationale.
654 */
655int
656ratecheck(lasttime, mininterval)
657	struct timeval *lasttime;
658	const struct timeval *mininterval;
659{
660	struct timeval tv, delta;
661	int s, rv = 0;
662
663	s = splclock();
664	tv = mono_time;
665	splx(s);
666
667	timersub(&tv, lasttime, &delta);
668
669	/*
670	 * check for 0,0 is so that the message will be seen at least once,
671	 * even if interval is huge.
672	 */
673	if (timercmp(&delta, mininterval, >=) ||
674	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
675		*lasttime = tv;
676		rv = 1;
677	}
678
679	return (rv);
680}
681
682/*
683 * ppsratecheck(): packets (or events) per second limitation.
684 */
685int
686ppsratecheck(lasttime, curpps, maxpps)
687	struct timeval *lasttime;
688	int *curpps;
689	int maxpps;	/* maximum pps allowed */
690{
691	struct timeval tv, delta;
692	int s, rv;
693
694	s = splclock();
695	tv = mono_time;
696	splx(s);
697
698	timersub(&tv, lasttime, &delta);
699
700	/*
701	 * check for 0,0 is so that the message will be seen at least once.
702	 * if more than one second have passed since the last update of
703	 * lasttime, reset the counter.
704	 *
705	 * we do increment *curpps even in *curpps < maxpps case, as some may
706	 * try to use *curpps for stat purposes as well.
707	 */
708	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
709	    delta.tv_sec >= 1) {
710		*lasttime = tv;
711		*curpps = 0;
712		rv = 1;
713	} else if (maxpps < 0)
714		rv = 1;
715	else if (*curpps < maxpps)
716		rv = 1;
717	else
718		rv = 0;
719
720#if 1 /*DIAGNOSTIC?*/
721	/* be careful about wrap-around */
722	if (*curpps + 1 > *curpps)
723		*curpps = *curpps + 1;
724#else
725	/*
726	 * assume that there's not too many calls to this function.
727	 * not sure if the assumption holds, as it depends on *caller's*
728	 * behavior, not the behavior of this function.
729	 * IMHO it is wrong to make assumption on the caller's behavior,
730	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
731	 */
732	*curpps = *curpps + 1;
733#endif
734
735	return (rv);
736}
737