kern_time.c revision 1.52
1/*	$NetBSD: kern_time.c,v 1.52 2000/07/13 17:33:39 thorpej Exp $	*/
2
3/*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 *    must display the following acknowledgement:
53 *	This product includes software developed by the University of
54 *	California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 *    may be used to endorse or promote products derived from this software
57 *    without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
72 */
73
74#include "fs_nfs.h"
75#include "opt_nfsserver.h"
76
77#include <sys/param.h>
78#include <sys/resourcevar.h>
79#include <sys/kernel.h>
80#include <sys/systm.h>
81#include <sys/proc.h>
82#include <sys/vnode.h>
83#include <sys/signalvar.h>
84#include <sys/syslog.h>
85
86#include <sys/mount.h>
87#include <sys/syscallargs.h>
88
89#include <uvm/uvm_extern.h>
90
91#if defined(NFS) || defined(NFSSERVER)
92#include <nfs/rpcv2.h>
93#include <nfs/nfsproto.h>
94#include <nfs/nfs_var.h>
95#endif
96
97#include <machine/cpu.h>
98
99/*
100 * Time of day and interval timer support.
101 *
102 * These routines provide the kernel entry points to get and set
103 * the time-of-day and per-process interval timers.  Subroutines
104 * here provide support for adding and subtracting timeval structures
105 * and decrementing interval timers, optionally reloading the interval
106 * timers when they expire.
107 */
108
109/* This function is used by clock_settime and settimeofday */
110int
111settime(tv)
112	struct timeval *tv;
113{
114	struct timeval delta;
115	struct cpu_info *ci;
116	int s;
117
118	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
119	s = splclock();
120	timersub(tv, &time, &delta);
121	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
122		return (EPERM);
123#ifdef notyet
124	if ((delta.tv_sec < 86400) && securelevel > 0)
125		return (EPERM);
126#endif
127	time = *tv;
128	(void) spllowersoftclock();
129	timeradd(&boottime, &delta, &boottime);
130	/*
131	 * XXXSMP
132	 * This is wrong.  We should traverse a list of all
133	 * CPUs and add the delta to the runtime of those
134	 * CPUs which have a process on them.
135	 */
136	ci = curcpu();
137	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
138	    &ci->ci_schedstate.spc_runtime);
139#	if defined(NFS) || defined(NFSSERVER)
140		nqnfs_lease_updatetime(delta.tv_sec);
141#	endif
142	splx(s);
143	resettodr();
144	return (0);
145}
146
147/* ARGSUSED */
148int
149sys_clock_gettime(p, v, retval)
150	struct proc *p;
151	void *v;
152	register_t *retval;
153{
154	struct sys_clock_gettime_args /* {
155		syscallarg(clockid_t) clock_id;
156		syscallarg(struct timespec *) tp;
157	} */ *uap = v;
158	clockid_t clock_id;
159	struct timeval atv;
160	struct timespec ats;
161
162	clock_id = SCARG(uap, clock_id);
163	if (clock_id != CLOCK_REALTIME)
164		return (EINVAL);
165
166	microtime(&atv);
167	TIMEVAL_TO_TIMESPEC(&atv,&ats);
168
169	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
170}
171
172/* ARGSUSED */
173int
174sys_clock_settime(p, v, retval)
175	struct proc *p;
176	void *v;
177	register_t *retval;
178{
179	struct sys_clock_settime_args /* {
180		syscallarg(clockid_t) clock_id;
181		syscallarg(const struct timespec *) tp;
182	} */ *uap = v;
183	clockid_t clock_id;
184	struct timeval atv;
185	struct timespec ats;
186	int error;
187
188	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
189		return (error);
190
191	clock_id = SCARG(uap, clock_id);
192	if (clock_id != CLOCK_REALTIME)
193		return (EINVAL);
194
195	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
196		return (error);
197
198	TIMESPEC_TO_TIMEVAL(&atv,&ats);
199	if ((error = settime(&atv)))
200		return (error);
201
202	return 0;
203}
204
205int
206sys_clock_getres(p, v, retval)
207	struct proc *p;
208	void *v;
209	register_t *retval;
210{
211	struct sys_clock_getres_args /* {
212		syscallarg(clockid_t) clock_id;
213		syscallarg(struct timespec *) tp;
214	} */ *uap = v;
215	clockid_t clock_id;
216	struct timespec ts;
217	int error = 0;
218
219	clock_id = SCARG(uap, clock_id);
220	if (clock_id != CLOCK_REALTIME)
221		return (EINVAL);
222
223	if (SCARG(uap, tp)) {
224		ts.tv_sec = 0;
225		ts.tv_nsec = 1000000000 / hz;
226
227		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
228	}
229
230	return error;
231}
232
233/* ARGSUSED */
234int
235sys_nanosleep(p, v, retval)
236	struct proc *p;
237	void *v;
238	register_t *retval;
239{
240	static int nanowait;
241	struct sys_nanosleep_args/* {
242		syscallarg(struct timespec *) rqtp;
243		syscallarg(struct timespec *) rmtp;
244	} */ *uap = v;
245	struct timespec rqt;
246	struct timespec rmt;
247	struct timeval atv, utv;
248	int error, s, timo;
249
250	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
251		       sizeof(struct timespec));
252	if (error)
253		return (error);
254
255	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
256	if (itimerfix(&atv))
257		return (EINVAL);
258
259	s = splclock();
260	timeradd(&atv,&time,&atv);
261	timo = hzto(&atv);
262	/*
263	 * Avoid inadvertantly sleeping forever
264	 */
265	if (timo == 0)
266		timo = 1;
267	splx(s);
268
269	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
270	if (error == ERESTART)
271		error = EINTR;
272	if (error == EWOULDBLOCK)
273		error = 0;
274
275	if (SCARG(uap, rmtp)) {
276		int error;
277
278		s = splclock();
279		utv = time;
280		splx(s);
281
282		timersub(&atv, &utv, &utv);
283		if (utv.tv_sec < 0)
284			timerclear(&utv);
285
286		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
287		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
288			sizeof(rmt));
289		if (error)
290			return (error);
291	}
292
293	return error;
294}
295
296/* ARGSUSED */
297int
298sys_gettimeofday(p, v, retval)
299	struct proc *p;
300	void *v;
301	register_t *retval;
302{
303	struct sys_gettimeofday_args /* {
304		syscallarg(struct timeval *) tp;
305		syscallarg(struct timezone *) tzp;
306	} */ *uap = v;
307	struct timeval atv;
308	int error = 0;
309	struct timezone tzfake;
310
311	if (SCARG(uap, tp)) {
312		microtime(&atv);
313		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
314		if (error)
315			return (error);
316	}
317	if (SCARG(uap, tzp)) {
318		/*
319		 * NetBSD has no kernel notion of time zone, so we just
320		 * fake up a timezone struct and return it if demanded.
321		 */
322		tzfake.tz_minuteswest = 0;
323		tzfake.tz_dsttime = 0;
324		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
325	}
326	return (error);
327}
328
329/* ARGSUSED */
330int
331sys_settimeofday(p, v, retval)
332	struct proc *p;
333	void *v;
334	register_t *retval;
335{
336	struct sys_settimeofday_args /* {
337		syscallarg(const struct timeval *) tv;
338		syscallarg(const struct timezone *) tzp;
339	} */ *uap = v;
340	struct timeval atv;
341	struct timezone atz;
342	int error;
343
344	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
345		return (error);
346	/* Verify all parameters before changing time. */
347	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
348	    &atv, sizeof(atv))))
349		return (error);
350	/* XXX since we don't use tz, probably no point in doing copyin. */
351	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
352	    &atz, sizeof(atz))))
353		return (error);
354	if (SCARG(uap, tv))
355		if ((error = settime(&atv)))
356			return (error);
357	/*
358	 * NetBSD has no kernel notion of time zone, and only an
359	 * obsolete program would try to set it, so we log a warning.
360	 */
361	if (SCARG(uap, tzp))
362		log(LOG_WARNING, "pid %d attempted to set the "
363		    "(obsolete) kernel time zone\n", p->p_pid);
364	return (0);
365}
366
367int	tickdelta;			/* current clock skew, us. per tick */
368long	timedelta;			/* unapplied time correction, us. */
369long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
370
371/* ARGSUSED */
372int
373sys_adjtime(p, v, retval)
374	struct proc *p;
375	void *v;
376	register_t *retval;
377{
378	struct sys_adjtime_args /* {
379		syscallarg(const struct timeval *) delta;
380		syscallarg(struct timeval *) olddelta;
381	} */ *uap = v;
382	struct timeval atv;
383	long ndelta, ntickdelta, odelta;
384	int s, error;
385
386	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
387		return (error);
388
389	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
390	if (error)
391		return (error);
392	if (SCARG(uap, olddelta) != NULL &&
393	    uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
394	     B_WRITE) == FALSE)
395		return (EFAULT);
396
397	/*
398	 * Compute the total correction and the rate at which to apply it.
399	 * Round the adjustment down to a whole multiple of the per-tick
400	 * delta, so that after some number of incremental changes in
401	 * hardclock(), tickdelta will become zero, lest the correction
402	 * overshoot and start taking us away from the desired final time.
403	 */
404	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
405	if (ndelta > bigadj || ndelta < -bigadj)
406		ntickdelta = 10 * tickadj;
407	else
408		ntickdelta = tickadj;
409	if (ndelta % ntickdelta)
410		ndelta = ndelta / ntickdelta * ntickdelta;
411
412	/*
413	 * To make hardclock()'s job easier, make the per-tick delta negative
414	 * if we want time to run slower; then hardclock can simply compute
415	 * tick + tickdelta, and subtract tickdelta from timedelta.
416	 */
417	if (ndelta < 0)
418		ntickdelta = -ntickdelta;
419	s = splclock();
420	odelta = timedelta;
421	timedelta = ndelta;
422	tickdelta = ntickdelta;
423	splx(s);
424
425	if (SCARG(uap, olddelta)) {
426		atv.tv_sec = odelta / 1000000;
427		atv.tv_usec = odelta % 1000000;
428		(void) copyout(&atv, SCARG(uap, olddelta),
429		    sizeof(struct timeval));
430	}
431	return (0);
432}
433
434/*
435 * Get value of an interval timer.  The process virtual and
436 * profiling virtual time timers are kept in the p_stats area, since
437 * they can be swapped out.  These are kept internally in the
438 * way they are specified externally: in time until they expire.
439 *
440 * The real time interval timer is kept in the process table slot
441 * for the process, and its value (it_value) is kept as an
442 * absolute time rather than as a delta, so that it is easy to keep
443 * periodic real-time signals from drifting.
444 *
445 * Virtual time timers are processed in the hardclock() routine of
446 * kern_clock.c.  The real time timer is processed by a timeout
447 * routine, called from the softclock() routine.  Since a callout
448 * may be delayed in real time due to interrupt processing in the system,
449 * it is possible for the real time timeout routine (realitexpire, given below),
450 * to be delayed in real time past when it is supposed to occur.  It
451 * does not suffice, therefore, to reload the real timer .it_value from the
452 * real time timers .it_interval.  Rather, we compute the next time in
453 * absolute time the timer should go off.
454 */
455/* ARGSUSED */
456int
457sys_getitimer(p, v, retval)
458	struct proc *p;
459	void *v;
460	register_t *retval;
461{
462	struct sys_getitimer_args /* {
463		syscallarg(int) which;
464		syscallarg(struct itimerval *) itv;
465	} */ *uap = v;
466	int which = SCARG(uap, which);
467	struct itimerval aitv;
468	int s;
469
470	if ((u_int)which > ITIMER_PROF)
471		return (EINVAL);
472	s = splclock();
473	if (which == ITIMER_REAL) {
474		/*
475		 * Convert from absolute to relative time in .it_value
476		 * part of real time timer.  If time for real time timer
477		 * has passed return 0, else return difference between
478		 * current time and time for the timer to go off.
479		 */
480		aitv = p->p_realtimer;
481		if (timerisset(&aitv.it_value)) {
482			if (timercmp(&aitv.it_value, &time, <))
483				timerclear(&aitv.it_value);
484			else
485				timersub(&aitv.it_value, &time, &aitv.it_value);
486		}
487	} else
488		aitv = p->p_stats->p_timer[which];
489	splx(s);
490	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
491}
492
493/* ARGSUSED */
494int
495sys_setitimer(p, v, retval)
496	struct proc *p;
497	void *v;
498	register_t *retval;
499{
500	struct sys_setitimer_args /* {
501		syscallarg(int) which;
502		syscallarg(const struct itimerval *) itv;
503		syscallarg(struct itimerval *) oitv;
504	} */ *uap = v;
505	int which = SCARG(uap, which);
506	struct sys_getitimer_args getargs;
507	struct itimerval aitv;
508	const struct itimerval *itvp;
509	int s, error;
510
511	if ((u_int)which > ITIMER_PROF)
512		return (EINVAL);
513	itvp = SCARG(uap, itv);
514	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
515		return (error);
516	if (SCARG(uap, oitv) != NULL) {
517		SCARG(&getargs, which) = which;
518		SCARG(&getargs, itv) = SCARG(uap, oitv);
519		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
520			return (error);
521	}
522	if (itvp == 0)
523		return (0);
524	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
525		return (EINVAL);
526	s = splclock();
527	if (which == ITIMER_REAL) {
528		callout_stop(&p->p_realit_ch);
529		if (timerisset(&aitv.it_value)) {
530			/*
531			 * Don't need to check hzto() return value, here.
532			 * callout_reset() does it for us.
533			 */
534			timeradd(&aitv.it_value, &time, &aitv.it_value);
535			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
536			    realitexpire, p);
537		}
538		p->p_realtimer = aitv;
539	} else
540		p->p_stats->p_timer[which] = aitv;
541	splx(s);
542	return (0);
543}
544
545/*
546 * Real interval timer expired:
547 * send process whose timer expired an alarm signal.
548 * If time is not set up to reload, then just return.
549 * Else compute next time timer should go off which is > current time.
550 * This is where delay in processing this timeout causes multiple
551 * SIGALRM calls to be compressed into one.
552 */
553void
554realitexpire(arg)
555	void *arg;
556{
557	struct proc *p;
558	int s;
559
560	p = (struct proc *)arg;
561	psignal(p, SIGALRM);
562	if (!timerisset(&p->p_realtimer.it_interval)) {
563		timerclear(&p->p_realtimer.it_value);
564		return;
565	}
566	for (;;) {
567		s = splclock();
568		timeradd(&p->p_realtimer.it_value,
569		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
570		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
571			/*
572			 * Don't need to check hzto() return value, here.
573			 * callout_reset() does it for us.
574			 */
575			callout_reset(&p->p_realit_ch,
576			    hzto(&p->p_realtimer.it_value), realitexpire, p);
577			splx(s);
578			return;
579		}
580		splx(s);
581	}
582}
583
584/*
585 * Check that a proposed value to load into the .it_value or
586 * .it_interval part of an interval timer is acceptable, and
587 * fix it to have at least minimal value (i.e. if it is less
588 * than the resolution of the clock, round it up.)
589 */
590int
591itimerfix(tv)
592	struct timeval *tv;
593{
594
595	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
596	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
597		return (EINVAL);
598	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
599		tv->tv_usec = tick;
600	return (0);
601}
602
603/*
604 * Decrement an interval timer by a specified number
605 * of microseconds, which must be less than a second,
606 * i.e. < 1000000.  If the timer expires, then reload
607 * it.  In this case, carry over (usec - old value) to
608 * reduce the value reloaded into the timer so that
609 * the timer does not drift.  This routine assumes
610 * that it is called in a context where the timers
611 * on which it is operating cannot change in value.
612 */
613int
614itimerdecr(itp, usec)
615	struct itimerval *itp;
616	int usec;
617{
618
619	if (itp->it_value.tv_usec < usec) {
620		if (itp->it_value.tv_sec == 0) {
621			/* expired, and already in next interval */
622			usec -= itp->it_value.tv_usec;
623			goto expire;
624		}
625		itp->it_value.tv_usec += 1000000;
626		itp->it_value.tv_sec--;
627	}
628	itp->it_value.tv_usec -= usec;
629	usec = 0;
630	if (timerisset(&itp->it_value))
631		return (1);
632	/* expired, exactly at end of interval */
633expire:
634	if (timerisset(&itp->it_interval)) {
635		itp->it_value = itp->it_interval;
636		itp->it_value.tv_usec -= usec;
637		if (itp->it_value.tv_usec < 0) {
638			itp->it_value.tv_usec += 1000000;
639			itp->it_value.tv_sec--;
640		}
641	} else
642		itp->it_value.tv_usec = 0;		/* sec is already 0 */
643	return (0);
644}
645
646/*
647 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
648 * for usage and rationale.
649 */
650int
651ratecheck(lasttime, mininterval)
652	struct timeval *lasttime;
653	const struct timeval *mininterval;
654{
655	struct timeval tv, delta;
656	int s, rv = 0;
657
658	s = splclock();
659	tv = mono_time;
660	splx(s);
661
662	timersub(&tv, lasttime, &delta);
663
664	/*
665	 * check for 0,0 is so that the message will be seen at least once,
666	 * even if interval is huge.
667	 */
668	if (timercmp(&delta, mininterval, >=) ||
669	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
670		*lasttime = tv;
671		rv = 1;
672	}
673
674	return (rv);
675}
676
677/*
678 * ppsratecheck(): packets (or events) per second limitation.
679 */
680int
681ppsratecheck(lasttime, curpps, maxpps)
682	struct timeval *lasttime;
683	int *curpps;
684	int maxpps;	/* maximum pps allowed */
685{
686	struct timeval tv, delta;
687	int s, rv;
688
689	s = splclock();
690	tv = mono_time;
691	splx(s);
692
693	timersub(&tv, lasttime, &delta);
694
695	/*
696	 * check for 0,0 is so that the message will be seen at least once.
697	 * if more than one second have passed since the last update of
698	 * lasttime, reset the counter.
699	 *
700	 * we do increment *curpps even in *curpps < maxpps case, as some may
701	 * try to use *curpps for stat purposes as well.
702	 */
703	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
704	    delta.tv_sec >= 1) {
705		*lasttime = tv;
706		*curpps = 0;
707		rv = 1;
708	} else if (*curpps < maxpps)
709		rv = 1;
710	else
711		rv = 0;
712
713#if 1 /*DIAGNOSTIC?*/
714	/* be careful about wrap-around */
715	if (*curpps + 1 > *curpps)
716		*curpps = *curpps + 1;
717#else
718	/*
719	 * assume that there's not too many calls to this function.
720	 * not sure if the assumption holds, as it depends on *caller's*
721	 * behavior, not the behavior of this function.
722	 * IMHO it is wrong to make assumption on the caller's behavior,
723	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
724	 */
725	*curpps = *curpps + 1;
726#endif
727
728	return (rv);
729}
730