kern_time.c revision 1.46
1/*	$NetBSD: kern_time.c,v 1.46 2000/05/26 21:20:32 thorpej Exp $	*/
2
3/*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 *    must display the following acknowledgement:
53 *	This product includes software developed by the University of
54 *	California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 *    may be used to endorse or promote products derived from this software
57 *    without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
72 */
73
74#include "fs_nfs.h"
75#include "opt_nfsserver.h"
76
77#include <sys/param.h>
78#include <sys/resourcevar.h>
79#include <sys/kernel.h>
80#include <sys/systm.h>
81#include <sys/proc.h>
82#include <sys/vnode.h>
83#include <sys/signalvar.h>
84#include <sys/syslog.h>
85
86#include <sys/mount.h>
87#include <sys/syscallargs.h>
88
89#include <vm/vm.h>
90#include <uvm/uvm_extern.h>
91
92#if defined(NFS) || defined(NFSSERVER)
93#include <nfs/rpcv2.h>
94#include <nfs/nfsproto.h>
95#include <nfs/nfs_var.h>
96#endif
97
98#include <machine/cpu.h>
99
100/*
101 * Time of day and interval timer support.
102 *
103 * These routines provide the kernel entry points to get and set
104 * the time-of-day and per-process interval timers.  Subroutines
105 * here provide support for adding and subtracting timeval structures
106 * and decrementing interval timers, optionally reloading the interval
107 * timers when they expire.
108 */
109
110/* This function is used by clock_settime and settimeofday */
111int
112settime(tv)
113	struct timeval *tv;
114{
115	struct timeval delta;
116	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
117	int s;
118
119	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
120	s = splclock();
121	timersub(tv, &time, &delta);
122	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
123		return (EPERM);
124#ifdef notyet
125	if ((delta.tv_sec < 86400) && securelevel > 0)
126		return (EPERM);
127#endif
128	time = *tv;
129	(void) spllowersoftclock();
130	timeradd(&boottime, &delta, &boottime);
131	timeradd(&spc->spc_runtime, &delta, &spc->spc_runtime);
132#	if defined(NFS) || defined(NFSSERVER)
133		nqnfs_lease_updatetime(delta.tv_sec);
134#	endif
135	splx(s);
136	resettodr();
137	return (0);
138}
139
140/* ARGSUSED */
141int
142sys_clock_gettime(p, v, retval)
143	struct proc *p;
144	void *v;
145	register_t *retval;
146{
147	struct sys_clock_gettime_args /* {
148		syscallarg(clockid_t) clock_id;
149		syscallarg(struct timespec *) tp;
150	} */ *uap = v;
151	clockid_t clock_id;
152	struct timeval atv;
153	struct timespec ats;
154
155	clock_id = SCARG(uap, clock_id);
156	if (clock_id != CLOCK_REALTIME)
157		return (EINVAL);
158
159	microtime(&atv);
160	TIMEVAL_TO_TIMESPEC(&atv,&ats);
161
162	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
163}
164
165/* ARGSUSED */
166int
167sys_clock_settime(p, v, retval)
168	struct proc *p;
169	void *v;
170	register_t *retval;
171{
172	struct sys_clock_settime_args /* {
173		syscallarg(clockid_t) clock_id;
174		syscallarg(const struct timespec *) tp;
175	} */ *uap = v;
176	clockid_t clock_id;
177	struct timeval atv;
178	struct timespec ats;
179	int error;
180
181	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
182		return (error);
183
184	clock_id = SCARG(uap, clock_id);
185	if (clock_id != CLOCK_REALTIME)
186		return (EINVAL);
187
188	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
189		return (error);
190
191	TIMESPEC_TO_TIMEVAL(&atv,&ats);
192	if ((error = settime(&atv)))
193		return (error);
194
195	return 0;
196}
197
198int
199sys_clock_getres(p, v, retval)
200	struct proc *p;
201	void *v;
202	register_t *retval;
203{
204	struct sys_clock_getres_args /* {
205		syscallarg(clockid_t) clock_id;
206		syscallarg(struct timespec *) tp;
207	} */ *uap = v;
208	clockid_t clock_id;
209	struct timespec ts;
210	int error = 0;
211
212	clock_id = SCARG(uap, clock_id);
213	if (clock_id != CLOCK_REALTIME)
214		return (EINVAL);
215
216	if (SCARG(uap, tp)) {
217		ts.tv_sec = 0;
218		ts.tv_nsec = 1000000000 / hz;
219
220		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
221	}
222
223	return error;
224}
225
226/* ARGSUSED */
227int
228sys_nanosleep(p, v, retval)
229	struct proc *p;
230	void *v;
231	register_t *retval;
232{
233	static int nanowait;
234	struct sys_nanosleep_args/* {
235		syscallarg(struct timespec *) rqtp;
236		syscallarg(struct timespec *) rmtp;
237	} */ *uap = v;
238	struct timespec rqt;
239	struct timespec rmt;
240	struct timeval atv, utv;
241	int error, s, timo;
242
243	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
244		       sizeof(struct timespec));
245	if (error)
246		return (error);
247
248	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
249	if (itimerfix(&atv))
250		return (EINVAL);
251
252	s = splclock();
253	timeradd(&atv,&time,&atv);
254	timo = hzto(&atv);
255	/*
256	 * Avoid inadvertantly sleeping forever
257	 */
258	if (timo == 0)
259		timo = 1;
260	splx(s);
261
262	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
263	if (error == ERESTART)
264		error = EINTR;
265	if (error == EWOULDBLOCK)
266		error = 0;
267
268	if (SCARG(uap, rmtp)) {
269		int error;
270
271		s = splclock();
272		utv = time;
273		splx(s);
274
275		timersub(&atv, &utv, &utv);
276		if (utv.tv_sec < 0)
277			timerclear(&utv);
278
279		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
280		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
281			sizeof(rmt));
282		if (error)
283			return (error);
284	}
285
286	return error;
287}
288
289/* ARGSUSED */
290int
291sys_gettimeofday(p, v, retval)
292	struct proc *p;
293	void *v;
294	register_t *retval;
295{
296	struct sys_gettimeofday_args /* {
297		syscallarg(struct timeval *) tp;
298		syscallarg(struct timezone *) tzp;
299	} */ *uap = v;
300	struct timeval atv;
301	int error = 0;
302	struct timezone tzfake;
303
304	if (SCARG(uap, tp)) {
305		microtime(&atv);
306		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
307		if (error)
308			return (error);
309	}
310	if (SCARG(uap, tzp)) {
311		/*
312		 * NetBSD has no kernel notion of time zone, so we just
313		 * fake up a timezone struct and return it if demanded.
314		 */
315		tzfake.tz_minuteswest = 0;
316		tzfake.tz_dsttime = 0;
317		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
318	}
319	return (error);
320}
321
322/* ARGSUSED */
323int
324sys_settimeofday(p, v, retval)
325	struct proc *p;
326	void *v;
327	register_t *retval;
328{
329	struct sys_settimeofday_args /* {
330		syscallarg(const struct timeval *) tv;
331		syscallarg(const struct timezone *) tzp;
332	} */ *uap = v;
333	struct timeval atv;
334	struct timezone atz;
335	int error;
336
337	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
338		return (error);
339	/* Verify all parameters before changing time. */
340	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
341	    &atv, sizeof(atv))))
342		return (error);
343	/* XXX since we don't use tz, probably no point in doing copyin. */
344	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
345	    &atz, sizeof(atz))))
346		return (error);
347	if (SCARG(uap, tv))
348		if ((error = settime(&atv)))
349			return (error);
350	/*
351	 * NetBSD has no kernel notion of time zone, and only an
352	 * obsolete program would try to set it, so we log a warning.
353	 */
354	if (SCARG(uap, tzp))
355		log(LOG_WARNING, "pid %d attempted to set the "
356		    "(obsolete) kernel time zone\n", p->p_pid);
357	return (0);
358}
359
360int	tickdelta;			/* current clock skew, us. per tick */
361long	timedelta;			/* unapplied time correction, us. */
362long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
363
364/* ARGSUSED */
365int
366sys_adjtime(p, v, retval)
367	struct proc *p;
368	void *v;
369	register_t *retval;
370{
371	struct sys_adjtime_args /* {
372		syscallarg(const struct timeval *) delta;
373		syscallarg(struct timeval *) olddelta;
374	} */ *uap = v;
375	struct timeval atv;
376	long ndelta, ntickdelta, odelta;
377	int s, error;
378
379	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
380		return (error);
381
382	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
383	if (error)
384		return (error);
385	if (SCARG(uap, olddelta) != NULL &&
386	    uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
387	     B_WRITE) == FALSE)
388		return (EFAULT);
389
390	/*
391	 * Compute the total correction and the rate at which to apply it.
392	 * Round the adjustment down to a whole multiple of the per-tick
393	 * delta, so that after some number of incremental changes in
394	 * hardclock(), tickdelta will become zero, lest the correction
395	 * overshoot and start taking us away from the desired final time.
396	 */
397	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
398	if (ndelta > bigadj || ndelta < -bigadj)
399		ntickdelta = 10 * tickadj;
400	else
401		ntickdelta = tickadj;
402	if (ndelta % ntickdelta)
403		ndelta = ndelta / ntickdelta * ntickdelta;
404
405	/*
406	 * To make hardclock()'s job easier, make the per-tick delta negative
407	 * if we want time to run slower; then hardclock can simply compute
408	 * tick + tickdelta, and subtract tickdelta from timedelta.
409	 */
410	if (ndelta < 0)
411		ntickdelta = -ntickdelta;
412	s = splclock();
413	odelta = timedelta;
414	timedelta = ndelta;
415	tickdelta = ntickdelta;
416	splx(s);
417
418	if (SCARG(uap, olddelta)) {
419		atv.tv_sec = odelta / 1000000;
420		atv.tv_usec = odelta % 1000000;
421		(void) copyout(&atv, SCARG(uap, olddelta),
422		    sizeof(struct timeval));
423	}
424	return (0);
425}
426
427/*
428 * Get value of an interval timer.  The process virtual and
429 * profiling virtual time timers are kept in the p_stats area, since
430 * they can be swapped out.  These are kept internally in the
431 * way they are specified externally: in time until they expire.
432 *
433 * The real time interval timer is kept in the process table slot
434 * for the process, and its value (it_value) is kept as an
435 * absolute time rather than as a delta, so that it is easy to keep
436 * periodic real-time signals from drifting.
437 *
438 * Virtual time timers are processed in the hardclock() routine of
439 * kern_clock.c.  The real time timer is processed by a timeout
440 * routine, called from the softclock() routine.  Since a callout
441 * may be delayed in real time due to interrupt processing in the system,
442 * it is possible for the real time timeout routine (realitexpire, given below),
443 * to be delayed in real time past when it is supposed to occur.  It
444 * does not suffice, therefore, to reload the real timer .it_value from the
445 * real time timers .it_interval.  Rather, we compute the next time in
446 * absolute time the timer should go off.
447 */
448/* ARGSUSED */
449int
450sys_getitimer(p, v, retval)
451	struct proc *p;
452	void *v;
453	register_t *retval;
454{
455	struct sys_getitimer_args /* {
456		syscallarg(int) which;
457		syscallarg(struct itimerval *) itv;
458	} */ *uap = v;
459	int which = SCARG(uap, which);
460	struct itimerval aitv;
461	int s;
462
463	if ((u_int)which > ITIMER_PROF)
464		return (EINVAL);
465	s = splclock();
466	if (which == ITIMER_REAL) {
467		/*
468		 * Convert from absolute to relative time in .it_value
469		 * part of real time timer.  If time for real time timer
470		 * has passed return 0, else return difference between
471		 * current time and time for the timer to go off.
472		 */
473		aitv = p->p_realtimer;
474		if (timerisset(&aitv.it_value)) {
475			if (timercmp(&aitv.it_value, &time, <))
476				timerclear(&aitv.it_value);
477			else
478				timersub(&aitv.it_value, &time, &aitv.it_value);
479		}
480	} else
481		aitv = p->p_stats->p_timer[which];
482	splx(s);
483	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
484}
485
486/* ARGSUSED */
487int
488sys_setitimer(p, v, retval)
489	struct proc *p;
490	void *v;
491	register_t *retval;
492{
493	struct sys_setitimer_args /* {
494		syscallarg(int) which;
495		syscallarg(const struct itimerval *) itv;
496		syscallarg(struct itimerval *) oitv;
497	} */ *uap = v;
498	int which = SCARG(uap, which);
499	struct sys_getitimer_args getargs;
500	struct itimerval aitv;
501	const struct itimerval *itvp;
502	int s, error;
503
504	if ((u_int)which > ITIMER_PROF)
505		return (EINVAL);
506	itvp = SCARG(uap, itv);
507	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
508		return (error);
509	if (SCARG(uap, oitv) != NULL) {
510		SCARG(&getargs, which) = which;
511		SCARG(&getargs, itv) = SCARG(uap, oitv);
512		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
513			return (error);
514	}
515	if (itvp == 0)
516		return (0);
517	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
518		return (EINVAL);
519	s = splclock();
520	if (which == ITIMER_REAL) {
521		callout_stop(&p->p_realit_ch);
522		if (timerisset(&aitv.it_value)) {
523			timeradd(&aitv.it_value, &time, &aitv.it_value);
524			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
525			    realitexpire, p);
526		}
527		p->p_realtimer = aitv;
528	} else
529		p->p_stats->p_timer[which] = aitv;
530	splx(s);
531	return (0);
532}
533
534/*
535 * Real interval timer expired:
536 * send process whose timer expired an alarm signal.
537 * If time is not set up to reload, then just return.
538 * Else compute next time timer should go off which is > current time.
539 * This is where delay in processing this timeout causes multiple
540 * SIGALRM calls to be compressed into one.
541 */
542void
543realitexpire(arg)
544	void *arg;
545{
546	struct proc *p;
547	int s;
548
549	p = (struct proc *)arg;
550	psignal(p, SIGALRM);
551	if (!timerisset(&p->p_realtimer.it_interval)) {
552		timerclear(&p->p_realtimer.it_value);
553		return;
554	}
555	for (;;) {
556		s = splclock();
557		timeradd(&p->p_realtimer.it_value,
558		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
559		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
560			callout_reset(&p->p_realit_ch,
561			    hzto(&p->p_realtimer.it_value), realitexpire, p);
562			splx(s);
563			return;
564		}
565		splx(s);
566	}
567}
568
569/*
570 * Check that a proposed value to load into the .it_value or
571 * .it_interval part of an interval timer is acceptable, and
572 * fix it to have at least minimal value (i.e. if it is less
573 * than the resolution of the clock, round it up.)
574 */
575int
576itimerfix(tv)
577	struct timeval *tv;
578{
579
580	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
581	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
582		return (EINVAL);
583	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
584		tv->tv_usec = tick;
585	return (0);
586}
587
588/*
589 * Decrement an interval timer by a specified number
590 * of microseconds, which must be less than a second,
591 * i.e. < 1000000.  If the timer expires, then reload
592 * it.  In this case, carry over (usec - old value) to
593 * reduce the value reloaded into the timer so that
594 * the timer does not drift.  This routine assumes
595 * that it is called in a context where the timers
596 * on which it is operating cannot change in value.
597 */
598int
599itimerdecr(itp, usec)
600	struct itimerval *itp;
601	int usec;
602{
603
604	if (itp->it_value.tv_usec < usec) {
605		if (itp->it_value.tv_sec == 0) {
606			/* expired, and already in next interval */
607			usec -= itp->it_value.tv_usec;
608			goto expire;
609		}
610		itp->it_value.tv_usec += 1000000;
611		itp->it_value.tv_sec--;
612	}
613	itp->it_value.tv_usec -= usec;
614	usec = 0;
615	if (timerisset(&itp->it_value))
616		return (1);
617	/* expired, exactly at end of interval */
618expire:
619	if (timerisset(&itp->it_interval)) {
620		itp->it_value = itp->it_interval;
621		itp->it_value.tv_usec -= usec;
622		if (itp->it_value.tv_usec < 0) {
623			itp->it_value.tv_usec += 1000000;
624			itp->it_value.tv_sec--;
625		}
626	} else
627		itp->it_value.tv_usec = 0;		/* sec is already 0 */
628	return (0);
629}
630
631/*
632 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
633 * for usage and rationale.
634 */
635int
636ratecheck(lasttime, mininterval)
637	struct timeval *lasttime;
638	const struct timeval *mininterval;
639{
640	struct timeval delta;
641	int s, rv = 0;
642
643	s = splclock();
644	timersub(&mono_time, lasttime, &delta);
645
646	/*
647	 * check for 0,0 is so that the message will be seen at least once,
648	 * even if interval is huge.
649	 */
650	if (timercmp(&delta, mininterval, >=) ||
651	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
652		*lasttime = mono_time;
653		rv = 1;
654	}
655	splx(s);
656
657	return (rv);
658}
659