kern_time.c revision 1.41
1/*	$NetBSD: kern_time.c,v 1.41 1999/10/10 18:41:53 hwr Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
36 */
37
38#include "fs_nfs.h"
39#include "opt_nfsserver.h"
40
41#include <sys/param.h>
42#include <sys/resourcevar.h>
43#include <sys/kernel.h>
44#include <sys/systm.h>
45#include <sys/proc.h>
46#include <sys/vnode.h>
47#include <sys/signalvar.h>
48#include <sys/syslog.h>
49
50#include <sys/mount.h>
51#include <sys/syscallargs.h>
52
53#include <vm/vm.h>
54#include <uvm/uvm_extern.h>
55
56#if defined(NFS) || defined(NFSSERVER)
57#include <nfs/rpcv2.h>
58#include <nfs/nfsproto.h>
59#include <nfs/nfs_var.h>
60#endif
61
62#include <machine/cpu.h>
63
64/*
65 * Time of day and interval timer support.
66 *
67 * These routines provide the kernel entry points to get and set
68 * the time-of-day and per-process interval timers.  Subroutines
69 * here provide support for adding and subtracting timeval structures
70 * and decrementing interval timers, optionally reloading the interval
71 * timers when they expire.
72 */
73
74/* This function is used by clock_settime and settimeofday */
75int
76settime(tv)
77	struct timeval *tv;
78{
79	struct timeval delta;
80	int s;
81
82	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
83	s = splclock();
84	timersub(tv, &time, &delta);
85	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
86		return (EPERM);
87#ifdef notyet
88	if ((delta.tv_sec < 86400) && securelevel > 0)
89		return (EPERM);
90#endif
91	time = *tv;
92	(void) spllowersoftclock();
93	timeradd(&boottime, &delta, &boottime);
94	timeradd(&runtime, &delta, &runtime);
95#	if defined(NFS) || defined(NFSSERVER)
96		nqnfs_lease_updatetime(delta.tv_sec);
97#	endif
98	splx(s);
99	resettodr();
100	return (0);
101}
102
103/* ARGSUSED */
104int
105sys_clock_gettime(p, v, retval)
106	struct proc *p;
107	void *v;
108	register_t *retval;
109{
110	register struct sys_clock_gettime_args /* {
111		syscallarg(clockid_t) clock_id;
112		syscallarg(struct timespec *) tp;
113	} */ *uap = v;
114	clockid_t clock_id;
115	struct timeval atv;
116	struct timespec ats;
117
118	clock_id = SCARG(uap, clock_id);
119	if (clock_id != CLOCK_REALTIME)
120		return (EINVAL);
121
122	microtime(&atv);
123	TIMEVAL_TO_TIMESPEC(&atv,&ats);
124
125	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
126}
127
128/* ARGSUSED */
129int
130sys_clock_settime(p, v, retval)
131	struct proc *p;
132	void *v;
133	register_t *retval;
134{
135	register struct sys_clock_settime_args /* {
136		syscallarg(clockid_t) clock_id;
137		syscallarg(const struct timespec *) tp;
138	} */ *uap = v;
139	clockid_t clock_id;
140	struct timeval atv;
141	struct timespec ats;
142	int error;
143
144	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
145		return (error);
146
147	clock_id = SCARG(uap, clock_id);
148	if (clock_id != CLOCK_REALTIME)
149		return (EINVAL);
150
151	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
152		return (error);
153
154	TIMESPEC_TO_TIMEVAL(&atv,&ats);
155	if ((error = settime(&atv)))
156		return (error);
157
158	return 0;
159}
160
161int
162sys_clock_getres(p, v, retval)
163	struct proc *p;
164	void *v;
165	register_t *retval;
166{
167	register struct sys_clock_getres_args /* {
168		syscallarg(clockid_t) clock_id;
169		syscallarg(struct timespec *) tp;
170	} */ *uap = v;
171	clockid_t clock_id;
172	struct timespec ts;
173	int error = 0;
174
175	clock_id = SCARG(uap, clock_id);
176	if (clock_id != CLOCK_REALTIME)
177		return (EINVAL);
178
179	if (SCARG(uap, tp)) {
180		ts.tv_sec = 0;
181		ts.tv_nsec = 1000000000 / hz;
182
183		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
184	}
185
186	return error;
187}
188
189/* ARGSUSED */
190int
191sys_nanosleep(p, v, retval)
192	struct proc *p;
193	void *v;
194	register_t *retval;
195{
196	static int nanowait;
197	register struct sys_nanosleep_args/* {
198		syscallarg(struct timespec *) rqtp;
199		syscallarg(struct timespec *) rmtp;
200	} */ *uap = v;
201	struct timespec rqt;
202	struct timespec rmt;
203	struct timeval atv, utv;
204	int error, s, timo;
205
206	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
207		       sizeof(struct timespec));
208	if (error)
209		return (error);
210
211	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
212	if (itimerfix(&atv))
213		return (EINVAL);
214
215	s = splclock();
216	timeradd(&atv,&time,&atv);
217	timo = hzto(&atv);
218	/*
219	 * Avoid inadvertantly sleeping forever
220	 */
221	if (timo == 0)
222		timo = 1;
223	splx(s);
224
225	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
226	if (error == ERESTART)
227		error = EINTR;
228	if (error == EWOULDBLOCK)
229		error = 0;
230
231	if (SCARG(uap, rmtp)) {
232		int error;
233
234		s = splclock();
235		utv = time;
236		splx(s);
237
238		timersub(&atv, &utv, &utv);
239		if (utv.tv_sec < 0)
240			timerclear(&utv);
241
242		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
243		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
244			sizeof(rmt));
245		if (error)
246			return (error);
247	}
248
249	return error;
250}
251
252/* ARGSUSED */
253int
254sys_gettimeofday(p, v, retval)
255	struct proc *p;
256	void *v;
257	register_t *retval;
258{
259	register struct sys_gettimeofday_args /* {
260		syscallarg(struct timeval *) tp;
261		syscallarg(struct timezone *) tzp;
262	} */ *uap = v;
263	struct timeval atv;
264	int error = 0;
265	struct timezone tzfake;
266
267	if (SCARG(uap, tp)) {
268		microtime(&atv);
269		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
270		if (error)
271			return (error);
272	}
273	if (SCARG(uap, tzp)) {
274		/*
275		 * NetBSD has no kernel notion of time zone, so we just
276		 * fake up a timezone struct and return it if demanded.
277		 */
278		tzfake.tz_minuteswest = 0;
279		tzfake.tz_dsttime = 0;
280		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
281	}
282	return (error);
283}
284
285/* ARGSUSED */
286int
287sys_settimeofday(p, v, retval)
288	struct proc *p;
289	void *v;
290	register_t *retval;
291{
292	struct sys_settimeofday_args /* {
293		syscallarg(const struct timeval *) tv;
294		syscallarg(const struct timezone *) tzp;
295	} */ *uap = v;
296	struct timeval atv;
297	struct timezone atz;
298	int error;
299
300	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
301		return (error);
302	/* Verify all parameters before changing time. */
303	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
304	    &atv, sizeof(atv))))
305		return (error);
306	/* XXX since we don't use tz, probably no point in doing copyin. */
307	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
308	    &atz, sizeof(atz))))
309		return (error);
310	if (SCARG(uap, tv))
311		if ((error = settime(&atv)))
312			return (error);
313	/*
314	 * NetBSD has no kernel notion of time zone, and only an
315	 * obsolete program would try to set it, so we log a warning.
316	 */
317	if (SCARG(uap, tzp))
318		log(LOG_WARNING, "pid %d attempted to set the "
319		    "(obsolete) kernel time zone\n", p->p_pid);
320	return (0);
321}
322
323int	tickdelta;			/* current clock skew, us. per tick */
324long	timedelta;			/* unapplied time correction, us. */
325long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
326
327/* ARGSUSED */
328int
329sys_adjtime(p, v, retval)
330	struct proc *p;
331	void *v;
332	register_t *retval;
333{
334	register struct sys_adjtime_args /* {
335		syscallarg(const struct timeval *) delta;
336		syscallarg(struct timeval *) olddelta;
337	} */ *uap = v;
338	struct timeval atv;
339	register long ndelta, ntickdelta, odelta;
340	int s, error;
341
342	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
343		return (error);
344
345	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
346	if (error)
347		return (error);
348	if (SCARG(uap, olddelta) != NULL &&
349	    uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval),
350	     B_WRITE) == FALSE)
351		return (EFAULT);
352
353	/*
354	 * Compute the total correction and the rate at which to apply it.
355	 * Round the adjustment down to a whole multiple of the per-tick
356	 * delta, so that after some number of incremental changes in
357	 * hardclock(), tickdelta will become zero, lest the correction
358	 * overshoot and start taking us away from the desired final time.
359	 */
360	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
361	if (ndelta > bigadj || ndelta < -bigadj)
362		ntickdelta = 10 * tickadj;
363	else
364		ntickdelta = tickadj;
365	if (ndelta % ntickdelta)
366		ndelta = ndelta / ntickdelta * ntickdelta;
367
368	/*
369	 * To make hardclock()'s job easier, make the per-tick delta negative
370	 * if we want time to run slower; then hardclock can simply compute
371	 * tick + tickdelta, and subtract tickdelta from timedelta.
372	 */
373	if (ndelta < 0)
374		ntickdelta = -ntickdelta;
375	s = splclock();
376	odelta = timedelta;
377	timedelta = ndelta;
378	tickdelta = ntickdelta;
379	splx(s);
380
381	if (SCARG(uap, olddelta)) {
382		atv.tv_sec = odelta / 1000000;
383		atv.tv_usec = odelta % 1000000;
384		(void) copyout(&atv, SCARG(uap, olddelta),
385		    sizeof(struct timeval));
386	}
387	return (0);
388}
389
390/*
391 * Get value of an interval timer.  The process virtual and
392 * profiling virtual time timers are kept in the p_stats area, since
393 * they can be swapped out.  These are kept internally in the
394 * way they are specified externally: in time until they expire.
395 *
396 * The real time interval timer is kept in the process table slot
397 * for the process, and its value (it_value) is kept as an
398 * absolute time rather than as a delta, so that it is easy to keep
399 * periodic real-time signals from drifting.
400 *
401 * Virtual time timers are processed in the hardclock() routine of
402 * kern_clock.c.  The real time timer is processed by a timeout
403 * routine, called from the softclock() routine.  Since a callout
404 * may be delayed in real time due to interrupt processing in the system,
405 * it is possible for the real time timeout routine (realitexpire, given below),
406 * to be delayed in real time past when it is supposed to occur.  It
407 * does not suffice, therefore, to reload the real timer .it_value from the
408 * real time timers .it_interval.  Rather, we compute the next time in
409 * absolute time the timer should go off.
410 */
411/* ARGSUSED */
412int
413sys_getitimer(p, v, retval)
414	struct proc *p;
415	void *v;
416	register_t *retval;
417{
418	register struct sys_getitimer_args /* {
419		syscallarg(int) which;
420		syscallarg(struct itimerval *) itv;
421	} */ *uap = v;
422	int which = SCARG(uap, which);
423	struct itimerval aitv;
424	int s;
425
426	if ((u_int)which > ITIMER_PROF)
427		return (EINVAL);
428	s = splclock();
429	if (which == ITIMER_REAL) {
430		/*
431		 * Convert from absolute to relative time in .it_value
432		 * part of real time timer.  If time for real time timer
433		 * has passed return 0, else return difference between
434		 * current time and time for the timer to go off.
435		 */
436		aitv = p->p_realtimer;
437		if (timerisset(&aitv.it_value)) {
438			if (timercmp(&aitv.it_value, &time, <))
439				timerclear(&aitv.it_value);
440			else
441				timersub(&aitv.it_value, &time, &aitv.it_value);
442		}
443	} else
444		aitv = p->p_stats->p_timer[which];
445	splx(s);
446	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
447}
448
449/* ARGSUSED */
450int
451sys_setitimer(p, v, retval)
452	struct proc *p;
453	register void *v;
454	register_t *retval;
455{
456	register struct sys_setitimer_args /* {
457		syscallarg(int) which;
458		syscallarg(const struct itimerval *) itv;
459		syscallarg(struct itimerval *) oitv;
460	} */ *uap = v;
461	int which = SCARG(uap, which);
462	struct sys_getitimer_args getargs;
463	struct itimerval aitv;
464	register const struct itimerval *itvp;
465	int s, error;
466
467	if ((u_int)which > ITIMER_PROF)
468		return (EINVAL);
469	itvp = SCARG(uap, itv);
470	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
471		return (error);
472	if (SCARG(uap, oitv) != NULL) {
473		SCARG(&getargs, which) = which;
474		SCARG(&getargs, itv) = SCARG(uap, oitv);
475		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
476			return (error);
477	}
478	if (itvp == 0)
479		return (0);
480	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
481		return (EINVAL);
482	s = splclock();
483	if (which == ITIMER_REAL) {
484		untimeout(realitexpire, p);
485		if (timerisset(&aitv.it_value)) {
486			timeradd(&aitv.it_value, &time, &aitv.it_value);
487			timeout(realitexpire, p, hzto(&aitv.it_value));
488		}
489		p->p_realtimer = aitv;
490	} else
491		p->p_stats->p_timer[which] = aitv;
492	splx(s);
493	return (0);
494}
495
496/*
497 * Real interval timer expired:
498 * send process whose timer expired an alarm signal.
499 * If time is not set up to reload, then just return.
500 * Else compute next time timer should go off which is > current time.
501 * This is where delay in processing this timeout causes multiple
502 * SIGALRM calls to be compressed into one.
503 */
504void
505realitexpire(arg)
506	void *arg;
507{
508	register struct proc *p;
509	int s;
510
511	p = (struct proc *)arg;
512	psignal(p, SIGALRM);
513	if (!timerisset(&p->p_realtimer.it_interval)) {
514		timerclear(&p->p_realtimer.it_value);
515		return;
516	}
517	for (;;) {
518		s = splclock();
519		timeradd(&p->p_realtimer.it_value,
520		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
521		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
522			timeout(realitexpire, p,
523			    hzto(&p->p_realtimer.it_value));
524			splx(s);
525			return;
526		}
527		splx(s);
528	}
529}
530
531/*
532 * Check that a proposed value to load into the .it_value or
533 * .it_interval part of an interval timer is acceptable, and
534 * fix it to have at least minimal value (i.e. if it is less
535 * than the resolution of the clock, round it up.)
536 */
537int
538itimerfix(tv)
539	struct timeval *tv;
540{
541
542	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
543	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
544		return (EINVAL);
545	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
546		tv->tv_usec = tick;
547	return (0);
548}
549
550/*
551 * Decrement an interval timer by a specified number
552 * of microseconds, which must be less than a second,
553 * i.e. < 1000000.  If the timer expires, then reload
554 * it.  In this case, carry over (usec - old value) to
555 * reduce the value reloaded into the timer so that
556 * the timer does not drift.  This routine assumes
557 * that it is called in a context where the timers
558 * on which it is operating cannot change in value.
559 */
560int
561itimerdecr(itp, usec)
562	register struct itimerval *itp;
563	int usec;
564{
565
566	if (itp->it_value.tv_usec < usec) {
567		if (itp->it_value.tv_sec == 0) {
568			/* expired, and already in next interval */
569			usec -= itp->it_value.tv_usec;
570			goto expire;
571		}
572		itp->it_value.tv_usec += 1000000;
573		itp->it_value.tv_sec--;
574	}
575	itp->it_value.tv_usec -= usec;
576	usec = 0;
577	if (timerisset(&itp->it_value))
578		return (1);
579	/* expired, exactly at end of interval */
580expire:
581	if (timerisset(&itp->it_interval)) {
582		itp->it_value = itp->it_interval;
583		itp->it_value.tv_usec -= usec;
584		if (itp->it_value.tv_usec < 0) {
585			itp->it_value.tv_usec += 1000000;
586			itp->it_value.tv_sec--;
587		}
588	} else
589		itp->it_value.tv_usec = 0;		/* sec is already 0 */
590	return (0);
591}
592