kern_time.c revision 1.25
1/*	$NetBSD: kern_time.c,v 1.25 1997/01/15 01:37:53 perry Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
36 */
37
38#include <sys/param.h>
39#include <sys/resourcevar.h>
40#include <sys/kernel.h>
41#include <sys/systm.h>
42#include <sys/proc.h>
43#include <sys/vnode.h>
44#include <sys/signalvar.h>
45#include <sys/syslog.h>
46
47#include <sys/mount.h>
48#include <sys/syscallargs.h>
49
50#if defined(NFSCLIENT) || defined(NFSSERVER)
51#include <nfs/rpcv2.h>
52#include <nfs/nfsproto.h>
53#include <nfs/nfs_var.h>
54#endif
55
56#include <machine/cpu.h>
57
58static void	settime __P((struct timeval *));
59
60/*
61 * Time of day and interval timer support.
62 *
63 * These routines provide the kernel entry points to get and set
64 * the time-of-day and per-process interval timers.  Subroutines
65 * here provide support for adding and subtracting timeval structures
66 * and decrementing interval timers, optionally reloading the interval
67 * timers when they expire.
68 */
69
70
71/* This function is used by clock_settime and settimeofday */
72static void
73settime(tv)
74	struct timeval *tv;
75{
76	struct timeval delta;
77	int s;
78
79	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
80	s = splclock();
81	timersub(tv, &time, &delta);
82	time = *tv;
83	(void) splsoftclock();
84	timeradd(&boottime, &delta, &boottime);
85	timeradd(&runtime, &delta, &runtime);
86#	if defined(NFSCLIENT) || defined(NFSSERVER)
87		nqnfs_lease_updatetime(delta.tv_sec);
88#	endif
89	splx(s);
90	resettodr();
91}
92
93/* ARGSUSED */
94int
95sys_clock_gettime(p, v, retval)
96	struct proc *p;
97	void *v;
98	register_t *retval;
99{
100	register struct sys_clock_gettime_args /* {
101		syscallarg(clockid_t) clock_id;
102		syscallarg(struct timespec *) tp;
103	} */ *uap = v;
104	clockid_t clock_id;
105	struct timeval atv;
106	struct timespec ats;
107
108	clock_id = SCARG(uap, clock_id);
109	if (clock_id != CLOCK_REALTIME)
110		return (EINVAL);
111
112	microtime(&atv);
113	TIMEVAL_TO_TIMESPEC(&atv,&ats);
114
115	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
116}
117
118/* ARGSUSED */
119int
120sys_clock_settime(p, v, retval)
121	struct proc *p;
122	void *v;
123	register_t *retval;
124{
125	register struct sys_clock_settime_args /* {
126		syscallarg(clockid_t) clock_id;
127		syscallarg(const struct timespec *) tp;
128	} */ *uap = v;
129	clockid_t clock_id;
130	struct timeval atv;
131	struct timespec ats;
132	int error;
133
134	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
135		return (error);
136
137	clock_id = SCARG(uap, clock_id);
138	if (clock_id != CLOCK_REALTIME)
139		return (EINVAL);
140
141	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
142		return (error);
143
144	TIMESPEC_TO_TIMEVAL(&atv,&ats);
145	settime(&atv);
146
147	return 0;
148}
149
150int
151sys_clock_getres(p, v, retval)
152	struct proc *p;
153	void *v;
154	register_t *retval;
155{
156	register struct sys_clock_getres_args /* {
157		syscallarg(clockid_t) clock_id;
158		syscallarg(struct timespec *) tp;
159	} */ *uap = v;
160	clockid_t clock_id;
161	struct timespec ts;
162	int error = 0;
163
164	clock_id = SCARG(uap, clock_id);
165	if (clock_id != CLOCK_REALTIME)
166		return (EINVAL);
167
168	if (SCARG(uap, tp)) {
169		ts.tv_sec = 0;
170		ts.tv_nsec = 1000000000 / hz;
171
172		error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
173	}
174
175	return error;
176}
177
178
179/* ARGSUSED */
180int
181sys_gettimeofday(p, v, retval)
182	struct proc *p;
183	void *v;
184	register_t *retval;
185{
186	register struct sys_gettimeofday_args /* {
187		syscallarg(struct timeval *) tp;
188		syscallarg(struct timezone *) tzp;
189	} */ *uap = v;
190	struct timeval atv;
191	int error = 0;
192	struct timezone tzfake;
193
194	if (SCARG(uap, tp)) {
195		microtime(&atv);
196		error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
197		if (error)
198			return (error);
199	}
200	if (SCARG(uap, tzp)) {
201		/*
202		 * NetBSD has no kernel notion of timezone, so we just
203		 * fake up a timezone struct and return it if demanded.
204		 */
205		tzfake.tz_minuteswest = 0;
206		tzfake.tz_dsttime = 0;
207		error = copyout(&tzfake, SCARG(uap, tzp), sizeof (tzfake));
208	}
209	return (error);
210}
211
212/* ARGSUSED */
213int
214sys_settimeofday(p, v, retval)
215	struct proc *p;
216	void *v;
217	register_t *retval;
218{
219	struct sys_settimeofday_args /* {
220		syscallarg(const struct timeval *) tv;
221		syscallarg(const struct timezone *) tzp;
222	} */ *uap = v;
223	struct timeval atv;
224	struct timezone atz;
225	int error;
226
227	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
228		return (error);
229	/* Verify all parameters before changing time. */
230	if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
231	    &atv, sizeof(atv))))
232		return (error);
233	/* XXX since we don't use tz, probably no point in doing copyin. */
234	if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
235	    &atz, sizeof(atz))))
236		return (error);
237	if (SCARG(uap, tv))
238		settime(&atv);
239	/*
240	 * NetBSD has no kernel notion of timezone, and only an
241	 * obsolete program would try to set it, so we log a warning.
242	 */
243	if (SCARG(uap, tzp))
244		log(LOG_WARNING, "pid %d attempted to set the "
245		    "(obsolete) kernel timezone.", p->p_pid);
246	return (0);
247}
248
249int	tickdelta;			/* current clock skew, us. per tick */
250long	timedelta;			/* unapplied time correction, us. */
251long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
252
253/* ARGSUSED */
254int
255sys_adjtime(p, v, retval)
256	struct proc *p;
257	void *v;
258	register_t *retval;
259{
260	register struct sys_adjtime_args /* {
261		syscallarg(const struct timeval *) delta;
262		syscallarg(struct timeval *) olddelta;
263	} */ *uap = v;
264	struct timeval atv;
265	register long ndelta, ntickdelta, odelta;
266	int s, error;
267
268	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
269		return (error);
270
271	error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
272	if (error)
273		return (error);
274
275	/*
276	 * Compute the total correction and the rate at which to apply it.
277	 * Round the adjustment down to a whole multiple of the per-tick
278	 * delta, so that after some number of incremental changes in
279	 * hardclock(), tickdelta will become zero, lest the correction
280	 * overshoot and start taking us away from the desired final time.
281	 */
282	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
283	if (ndelta > bigadj)
284		ntickdelta = 10 * tickadj;
285	else
286		ntickdelta = tickadj;
287	if (ndelta % ntickdelta)
288		ndelta = ndelta / ntickdelta * ntickdelta;
289
290	/*
291	 * To make hardclock()'s job easier, make the per-tick delta negative
292	 * if we want time to run slower; then hardclock can simply compute
293	 * tick + tickdelta, and subtract tickdelta from timedelta.
294	 */
295	if (ndelta < 0)
296		ntickdelta = -ntickdelta;
297	s = splclock();
298	odelta = timedelta;
299	timedelta = ndelta;
300	tickdelta = ntickdelta;
301	splx(s);
302
303	if (SCARG(uap, olddelta)) {
304		atv.tv_sec = odelta / 1000000;
305		atv.tv_usec = odelta % 1000000;
306		(void) copyout(&atv, SCARG(uap, olddelta),
307		    sizeof(struct timeval));
308	}
309	return (0);
310}
311
312/*
313 * Get value of an interval timer.  The process virtual and
314 * profiling virtual time timers are kept in the p_stats area, since
315 * they can be swapped out.  These are kept internally in the
316 * way they are specified externally: in time until they expire.
317 *
318 * The real time interval timer is kept in the process table slot
319 * for the process, and its value (it_value) is kept as an
320 * absolute time rather than as a delta, so that it is easy to keep
321 * periodic real-time signals from drifting.
322 *
323 * Virtual time timers are processed in the hardclock() routine of
324 * kern_clock.c.  The real time timer is processed by a timeout
325 * routine, called from the softclock() routine.  Since a callout
326 * may be delayed in real time due to interrupt processing in the system,
327 * it is possible for the real time timeout routine (realitexpire, given below),
328 * to be delayed in real time past when it is supposed to occur.  It
329 * does not suffice, therefore, to reload the real timer .it_value from the
330 * real time timers .it_interval.  Rather, we compute the next time in
331 * absolute time the timer should go off.
332 */
333/* ARGSUSED */
334int
335sys_getitimer(p, v, retval)
336	struct proc *p;
337	void *v;
338	register_t *retval;
339{
340	register struct sys_getitimer_args /* {
341		syscallarg(u_int) which;
342		syscallarg(struct itimerval *) itv;
343	} */ *uap = v;
344	struct itimerval aitv;
345	int s;
346
347	if (SCARG(uap, which) > ITIMER_PROF)
348		return (EINVAL);
349	s = splclock();
350	if (SCARG(uap, which) == ITIMER_REAL) {
351		/*
352		 * Convert from absolute to relative time in .it_value
353		 * part of real time timer.  If time for real time timer
354		 * has passed return 0, else return difference between
355		 * current time and time for the timer to go off.
356		 */
357		aitv = p->p_realtimer;
358		if (timerisset(&aitv.it_value))
359			if (timercmp(&aitv.it_value, &time, <))
360				timerclear(&aitv.it_value);
361			else
362				timersub(&aitv.it_value, &time, &aitv.it_value);
363	} else
364		aitv = p->p_stats->p_timer[SCARG(uap, which)];
365	splx(s);
366	return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
367}
368
369/* ARGSUSED */
370int
371sys_setitimer(p, v, retval)
372	struct proc *p;
373	register void *v;
374	register_t *retval;
375{
376	register struct sys_setitimer_args /* {
377		syscallarg(u_int) which;
378		syscallarg(const struct itimerval *) itv;
379		syscallarg(struct itimerval *) oitv;
380	} */ *uap = v;
381	struct sys_getitimer_args getargs;
382	struct itimerval aitv;
383	register const struct itimerval *itvp;
384	int s, error;
385
386	if (SCARG(uap, which) > ITIMER_PROF)
387		return (EINVAL);
388	itvp = SCARG(uap, itv);
389	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
390		return (error);
391	if (SCARG(uap, oitv) != NULL) {
392		SCARG(&getargs, which) = SCARG(uap, which);
393		SCARG(&getargs, itv) = SCARG(uap, oitv);
394		if ((error = sys_getitimer(p, &getargs, retval)) != 0)
395			return (error);
396	}
397	if (itvp == 0)
398		return (0);
399	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
400		return (EINVAL);
401	s = splclock();
402	if (SCARG(uap, which) == ITIMER_REAL) {
403		untimeout(realitexpire, p);
404		if (timerisset(&aitv.it_value)) {
405			timeradd(&aitv.it_value, &time, &aitv.it_value);
406			timeout(realitexpire, p, hzto(&aitv.it_value));
407		}
408		p->p_realtimer = aitv;
409	} else
410		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
411	splx(s);
412	return (0);
413}
414
415/*
416 * Real interval timer expired:
417 * send process whose timer expired an alarm signal.
418 * If time is not set up to reload, then just return.
419 * Else compute next time timer should go off which is > current time.
420 * This is where delay in processing this timeout causes multiple
421 * SIGALRM calls to be compressed into one.
422 */
423void
424realitexpire(arg)
425	void *arg;
426{
427	register struct proc *p;
428	int s;
429
430	p = (struct proc *)arg;
431	psignal(p, SIGALRM);
432	if (!timerisset(&p->p_realtimer.it_interval)) {
433		timerclear(&p->p_realtimer.it_value);
434		return;
435	}
436	for (;;) {
437		s = splclock();
438		timeradd(&p->p_realtimer.it_value,
439		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
440		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
441			timeout(realitexpire, p,
442			    hzto(&p->p_realtimer.it_value));
443			splx(s);
444			return;
445		}
446		splx(s);
447	}
448}
449
450/*
451 * Check that a proposed value to load into the .it_value or
452 * .it_interval part of an interval timer is acceptable, and
453 * fix it to have at least minimal value (i.e. if it is less
454 * than the resolution of the clock, round it up.)
455 */
456int
457itimerfix(tv)
458	struct timeval *tv;
459{
460
461	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
462	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
463		return (EINVAL);
464	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
465		tv->tv_usec = tick;
466	return (0);
467}
468
469/*
470 * Decrement an interval timer by a specified number
471 * of microseconds, which must be less than a second,
472 * i.e. < 1000000.  If the timer expires, then reload
473 * it.  In this case, carry over (usec - old value) to
474 * reduce the value reloaded into the timer so that
475 * the timer does not drift.  This routine assumes
476 * that it is called in a context where the timers
477 * on which it is operating cannot change in value.
478 */
479int
480itimerdecr(itp, usec)
481	register struct itimerval *itp;
482	int usec;
483{
484
485	if (itp->it_value.tv_usec < usec) {
486		if (itp->it_value.tv_sec == 0) {
487			/* expired, and already in next interval */
488			usec -= itp->it_value.tv_usec;
489			goto expire;
490		}
491		itp->it_value.tv_usec += 1000000;
492		itp->it_value.tv_sec--;
493	}
494	itp->it_value.tv_usec -= usec;
495	usec = 0;
496	if (timerisset(&itp->it_value))
497		return (1);
498	/* expired, exactly at end of interval */
499expire:
500	if (timerisset(&itp->it_interval)) {
501		itp->it_value = itp->it_interval;
502		itp->it_value.tv_usec -= usec;
503		if (itp->it_value.tv_usec < 0) {
504			itp->it_value.tv_usec += 1000000;
505			itp->it_value.tv_sec--;
506		}
507	} else
508		itp->it_value.tv_usec = 0;		/* sec is already 0 */
509	return (0);
510}
511