kern_time.c revision 1.27
1/*	$NetBSD: kern_time.c,v 1.27 1997/04/16 14:41:29 jtc Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
36 */
37
38#include <sys/param.h>
39#include <sys/resourcevar.h>
40#include <sys/kernel.h>
41#include <sys/systm.h>
42#include <sys/proc.h>
43#include <sys/vnode.h>
44#include <sys/signalvar.h>
45#include <sys/syslog.h>
46
47#include <sys/mount.h>
48#include <sys/syscallargs.h>
49
50#if defined(NFS) || defined(NFSSERVER)
51#include <nfs/rpcv2.h>
52#include <nfs/nfsproto.h>
53#include <nfs/nfs_var.h>
54#endif
55
56#include <machine/cpu.h>
57
58static void	settime __P((struct timeval *));
59
60/*
61 * Time of day and interval timer support.
62 *
63 * These routines provide the kernel entry points to get and set
64 * the time-of-day and per-process interval timers.  Subroutines
65 * here provide support for adding and subtracting timeval structures
66 * and decrementing interval timers, optionally reloading the interval
67 * timers when they expire.
68 */
69
70/* This function is used by clock_settime and settimeofday */
71static void
72settime(tv)
73	struct timeval *tv;
74{
75	struct timeval delta;
76	int s;
77
78	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
79	s = splclock();
80	timersub(tv, &time, &delta);
81	time = *tv;
82	(void) splsoftclock();
83	timeradd(&boottime, &delta, &boottime);
84	timeradd(&runtime, &delta, &runtime);
85#	if defined(NFS) || defined(NFSSERVER)
86		nqnfs_lease_updatetime(delta.tv_sec);
87#	endif
88	splx(s);
89	resettodr();
90}
91
92/* ARGSUSED */
93int
94sys_clock_gettime(p, v, retval)
95	struct proc *p;
96	void *v;
97	register_t *retval;
98{
99	register struct sys_clock_gettime_args /* {
100		syscallarg(clockid_t) clock_id;
101		syscallarg(struct timespec *) tp;
102	} */ *uap = v;
103	clockid_t clock_id;
104	struct timeval atv;
105	struct timespec ats;
106
107	clock_id = SCARG(uap, clock_id);
108	if (clock_id != CLOCK_REALTIME)
109		return (EINVAL);
110
111	microtime(&atv);
112	TIMEVAL_TO_TIMESPEC(&atv,&ats);
113
114	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
115}
116
117/* ARGSUSED */
118int
119sys_clock_settime(p, v, retval)
120	struct proc *p;
121	void *v;
122	register_t *retval;
123{
124	register struct sys_clock_settime_args /* {
125		syscallarg(clockid_t) clock_id;
126		syscallarg(const struct timespec *) tp;
127	} */ *uap = v;
128	clockid_t clock_id;
129	struct timeval atv;
130	struct timespec ats;
131	int error;
132
133	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
134		return (error);
135
136	clock_id = SCARG(uap, clock_id);
137	if (clock_id != CLOCK_REALTIME)
138		return (EINVAL);
139
140	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
141		return (error);
142
143	TIMESPEC_TO_TIMEVAL(&atv,&ats);
144	settime(&atv);
145
146	return 0;
147}
148
149int
150sys_clock_getres(p, v, retval)
151	struct proc *p;
152	void *v;
153	register_t *retval;
154{
155	register struct sys_clock_getres_args /* {
156		syscallarg(clockid_t) clock_id;
157		syscallarg(struct timespec *) tp;
158	} */ *uap = v;
159	clockid_t clock_id;
160	struct timespec ts;
161	int error = 0;
162
163	clock_id = SCARG(uap, clock_id);
164	if (clock_id != CLOCK_REALTIME)
165		return (EINVAL);
166
167	if (SCARG(uap, tp)) {
168		ts.tv_sec = 0;
169		ts.tv_nsec = 1000000000 / hz;
170
171		error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
172	}
173
174	return error;
175}
176
177/* ARGSUSED */
178int
179sys_nanosleep(p, v, retval)
180	struct proc *p;
181	void *v;
182	register_t *retval;
183{
184	static int nanowait;
185	register struct sys_nanosleep_args/* {
186		syscallarg(struct timespec *) rqtp;
187		syscallarg(struct timespec *) rmtp;
188	} */ *uap = v;
189	struct timespec rqt;
190	struct timespec rmt;
191	struct timeval atv, utv;
192	int error, s, timo;
193
194	error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt,
195		       sizeof(struct timespec));
196	if (error)
197		return (error);
198
199	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
200	if (itimerfix(&atv))
201		return (EINVAL);
202
203	s = splclock();
204	timeradd(&atv,&time,&atv);
205	timo = hzto(&atv);
206	/*
207	 * Avoid inadvertantly sleeping forever
208	 */
209	if (timo == 0)
210		timo = 1;
211	splx(s);
212
213	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
214	if (error == ERESTART)
215		error = EINTR;
216	if (error == EWOULDBLOCK)
217		error = 0;
218
219	if (SCARG(uap, rmtp)) {
220		s = splclock();
221		utv = time;
222		splx(s);
223
224		timersub(&atv, &utv, &utv);
225		if (utv.tv_sec < 0)
226			timerclear(&utv);
227
228		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
229		error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
230			sizeof(rmt));
231	}
232
233	return error;
234}
235
236/* ARGSUSED */
237int
238sys_gettimeofday(p, v, retval)
239	struct proc *p;
240	void *v;
241	register_t *retval;
242{
243	register struct sys_gettimeofday_args /* {
244		syscallarg(struct timeval *) tp;
245		syscallarg(struct timezone *) tzp;
246	} */ *uap = v;
247	struct timeval atv;
248	int error = 0;
249	struct timezone tzfake;
250
251	if (SCARG(uap, tp)) {
252		microtime(&atv);
253		error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
254		if (error)
255			return (error);
256	}
257	if (SCARG(uap, tzp)) {
258		/*
259		 * NetBSD has no kernel notion of timezone, so we just
260		 * fake up a timezone struct and return it if demanded.
261		 */
262		tzfake.tz_minuteswest = 0;
263		tzfake.tz_dsttime = 0;
264		error = copyout(&tzfake, SCARG(uap, tzp), sizeof (tzfake));
265	}
266	return (error);
267}
268
269/* ARGSUSED */
270int
271sys_settimeofday(p, v, retval)
272	struct proc *p;
273	void *v;
274	register_t *retval;
275{
276	struct sys_settimeofday_args /* {
277		syscallarg(const struct timeval *) tv;
278		syscallarg(const struct timezone *) tzp;
279	} */ *uap = v;
280	struct timeval atv;
281	struct timezone atz;
282	int error;
283
284	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
285		return (error);
286	/* Verify all parameters before changing time. */
287	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
288	    &atv, sizeof(atv))))
289		return (error);
290	/* XXX since we don't use tz, probably no point in doing copyin. */
291	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
292	    &atz, sizeof(atz))))
293		return (error);
294	if (SCARG(uap, tv))
295		settime(&atv);
296	/*
297	 * NetBSD has no kernel notion of timezone, and only an
298	 * obsolete program would try to set it, so we log a warning.
299	 */
300	if (SCARG(uap, tzp))
301		log(LOG_WARNING, "pid %d attempted to set the "
302		    "(obsolete) kernel timezone.", p->p_pid);
303	return (0);
304}
305
306int	tickdelta;			/* current clock skew, us. per tick */
307long	timedelta;			/* unapplied time correction, us. */
308long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
309
310/* ARGSUSED */
311int
312sys_adjtime(p, v, retval)
313	struct proc *p;
314	void *v;
315	register_t *retval;
316{
317	register struct sys_adjtime_args /* {
318		syscallarg(const struct timeval *) delta;
319		syscallarg(struct timeval *) olddelta;
320	} */ *uap = v;
321	struct timeval atv;
322	register long ndelta, ntickdelta, odelta;
323	int s, error;
324
325	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
326		return (error);
327
328	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
329	if (error)
330		return (error);
331
332	/*
333	 * Compute the total correction and the rate at which to apply it.
334	 * Round the adjustment down to a whole multiple of the per-tick
335	 * delta, so that after some number of incremental changes in
336	 * hardclock(), tickdelta will become zero, lest the correction
337	 * overshoot and start taking us away from the desired final time.
338	 */
339	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
340	if (ndelta > bigadj)
341		ntickdelta = 10 * tickadj;
342	else
343		ntickdelta = tickadj;
344	if (ndelta % ntickdelta)
345		ndelta = ndelta / ntickdelta * ntickdelta;
346
347	/*
348	 * To make hardclock()'s job easier, make the per-tick delta negative
349	 * if we want time to run slower; then hardclock can simply compute
350	 * tick + tickdelta, and subtract tickdelta from timedelta.
351	 */
352	if (ndelta < 0)
353		ntickdelta = -ntickdelta;
354	s = splclock();
355	odelta = timedelta;
356	timedelta = ndelta;
357	tickdelta = ntickdelta;
358	splx(s);
359
360	if (SCARG(uap, olddelta)) {
361		atv.tv_sec = odelta / 1000000;
362		atv.tv_usec = odelta % 1000000;
363		(void) copyout(&atv, SCARG(uap, olddelta),
364		    sizeof(struct timeval));
365	}
366	return (0);
367}
368
369/*
370 * Get value of an interval timer.  The process virtual and
371 * profiling virtual time timers are kept in the p_stats area, since
372 * they can be swapped out.  These are kept internally in the
373 * way they are specified externally: in time until they expire.
374 *
375 * The real time interval timer is kept in the process table slot
376 * for the process, and its value (it_value) is kept as an
377 * absolute time rather than as a delta, so that it is easy to keep
378 * periodic real-time signals from drifting.
379 *
380 * Virtual time timers are processed in the hardclock() routine of
381 * kern_clock.c.  The real time timer is processed by a timeout
382 * routine, called from the softclock() routine.  Since a callout
383 * may be delayed in real time due to interrupt processing in the system,
384 * it is possible for the real time timeout routine (realitexpire, given below),
385 * to be delayed in real time past when it is supposed to occur.  It
386 * does not suffice, therefore, to reload the real timer .it_value from the
387 * real time timers .it_interval.  Rather, we compute the next time in
388 * absolute time the timer should go off.
389 */
390/* ARGSUSED */
391int
392sys_getitimer(p, v, retval)
393	struct proc *p;
394	void *v;
395	register_t *retval;
396{
397	register struct sys_getitimer_args /* {
398		syscallarg(u_int) which;
399		syscallarg(struct itimerval *) itv;
400	} */ *uap = v;
401	struct itimerval aitv;
402	int s;
403
404	if (SCARG(uap, which) > ITIMER_PROF)
405		return (EINVAL);
406	s = splclock();
407	if (SCARG(uap, which) == ITIMER_REAL) {
408		/*
409		 * Convert from absolute to relative time in .it_value
410		 * part of real time timer.  If time for real time timer
411		 * has passed return 0, else return difference between
412		 * current time and time for the timer to go off.
413		 */
414		aitv = p->p_realtimer;
415		if (timerisset(&aitv.it_value))
416			if (timercmp(&aitv.it_value, &time, <))
417				timerclear(&aitv.it_value);
418			else
419				timersub(&aitv.it_value, &time, &aitv.it_value);
420	} else
421		aitv = p->p_stats->p_timer[SCARG(uap, which)];
422	splx(s);
423	return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
424}
425
426/* ARGSUSED */
427int
428sys_setitimer(p, v, retval)
429	struct proc *p;
430	register void *v;
431	register_t *retval;
432{
433	register struct sys_setitimer_args /* {
434		syscallarg(u_int) which;
435		syscallarg(const struct itimerval *) itv;
436		syscallarg(struct itimerval *) oitv;
437	} */ *uap = v;
438	struct sys_getitimer_args getargs;
439	struct itimerval aitv;
440	register const struct itimerval *itvp;
441	int s, error;
442
443	if (SCARG(uap, which) > ITIMER_PROF)
444		return (EINVAL);
445	itvp = SCARG(uap, itv);
446	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
447		return (error);
448	if (SCARG(uap, oitv) != NULL) {
449		SCARG(&getargs, which) = SCARG(uap, which);
450		SCARG(&getargs, itv) = SCARG(uap, oitv);
451		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
452			return (error);
453	}
454	if (itvp == 0)
455		return (0);
456	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
457		return (EINVAL);
458	s = splclock();
459	if (SCARG(uap, which) == ITIMER_REAL) {
460		untimeout(realitexpire, p);
461		if (timerisset(&aitv.it_value)) {
462			timeradd(&aitv.it_value, &time, &aitv.it_value);
463			timeout(realitexpire, p, hzto(&aitv.it_value));
464		}
465		p->p_realtimer = aitv;
466	} else
467		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
468	splx(s);
469	return (0);
470}
471
472/*
473 * Real interval timer expired:
474 * send process whose timer expired an alarm signal.
475 * If time is not set up to reload, then just return.
476 * Else compute next time timer should go off which is > current time.
477 * This is where delay in processing this timeout causes multiple
478 * SIGALRM calls to be compressed into one.
479 */
480void
481realitexpire(arg)
482	void *arg;
483{
484	register struct proc *p;
485	int s;
486
487	p = (struct proc *)arg;
488	psignal(p, SIGALRM);
489	if (!timerisset(&p->p_realtimer.it_interval)) {
490		timerclear(&p->p_realtimer.it_value);
491		return;
492	}
493	for (;;) {
494		s = splclock();
495		timeradd(&p->p_realtimer.it_value,
496		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
497		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
498			timeout(realitexpire, p,
499			    hzto(&p->p_realtimer.it_value));
500			splx(s);
501			return;
502		}
503		splx(s);
504	}
505}
506
507/*
508 * Check that a proposed value to load into the .it_value or
509 * .it_interval part of an interval timer is acceptable, and
510 * fix it to have at least minimal value (i.e. if it is less
511 * than the resolution of the clock, round it up.)
512 */
513int
514itimerfix(tv)
515	struct timeval *tv;
516{
517
518	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
519	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
520		return (EINVAL);
521	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
522		tv->tv_usec = tick;
523	return (0);
524}
525
526/*
527 * Decrement an interval timer by a specified number
528 * of microseconds, which must be less than a second,
529 * i.e. < 1000000.  If the timer expires, then reload
530 * it.  In this case, carry over (usec - old value) to
531 * reduce the value reloaded into the timer so that
532 * the timer does not drift.  This routine assumes
533 * that it is called in a context where the timers
534 * on which it is operating cannot change in value.
535 */
536int
537itimerdecr(itp, usec)
538	register struct itimerval *itp;
539	int usec;
540{
541
542	if (itp->it_value.tv_usec < usec) {
543		if (itp->it_value.tv_sec == 0) {
544			/* expired, and already in next interval */
545			usec -= itp->it_value.tv_usec;
546			goto expire;
547		}
548		itp->it_value.tv_usec += 1000000;
549		itp->it_value.tv_sec--;
550	}
551	itp->it_value.tv_usec -= usec;
552	usec = 0;
553	if (timerisset(&itp->it_value))
554		return (1);
555	/* expired, exactly at end of interval */
556expire:
557	if (timerisset(&itp->it_interval)) {
558		itp->it_value = itp->it_interval;
559		itp->it_value.tv_usec -= usec;
560		if (itp->it_value.tv_usec < 0) {
561			itp->it_value.tv_usec += 1000000;
562			itp->it_value.tv_sec--;
563		}
564	} else
565		itp->it_value.tv_usec = 0;		/* sec is already 0 */
566	return (0);
567}
568