kern_time.c revision 1.216
1/*	$NetBSD: kern_time.c,v 1.216 2022/06/27 00:34:24 riastradh Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5 *     The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1982, 1986, 1989, 1993
35 *	The Regents of the University of California.  All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 *    may be used to endorse or promote products derived from this software
47 *    without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
62 */
63
64#include <sys/cdefs.h>
65__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.216 2022/06/27 00:34:24 riastradh Exp $");
66
67#include <sys/param.h>
68#include <sys/resourcevar.h>
69#include <sys/kernel.h>
70#include <sys/systm.h>
71#include <sys/proc.h>
72#include <sys/vnode.h>
73#include <sys/signalvar.h>
74#include <sys/syslog.h>
75#include <sys/timetc.h>
76#include <sys/timex.h>
77#include <sys/kauth.h>
78#include <sys/mount.h>
79#include <sys/syscallargs.h>
80#include <sys/cpu.h>
81
82kmutex_t	itimer_mutex __cacheline_aligned;	/* XXX static */
83static struct itlist itimer_realtime_changed_notify;
84
85static void	ptimer_intr(void *);
86static void	*ptimer_sih __read_mostly;
87static TAILQ_HEAD(, ptimer) ptimer_queue;
88
89#define	CLOCK_VIRTUAL_P(clockid)	\
90	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
91
92CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
93CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
94CTASSERT(ITIMER_PROF == CLOCK_PROF);
95CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
96
97#define	DELAYTIMER_MAX	32
98
99/*
100 * Initialize timekeeping.
101 */
102void
103time_init(void)
104{
105
106	mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
107	LIST_INIT(&itimer_realtime_changed_notify);
108
109	TAILQ_INIT(&ptimer_queue);
110	ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
111	    ptimer_intr, NULL);
112}
113
114/*
115 * Check if the time will wrap if set to ts.
116 *
117 * ts - timespec describing the new time
118 * delta - the delta between the current time and ts
119 */
120bool
121time_wraps(struct timespec *ts, struct timespec *delta)
122{
123
124	/*
125	 * Don't allow the time to be set forward so far it
126	 * will wrap and become negative, thus allowing an
127	 * attacker to bypass the next check below.  The
128	 * cutoff is 1 year before rollover occurs, so even
129	 * if the attacker uses adjtime(2) to move the time
130	 * past the cutoff, it will take a very long time
131	 * to get to the wrap point.
132	 */
133	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
134	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
135		return true;
136
137	return false;
138}
139
140/*
141 * itimer_lock:
142 *
143 *	Acquire the interval timer data lock.
144 */
145void
146itimer_lock(void)
147{
148	mutex_spin_enter(&itimer_mutex);
149}
150
151/*
152 * itimer_unlock:
153 *
154 *	Release the interval timer data lock.
155 */
156void
157itimer_unlock(void)
158{
159	mutex_spin_exit(&itimer_mutex);
160}
161
162/*
163 * itimer_lock_held:
164 *
165 *	Check that the interval timer lock is held for diagnostic
166 *	assertions.
167 */
168inline bool __diagused
169itimer_lock_held(void)
170{
171	return mutex_owned(&itimer_mutex);
172}
173
174/*
175 * Time of day and interval timer support.
176 *
177 * These routines provide the kernel entry points to get and set
178 * the time-of-day and per-process interval timers.  Subroutines
179 * here provide support for adding and subtracting timeval structures
180 * and decrementing interval timers, optionally reloading the interval
181 * timers when they expire.
182 */
183
184/* This function is used by clock_settime and settimeofday */
185static int
186settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
187{
188	struct timespec delta, now;
189
190	/*
191	 * The time being set to an unreasonable value will cause
192	 * unreasonable system behaviour.
193	 */
194	if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
195		return (EINVAL);
196
197	nanotime(&now);
198	timespecsub(ts, &now, &delta);
199
200	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
201	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
202	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
203		return (EPERM);
204	}
205
206#ifdef notyet
207	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
208		return (EPERM);
209	}
210#endif
211
212	tc_setclock(ts);
213
214	resettodr();
215
216	/*
217	 * Notify pending CLOCK_REALTIME timers about the real time change.
218	 * There may be inactive timers on this list, but this happens
219	 * comparatively less often than timers firing, and so it's better
220	 * to put the extra checks here than to complicate the other code
221	 * path.
222	 */
223	struct itimer *it;
224	itimer_lock();
225	LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
226		KASSERT(it->it_ops->ito_realtime_changed != NULL);
227		if (timespecisset(&it->it_time.it_value)) {
228			(*it->it_ops->ito_realtime_changed)(it);
229		}
230	}
231	itimer_unlock();
232
233	return (0);
234}
235
236int
237settime(struct proc *p, struct timespec *ts)
238{
239	return (settime1(p, ts, true));
240}
241
242/* ARGSUSED */
243int
244sys___clock_gettime50(struct lwp *l,
245    const struct sys___clock_gettime50_args *uap, register_t *retval)
246{
247	/* {
248		syscallarg(clockid_t) clock_id;
249		syscallarg(struct timespec *) tp;
250	} */
251	int error;
252	struct timespec ats;
253
254	error = clock_gettime1(SCARG(uap, clock_id), &ats);
255	if (error != 0)
256		return error;
257
258	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
259}
260
261/* ARGSUSED */
262int
263sys___clock_settime50(struct lwp *l,
264    const struct sys___clock_settime50_args *uap, register_t *retval)
265{
266	/* {
267		syscallarg(clockid_t) clock_id;
268		syscallarg(const struct timespec *) tp;
269	} */
270	int error;
271	struct timespec ats;
272
273	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
274		return error;
275
276	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
277}
278
279
280int
281clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
282    bool check_kauth)
283{
284	int error;
285
286	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
287		return EINVAL;
288
289	switch (clock_id) {
290	case CLOCK_REALTIME:
291		if ((error = settime1(p, tp, check_kauth)) != 0)
292			return (error);
293		break;
294	case CLOCK_MONOTONIC:
295		return (EINVAL);	/* read-only clock */
296	default:
297		return (EINVAL);
298	}
299
300	return 0;
301}
302
303int
304sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
305    register_t *retval)
306{
307	/* {
308		syscallarg(clockid_t) clock_id;
309		syscallarg(struct timespec *) tp;
310	} */
311	struct timespec ts;
312	int error;
313
314	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
315		return error;
316
317	if (SCARG(uap, tp))
318		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
319
320	return error;
321}
322
323int
324clock_getres1(clockid_t clock_id, struct timespec *ts)
325{
326
327	switch (clock_id) {
328	case CLOCK_REALTIME:
329	case CLOCK_MONOTONIC:
330		ts->tv_sec = 0;
331		if (tc_getfrequency() > 1000000000)
332			ts->tv_nsec = 1;
333		else
334			ts->tv_nsec = 1000000000 / tc_getfrequency();
335		break;
336	default:
337		return EINVAL;
338	}
339
340	return 0;
341}
342
343/* ARGSUSED */
344int
345sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
346    register_t *retval)
347{
348	/* {
349		syscallarg(struct timespec *) rqtp;
350		syscallarg(struct timespec *) rmtp;
351	} */
352	struct timespec rmt, rqt;
353	int error, error1;
354
355	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
356	if (error)
357		return (error);
358
359	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
360	    SCARG(uap, rmtp) ? &rmt : NULL);
361	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
362		return error;
363
364	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
365	return error1 ? error1 : error;
366}
367
368/* ARGSUSED */
369int
370sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
371    register_t *retval)
372{
373	/* {
374		syscallarg(clockid_t) clock_id;
375		syscallarg(int) flags;
376		syscallarg(struct timespec *) rqtp;
377		syscallarg(struct timespec *) rmtp;
378	} */
379	struct timespec rmt, rqt;
380	int error, error1;
381
382	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
383	if (error)
384		goto out;
385
386	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
387	    SCARG(uap, rmtp) ? &rmt : NULL);
388	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
389		goto out;
390
391	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
392	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
393		error = error1;
394out:
395	*retval = error;
396	return 0;
397}
398
399int
400nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
401    struct timespec *rmt)
402{
403	struct timespec rmtstart;
404	int error, timo;
405
406	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
407		if (error == ETIMEDOUT) {
408			error = 0;
409			if (rmt != NULL)
410				rmt->tv_sec = rmt->tv_nsec = 0;
411		}
412		return error;
413	}
414
415	/*
416	 * Avoid inadvertently sleeping forever
417	 */
418	if (timo == 0)
419		timo = 1;
420again:
421	error = kpause("nanoslp", true, timo, NULL);
422	if (error == EWOULDBLOCK)
423		error = 0;
424	if (rmt != NULL || error == 0) {
425		struct timespec rmtend;
426		struct timespec t0;
427		struct timespec *t;
428		int err;
429
430		err = clock_gettime1(clock_id, &rmtend);
431		if (err != 0)
432			return err;
433
434		t = (rmt != NULL) ? rmt : &t0;
435		if (flags & TIMER_ABSTIME) {
436			timespecsub(rqt, &rmtend, t);
437		} else {
438			if (timespeccmp(&rmtend, &rmtstart, <))
439				timespecclear(t); /* clock wound back */
440			else
441				timespecsub(&rmtend, &rmtstart, t);
442			if (timespeccmp(rqt, t, <))
443				timespecclear(t);
444			else
445				timespecsub(rqt, t, t);
446		}
447		if (t->tv_sec < 0)
448			timespecclear(t);
449		if (error == 0) {
450			timo = tstohz(t);
451			if (timo > 0)
452				goto again;
453		}
454	}
455
456	if (error == ERESTART)
457		error = EINTR;
458
459	return error;
460}
461
462int
463sys_clock_getcpuclockid2(struct lwp *l,
464    const struct sys_clock_getcpuclockid2_args *uap,
465    register_t *retval)
466{
467	/* {
468		syscallarg(idtype_t idtype;
469		syscallarg(id_t id);
470		syscallarg(clockid_t *)clock_id;
471	} */
472	pid_t pid;
473	lwpid_t lid;
474	clockid_t clock_id;
475	id_t id = SCARG(uap, id);
476
477	switch (SCARG(uap, idtype)) {
478	case P_PID:
479		pid = id == 0 ? l->l_proc->p_pid : id;
480		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
481		break;
482	case P_LWPID:
483		lid = id == 0 ? l->l_lid : id;
484		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
485		break;
486	default:
487		return EINVAL;
488	}
489	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
490}
491
492/* ARGSUSED */
493int
494sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
495    register_t *retval)
496{
497	/* {
498		syscallarg(struct timeval *) tp;
499		syscallarg(void *) tzp;		really "struct timezone *";
500	} */
501	struct timeval atv;
502	int error = 0;
503	struct timezone tzfake;
504
505	if (SCARG(uap, tp)) {
506		memset(&atv, 0, sizeof(atv));
507		microtime(&atv);
508		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
509		if (error)
510			return (error);
511	}
512	if (SCARG(uap, tzp)) {
513		/*
514		 * NetBSD has no kernel notion of time zone, so we just
515		 * fake up a timezone struct and return it if demanded.
516		 */
517		tzfake.tz_minuteswest = 0;
518		tzfake.tz_dsttime = 0;
519		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
520	}
521	return (error);
522}
523
524/* ARGSUSED */
525int
526sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
527    register_t *retval)
528{
529	/* {
530		syscallarg(const struct timeval *) tv;
531		syscallarg(const void *) tzp; really "const struct timezone *";
532	} */
533
534	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
535}
536
537int
538settimeofday1(const struct timeval *utv, bool userspace,
539    const void *utzp, struct lwp *l, bool check_kauth)
540{
541	struct timeval atv;
542	struct timespec ts;
543	int error;
544
545	/* Verify all parameters before changing time. */
546
547	/*
548	 * NetBSD has no kernel notion of time zone, and only an
549	 * obsolete program would try to set it, so we log a warning.
550	 */
551	if (utzp)
552		log(LOG_WARNING, "pid %d attempted to set the "
553		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
554
555	if (utv == NULL)
556		return 0;
557
558	if (userspace) {
559		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
560			return error;
561		utv = &atv;
562	}
563
564	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
565		return EINVAL;
566
567	TIMEVAL_TO_TIMESPEC(utv, &ts);
568	return settime1(l->l_proc, &ts, check_kauth);
569}
570
571int	time_adjusted;			/* set if an adjustment is made */
572
573/* ARGSUSED */
574int
575sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
576    register_t *retval)
577{
578	/* {
579		syscallarg(const struct timeval *) delta;
580		syscallarg(struct timeval *) olddelta;
581	} */
582	int error;
583	struct timeval atv, oldatv;
584
585	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
586	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
587		return error;
588
589	if (SCARG(uap, delta)) {
590		error = copyin(SCARG(uap, delta), &atv,
591		    sizeof(*SCARG(uap, delta)));
592		if (error)
593			return (error);
594	}
595	adjtime1(SCARG(uap, delta) ? &atv : NULL,
596	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
597	if (SCARG(uap, olddelta))
598		error = copyout(&oldatv, SCARG(uap, olddelta),
599		    sizeof(*SCARG(uap, olddelta)));
600	return error;
601}
602
603void
604adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
605{
606	extern int64_t time_adjtime;  /* in kern_ntptime.c */
607
608	if (olddelta) {
609		memset(olddelta, 0, sizeof(*olddelta));
610		mutex_spin_enter(&timecounter_lock);
611		olddelta->tv_sec = time_adjtime / 1000000;
612		olddelta->tv_usec = time_adjtime % 1000000;
613		if (olddelta->tv_usec < 0) {
614			olddelta->tv_usec += 1000000;
615			olddelta->tv_sec--;
616		}
617		mutex_spin_exit(&timecounter_lock);
618	}
619
620	if (delta) {
621		mutex_spin_enter(&timecounter_lock);
622		/*
623		 * XXX This should maybe just report failure to
624		 * userland for nonsense deltas.
625		 */
626		if (delta->tv_sec > INT64_MAX/1000000 - 1) {
627			time_adjtime = INT64_MAX;
628		} else if (delta->tv_sec < INT64_MIN/1000000 + 1) {
629			time_adjtime = INT64_MIN;
630		} else {
631			time_adjtime = delta->tv_sec * 1000000
632			    + MAX(-999999, MIN(999999, delta->tv_usec));
633		}
634
635		if (time_adjtime) {
636			/* We need to save the system time during shutdown */
637			time_adjusted |= 1;
638		}
639		mutex_spin_exit(&timecounter_lock);
640	}
641}
642
643/*
644 * Interval timer support.
645 *
646 * The itimer_*() routines provide generic support for interval timers,
647 * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
648 * CLOCK_PROF).
649 *
650 * Real timers keep their deadline as an absolute time, and are fired
651 * by a callout.  Virtual timers are kept as a linked-list of deltas,
652 * and are processed by hardclock().
653 *
654 * Because the real time timer callout may be delayed in real time due
655 * to interrupt processing on the system, it is possible for the real
656 * time timeout routine (itimer_callout()) run past after its deadline.
657 * It does not suffice, therefore, to reload the real timer .it_value
658 * from the timer's .it_interval.  Rather, we compute the next deadline
659 * in absolute time based on the current time and the .it_interval value,
660 * and report any overruns.
661 *
662 * Note that while the virtual timers are supported in a generic fashion
663 * here, they only (currently) make sense as per-process timers, and thus
664 * only really work for that case.
665 */
666
667/*
668 * itimer_init:
669 *
670 *	Initialize the common data for an interval timer.
671 */
672void
673itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
674    clockid_t const id, struct itlist * const itl)
675{
676
677	KASSERT(itimer_lock_held());
678	KASSERT(ops != NULL);
679
680	timespecclear(&it->it_time.it_value);
681	it->it_ops = ops;
682	it->it_clockid = id;
683	it->it_overruns = 0;
684	it->it_dying = false;
685	if (!CLOCK_VIRTUAL_P(id)) {
686		KASSERT(itl == NULL);
687		callout_init(&it->it_ch, CALLOUT_MPSAFE);
688		if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
689			LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
690			    it, it_rtchgq);
691		}
692	} else {
693		KASSERT(itl != NULL);
694		it->it_vlist = itl;
695		it->it_active = false;
696	}
697}
698
699/*
700 * itimer_poison:
701 *
702 *	Poison an interval timer, preventing it from being scheduled
703 *	or processed, in preparation for freeing the timer.
704 */
705void
706itimer_poison(struct itimer * const it)
707{
708
709	KASSERT(itimer_lock_held());
710
711	it->it_dying = true;
712
713	/*
714	 * For non-virtual timers, stop the callout, or wait for it to
715	 * run if it has already fired.  It cannot restart again after
716	 * this point: the callout won't restart itself when dying, no
717	 * other users holding the lock can restart it, and any other
718	 * users waiting for callout_halt concurrently (itimer_settime)
719	 * will restart from the top.
720	 */
721	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
722		callout_halt(&it->it_ch, &itimer_mutex);
723		if (it->it_clockid == CLOCK_REALTIME &&
724		    it->it_ops->ito_realtime_changed != NULL) {
725			LIST_REMOVE(it, it_rtchgq);
726		}
727	}
728}
729
730/*
731 * itimer_fini:
732 *
733 *	Release resources used by an interval timer.
734 *
735 *	N.B. itimer_lock must be held on entry, and is released on exit.
736 */
737void
738itimer_fini(struct itimer * const it)
739{
740
741	KASSERT(itimer_lock_held());
742
743	/* All done with the global state. */
744	itimer_unlock();
745
746	/* Destroy the callout, if needed. */
747	if (!CLOCK_VIRTUAL_P(it->it_clockid))
748		callout_destroy(&it->it_ch);
749}
750
751/*
752 * itimer_decr:
753 *
754 *	Decrement an interval timer by a specified number of nanoseconds,
755 *	which must be less than a second, i.e. < 1000000000.  If the timer
756 *	expires, then reload it.  In this case, carry over (nsec - old value)
757 *	to reduce the value reloaded into the timer so that the timer does
758 *	not drift.  This routine assumes that it is called in a context where
759 *	the timers on which it is operating cannot change in value.
760 *
761 *	Returns true if the timer has expired.
762 */
763static bool
764itimer_decr(struct itimer *it, int nsec)
765{
766	struct itimerspec *itp;
767	int error __diagused;
768
769	KASSERT(itimer_lock_held());
770	KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
771
772	itp = &it->it_time;
773	if (itp->it_value.tv_nsec < nsec) {
774		if (itp->it_value.tv_sec == 0) {
775			/* expired, and already in next interval */
776			nsec -= itp->it_value.tv_nsec;
777			goto expire;
778		}
779		itp->it_value.tv_nsec += 1000000000;
780		itp->it_value.tv_sec--;
781	}
782	itp->it_value.tv_nsec -= nsec;
783	nsec = 0;
784	if (timespecisset(&itp->it_value))
785		return false;
786	/* expired, exactly at end of interval */
787 expire:
788	if (timespecisset(&itp->it_interval)) {
789		itp->it_value = itp->it_interval;
790		itp->it_value.tv_nsec -= nsec;
791		if (itp->it_value.tv_nsec < 0) {
792			itp->it_value.tv_nsec += 1000000000;
793			itp->it_value.tv_sec--;
794		}
795		error = itimer_settime(it);
796		KASSERT(error == 0); /* virtual, never fails */
797	} else
798		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
799	return true;
800}
801
802static void itimer_callout(void *);
803
804/*
805 * itimer_arm_real:
806 *
807 *	Arm a non-virtual timer.
808 */
809static void
810itimer_arm_real(struct itimer * const it)
811{
812	/*
813	 * Don't need to check tshzto() return value, here.
814	 * callout_reset() does it for us.
815	 */
816	callout_reset(&it->it_ch,
817	    (it->it_clockid == CLOCK_MONOTONIC
818		? tshztoup(&it->it_time.it_value)
819		: tshzto(&it->it_time.it_value)),
820	    itimer_callout, it);
821}
822
823/*
824 * itimer_callout:
825 *
826 *	Callout to expire a non-virtual timer.  Queue it up for processing,
827 *	and then reload, if it is configured to do so.
828 *
829 *	N.B. A delay in processing this callout causes multiple
830 *	SIGALRM calls to be compressed into one.
831 */
832static void
833itimer_callout(void *arg)
834{
835	uint64_t last_val, next_val, interval, now_ns;
836	struct timespec now, next;
837	struct itimer * const it = arg;
838	int backwards;
839
840	itimer_lock();
841	(*it->it_ops->ito_fire)(it);
842
843	if (!timespecisset(&it->it_time.it_interval)) {
844		timespecclear(&it->it_time.it_value);
845		itimer_unlock();
846		return;
847	}
848
849	if (it->it_clockid == CLOCK_MONOTONIC) {
850		getnanouptime(&now);
851	} else {
852		getnanotime(&now);
853	}
854
855	backwards = (timespeccmp(&it->it_time.it_value, &now, >));
856
857	/* Nonnegative interval guaranteed by itimerfix.  */
858	KASSERT(it->it_time.it_interval.tv_sec >= 0);
859	KASSERT(it->it_time.it_interval.tv_nsec >= 0);
860
861	/* Handle the easy case of non-overflown timers first. */
862	if (!backwards &&
863	    timespecaddok(&it->it_time.it_value, &it->it_time.it_interval)) {
864		timespecadd(&it->it_time.it_value, &it->it_time.it_interval,
865		    &next);
866		it->it_time.it_value = next;
867	} else {
868		now_ns = timespec2ns(&now);
869		last_val = timespec2ns(&it->it_time.it_value);
870		interval = timespec2ns(&it->it_time.it_interval);
871
872		next_val = now_ns +
873		    (now_ns - last_val + interval - 1) % interval;
874
875		if (backwards)
876			next_val += interval;
877		else
878			it->it_overruns += (now_ns - last_val) / interval;
879
880		it->it_time.it_value.tv_sec = next_val / 1000000000;
881		it->it_time.it_value.tv_nsec = next_val % 1000000000;
882	}
883
884	/*
885	 * Reset the callout, if it's not going away.
886	 */
887	if (!it->it_dying)
888		itimer_arm_real(it);
889	itimer_unlock();
890}
891
892/*
893 * itimer_settime:
894 *
895 *	Set up the given interval timer. The value in it->it_time.it_value
896 *	is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
897 *	timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
898 *
899 *	If the callout had already fired but not yet run, fails with
900 *	ERESTART -- caller must restart from the top to look up a timer.
901 */
902int
903itimer_settime(struct itimer *it)
904{
905	struct itimer *itn, *pitn;
906	struct itlist *itl;
907
908	KASSERT(itimer_lock_held());
909
910	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
911		/*
912		 * Try to stop the callout.  However, if it had already
913		 * fired, we have to drop the lock to wait for it, so
914		 * the world may have changed and pt may not be there
915		 * any more.  In that case, tell the caller to start
916		 * over from the top.
917		 */
918		if (callout_halt(&it->it_ch, &itimer_mutex))
919			return ERESTART;
920
921		/* Now we can touch it and start it up again. */
922		if (timespecisset(&it->it_time.it_value))
923			itimer_arm_real(it);
924	} else {
925		if (it->it_active) {
926			itn = LIST_NEXT(it, it_list);
927			LIST_REMOVE(it, it_list);
928			for ( ; itn; itn = LIST_NEXT(itn, it_list))
929				timespecadd(&it->it_time.it_value,
930				    &itn->it_time.it_value,
931				    &itn->it_time.it_value);
932		}
933		if (timespecisset(&it->it_time.it_value)) {
934			itl = it->it_vlist;
935			for (itn = LIST_FIRST(itl), pitn = NULL;
936			     itn && timespeccmp(&it->it_time.it_value,
937				 &itn->it_time.it_value, >);
938			     pitn = itn, itn = LIST_NEXT(itn, it_list))
939				timespecsub(&it->it_time.it_value,
940				    &itn->it_time.it_value,
941				    &it->it_time.it_value);
942
943			if (pitn)
944				LIST_INSERT_AFTER(pitn, it, it_list);
945			else
946				LIST_INSERT_HEAD(itl, it, it_list);
947
948			for ( ; itn ; itn = LIST_NEXT(itn, it_list))
949				timespecsub(&itn->it_time.it_value,
950				    &it->it_time.it_value,
951				    &itn->it_time.it_value);
952
953			it->it_active = true;
954		} else {
955			it->it_active = false;
956		}
957	}
958
959	/* Success!  */
960	return 0;
961}
962
963/*
964 * itimer_gettime:
965 *
966 *	Return the remaining time of an interval timer.
967 */
968void
969itimer_gettime(const struct itimer *it, struct itimerspec *aits)
970{
971	struct timespec now;
972	struct itimer *itn;
973
974	KASSERT(itimer_lock_held());
975
976	*aits = it->it_time;
977	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
978		/*
979		 * Convert from absolute to relative time in .it_value
980		 * part of real time timer.  If time for real time
981		 * timer has passed return 0, else return difference
982		 * between current time and time for the timer to go
983		 * off.
984		 */
985		if (timespecisset(&aits->it_value)) {
986			if (it->it_clockid == CLOCK_REALTIME) {
987				getnanotime(&now);
988			} else { /* CLOCK_MONOTONIC */
989				getnanouptime(&now);
990			}
991			if (timespeccmp(&aits->it_value, &now, <))
992				timespecclear(&aits->it_value);
993			else
994				timespecsub(&aits->it_value, &now,
995				    &aits->it_value);
996		}
997	} else if (it->it_active) {
998		for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
999		     itn = LIST_NEXT(itn, it_list))
1000			timespecadd(&aits->it_value,
1001			    &itn->it_time.it_value, &aits->it_value);
1002		KASSERT(itn != NULL); /* it should be findable on the list */
1003	} else
1004		timespecclear(&aits->it_value);
1005}
1006
1007/*
1008 * Per-process timer support.
1009 *
1010 * Both the BSD getitimer() family and the POSIX timer_*() family of
1011 * routines are supported.
1012 *
1013 * All timers are kept in an array pointed to by p_timers, which is
1014 * allocated on demand - many processes don't use timers at all. The
1015 * first four elements in this array are reserved for the BSD timers:
1016 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
1017 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
1018 * allocated by the timer_create() syscall.
1019 *
1020 * These timers are a "sub-class" of interval timer.
1021 */
1022
1023/*
1024 * ptimer_free:
1025 *
1026 *	Free the per-process timer at the specified index.
1027 */
1028static void
1029ptimer_free(struct ptimers *pts, int index)
1030{
1031	struct itimer *it;
1032	struct ptimer *pt;
1033
1034	KASSERT(itimer_lock_held());
1035
1036	it = pts->pts_timers[index];
1037	pt = container_of(it, struct ptimer, pt_itimer);
1038	pts->pts_timers[index] = NULL;
1039	itimer_poison(it);
1040
1041	/*
1042	 * Remove it from the queue to be signalled.  Must be done
1043	 * after itimer is poisoned, because we may have had to wait
1044	 * for the callout to complete.
1045	 */
1046	if (pt->pt_queued) {
1047		TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1048		pt->pt_queued = false;
1049	}
1050
1051	itimer_fini(it);	/* releases itimer_lock */
1052	kmem_free(pt, sizeof(*pt));
1053}
1054
1055/*
1056 * ptimers_alloc:
1057 *
1058 *	Allocate a ptimers for the specified process.
1059 */
1060static struct ptimers *
1061ptimers_alloc(struct proc *p)
1062{
1063	struct ptimers *pts;
1064	int i;
1065
1066	pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1067	LIST_INIT(&pts->pts_virtual);
1068	LIST_INIT(&pts->pts_prof);
1069	for (i = 0; i < TIMER_MAX; i++)
1070		pts->pts_timers[i] = NULL;
1071	itimer_lock();
1072	if (p->p_timers == NULL) {
1073		p->p_timers = pts;
1074		itimer_unlock();
1075		return pts;
1076	}
1077	itimer_unlock();
1078	kmem_free(pts, sizeof(*pts));
1079	return p->p_timers;
1080}
1081
1082/*
1083 * ptimers_free:
1084 *
1085 *	Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1086 *	then clean up all timers and free all the data structures. If
1087 *	"which" is set to TIMERS_POSIX, only clean up the timers allocated
1088 *	by timer_create(), not the BSD setitimer() timers, and only free the
1089 *	structure if none of those remain.
1090 *
1091 *	This function is exported because it is needed in the exec and
1092 *	exit code paths.
1093 */
1094void
1095ptimers_free(struct proc *p, int which)
1096{
1097	struct ptimers *pts;
1098	struct itimer *itn;
1099	struct timespec ts;
1100	int i;
1101
1102	if (p->p_timers == NULL)
1103		return;
1104
1105	pts = p->p_timers;
1106	itimer_lock();
1107	if (which == TIMERS_ALL) {
1108		p->p_timers = NULL;
1109		i = 0;
1110	} else {
1111		timespecclear(&ts);
1112		for (itn = LIST_FIRST(&pts->pts_virtual);
1113		     itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1114		     itn = LIST_NEXT(itn, it_list)) {
1115			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1116			timespecadd(&ts, &itn->it_time.it_value, &ts);
1117		}
1118		LIST_FIRST(&pts->pts_virtual) = NULL;
1119		if (itn) {
1120			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1121			timespecadd(&ts, &itn->it_time.it_value,
1122			    &itn->it_time.it_value);
1123			LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1124		}
1125		timespecclear(&ts);
1126		for (itn = LIST_FIRST(&pts->pts_prof);
1127		     itn && itn != pts->pts_timers[ITIMER_PROF];
1128		     itn = LIST_NEXT(itn, it_list)) {
1129			KASSERT(itn->it_clockid == CLOCK_PROF);
1130			timespecadd(&ts, &itn->it_time.it_value, &ts);
1131		}
1132		LIST_FIRST(&pts->pts_prof) = NULL;
1133		if (itn) {
1134			KASSERT(itn->it_clockid == CLOCK_PROF);
1135			timespecadd(&ts, &itn->it_time.it_value,
1136			    &itn->it_time.it_value);
1137			LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1138		}
1139		i = TIMER_MIN;
1140	}
1141	for ( ; i < TIMER_MAX; i++) {
1142		if (pts->pts_timers[i] != NULL) {
1143			/* Free the timer and release the lock.  */
1144			ptimer_free(pts, i);
1145			/* Reacquire the lock for the next one.  */
1146			itimer_lock();
1147		}
1148	}
1149	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1150	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1151		p->p_timers = NULL;
1152		itimer_unlock();
1153		kmem_free(pts, sizeof(*pts));
1154	} else
1155		itimer_unlock();
1156}
1157
1158/*
1159 * ptimer_fire:
1160 *
1161 *	Fire a per-process timer.
1162 */
1163static void
1164ptimer_fire(struct itimer *it)
1165{
1166	struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1167
1168	KASSERT(itimer_lock_held());
1169
1170	/*
1171	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1172	 * XXX Relying on the clock interrupt is stupid.
1173	 */
1174	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1175		return;
1176	}
1177
1178	if (!pt->pt_queued) {
1179		TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
1180		pt->pt_queued = true;
1181		softint_schedule(ptimer_sih);
1182	}
1183}
1184
1185/*
1186 * Operations vector for per-process timers (BSD and POSIX).
1187 */
1188static const struct itimer_ops ptimer_itimer_ops = {
1189	.ito_fire = ptimer_fire,
1190};
1191
1192/*
1193 * sys_timer_create:
1194 *
1195 *	System call to create a POSIX timer.
1196 */
1197int
1198sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1199    register_t *retval)
1200{
1201	/* {
1202		syscallarg(clockid_t) clock_id;
1203		syscallarg(struct sigevent *) evp;
1204		syscallarg(timer_t *) timerid;
1205	} */
1206
1207	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1208	    SCARG(uap, evp), copyin, l);
1209}
1210
1211int
1212timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1213    copyin_t fetch_event, struct lwp *l)
1214{
1215	int error;
1216	timer_t timerid;
1217	struct itlist *itl;
1218	struct ptimers *pts;
1219	struct ptimer *pt;
1220	struct proc *p;
1221
1222	p = l->l_proc;
1223
1224	if ((u_int)id > CLOCK_MONOTONIC)
1225		return (EINVAL);
1226
1227	if ((pts = p->p_timers) == NULL)
1228		pts = ptimers_alloc(p);
1229
1230	pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1231	if (evp != NULL) {
1232		if (((error =
1233		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1234		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1235			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1236			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1237			 (pt->pt_ev.sigev_signo <= 0 ||
1238			  pt->pt_ev.sigev_signo >= NSIG))) {
1239			kmem_free(pt, sizeof(*pt));
1240			return (error ? error : EINVAL);
1241		}
1242	}
1243
1244	/* Find a free timer slot, skipping those reserved for setitimer(). */
1245	itimer_lock();
1246	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1247		if (pts->pts_timers[timerid] == NULL)
1248			break;
1249	if (timerid == TIMER_MAX) {
1250		itimer_unlock();
1251		kmem_free(pt, sizeof(*pt));
1252		return EAGAIN;
1253	}
1254	if (evp == NULL) {
1255		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1256		switch (id) {
1257		case CLOCK_REALTIME:
1258		case CLOCK_MONOTONIC:
1259			pt->pt_ev.sigev_signo = SIGALRM;
1260			break;
1261		case CLOCK_VIRTUAL:
1262			pt->pt_ev.sigev_signo = SIGVTALRM;
1263			break;
1264		case CLOCK_PROF:
1265			pt->pt_ev.sigev_signo = SIGPROF;
1266			break;
1267		}
1268		pt->pt_ev.sigev_value.sival_int = timerid;
1269	}
1270
1271	switch (id) {
1272	case CLOCK_VIRTUAL:
1273		itl = &pts->pts_virtual;
1274		break;
1275	case CLOCK_PROF:
1276		itl = &pts->pts_prof;
1277		break;
1278	default:
1279		itl = NULL;
1280	}
1281
1282	itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1283	pt->pt_proc = p;
1284	pt->pt_poverruns = 0;
1285	pt->pt_entry = timerid;
1286	pt->pt_queued = false;
1287
1288	pts->pts_timers[timerid] = &pt->pt_itimer;
1289	itimer_unlock();
1290
1291	return copyout(&timerid, tid, sizeof(timerid));
1292}
1293
1294/*
1295 * sys_timer_delete:
1296 *
1297 *	System call to delete a POSIX timer.
1298 */
1299int
1300sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1301    register_t *retval)
1302{
1303	/* {
1304		syscallarg(timer_t) timerid;
1305	} */
1306	struct proc *p = l->l_proc;
1307	timer_t timerid;
1308	struct ptimers *pts;
1309	struct itimer *it, *itn;
1310
1311	timerid = SCARG(uap, timerid);
1312	pts = p->p_timers;
1313
1314	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1315		return (EINVAL);
1316
1317	itimer_lock();
1318	if ((it = pts->pts_timers[timerid]) == NULL) {
1319		itimer_unlock();
1320		return (EINVAL);
1321	}
1322
1323	if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1324		if (it->it_active) {
1325			itn = LIST_NEXT(it, it_list);
1326			LIST_REMOVE(it, it_list);
1327			for ( ; itn; itn = LIST_NEXT(itn, it_list))
1328				timespecadd(&it->it_time.it_value,
1329				    &itn->it_time.it_value,
1330				    &itn->it_time.it_value);
1331			it->it_active = false;
1332		}
1333	}
1334
1335	/* Free the timer and release the lock.  */
1336	ptimer_free(pts, timerid);
1337
1338	return (0);
1339}
1340
1341/*
1342 * sys___timer_settime50:
1343 *
1344 *	System call to set/arm a POSIX timer.
1345 */
1346int
1347sys___timer_settime50(struct lwp *l,
1348    const struct sys___timer_settime50_args *uap,
1349    register_t *retval)
1350{
1351	/* {
1352		syscallarg(timer_t) timerid;
1353		syscallarg(int) flags;
1354		syscallarg(const struct itimerspec *) value;
1355		syscallarg(struct itimerspec *) ovalue;
1356	} */
1357	int error;
1358	struct itimerspec value, ovalue, *ovp = NULL;
1359
1360	if ((error = copyin(SCARG(uap, value), &value,
1361	    sizeof(struct itimerspec))) != 0)
1362		return (error);
1363
1364	if (SCARG(uap, ovalue))
1365		ovp = &ovalue;
1366
1367	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1368	    SCARG(uap, flags), l->l_proc)) != 0)
1369		return error;
1370
1371	if (ovp)
1372		return copyout(&ovalue, SCARG(uap, ovalue),
1373		    sizeof(struct itimerspec));
1374	return 0;
1375}
1376
1377int
1378dotimer_settime(int timerid, struct itimerspec *value,
1379    struct itimerspec *ovalue, int flags, struct proc *p)
1380{
1381	struct timespec now;
1382	struct itimerspec val, oval;
1383	struct ptimers *pts;
1384	struct itimer *it;
1385	int error;
1386
1387	pts = p->p_timers;
1388
1389	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1390		return EINVAL;
1391	val = *value;
1392	if ((error = itimespecfix(&val.it_value)) != 0 ||
1393	    (error = itimespecfix(&val.it_interval)) != 0)
1394		return error;
1395
1396	itimer_lock();
1397 restart:
1398	if ((it = pts->pts_timers[timerid]) == NULL) {
1399		itimer_unlock();
1400		return EINVAL;
1401	}
1402
1403	oval = it->it_time;
1404	it->it_time = val;
1405
1406	/*
1407	 * If we've been passed a relative time for a realtime timer,
1408	 * convert it to absolute; if an absolute time for a virtual
1409	 * timer, convert it to relative and make sure we don't set it
1410	 * to zero, which would cancel the timer, or let it go
1411	 * negative, which would confuse the comparison tests.
1412	 */
1413	if (timespecisset(&it->it_time.it_value)) {
1414		if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1415			if ((flags & TIMER_ABSTIME) == 0) {
1416				if (it->it_clockid == CLOCK_REALTIME) {
1417					getnanotime(&now);
1418				} else { /* CLOCK_MONOTONIC */
1419					getnanouptime(&now);
1420				}
1421				timespecadd(&it->it_time.it_value, &now,
1422				    &it->it_time.it_value);
1423			}
1424		} else {
1425			if ((flags & TIMER_ABSTIME) != 0) {
1426				getnanotime(&now);
1427				timespecsub(&it->it_time.it_value, &now,
1428				    &it->it_time.it_value);
1429				if (!timespecisset(&it->it_time.it_value) ||
1430				    it->it_time.it_value.tv_sec < 0) {
1431					it->it_time.it_value.tv_sec = 0;
1432					it->it_time.it_value.tv_nsec = 1;
1433				}
1434			}
1435		}
1436	}
1437
1438	error = itimer_settime(it);
1439	if (error == ERESTART) {
1440		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1441		goto restart;
1442	}
1443	KASSERT(error == 0);
1444	itimer_unlock();
1445
1446	if (ovalue)
1447		*ovalue = oval;
1448
1449	return (0);
1450}
1451
1452/*
1453 * sys___timer_gettime50:
1454 *
1455 *	System call to return the time remaining until a POSIX timer fires.
1456 */
1457int
1458sys___timer_gettime50(struct lwp *l,
1459    const struct sys___timer_gettime50_args *uap, register_t *retval)
1460{
1461	/* {
1462		syscallarg(timer_t) timerid;
1463		syscallarg(struct itimerspec *) value;
1464	} */
1465	struct itimerspec its;
1466	int error;
1467
1468	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1469	    &its)) != 0)
1470		return error;
1471
1472	return copyout(&its, SCARG(uap, value), sizeof(its));
1473}
1474
1475int
1476dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1477{
1478	struct itimer *it;
1479	struct ptimers *pts;
1480
1481	pts = p->p_timers;
1482	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1483		return (EINVAL);
1484	itimer_lock();
1485	if ((it = pts->pts_timers[timerid]) == NULL) {
1486		itimer_unlock();
1487		return (EINVAL);
1488	}
1489	itimer_gettime(it, its);
1490	itimer_unlock();
1491
1492	return 0;
1493}
1494
1495/*
1496 * sys_timer_getoverrun:
1497 *
1498 *	System call to return the number of times a POSIX timer has
1499 *	expired while a notification was already pending.  The counter
1500 *	is reset when a timer expires and a notification can be posted.
1501 */
1502int
1503sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1504    register_t *retval)
1505{
1506	/* {
1507		syscallarg(timer_t) timerid;
1508	} */
1509	struct proc *p = l->l_proc;
1510	struct ptimers *pts;
1511	int timerid;
1512	struct itimer *it;
1513	struct ptimer *pt;
1514
1515	timerid = SCARG(uap, timerid);
1516
1517	pts = p->p_timers;
1518	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1519		return (EINVAL);
1520	itimer_lock();
1521	if ((it = pts->pts_timers[timerid]) == NULL) {
1522		itimer_unlock();
1523		return (EINVAL);
1524	}
1525	pt = container_of(it, struct ptimer, pt_itimer);
1526	*retval = pt->pt_poverruns;
1527	if (*retval >= DELAYTIMER_MAX)
1528		*retval = DELAYTIMER_MAX;
1529	itimer_unlock();
1530
1531	return (0);
1532}
1533
1534/*
1535 * sys___getitimer50:
1536 *
1537 *	System call to get the time remaining before a BSD timer fires.
1538 */
1539int
1540sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1541    register_t *retval)
1542{
1543	/* {
1544		syscallarg(int) which;
1545		syscallarg(struct itimerval *) itv;
1546	} */
1547	struct proc *p = l->l_proc;
1548	struct itimerval aitv;
1549	int error;
1550
1551	memset(&aitv, 0, sizeof(aitv));
1552	error = dogetitimer(p, SCARG(uap, which), &aitv);
1553	if (error)
1554		return error;
1555	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1556}
1557
1558int
1559dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1560{
1561	struct ptimers *pts;
1562	struct itimer *it;
1563	struct itimerspec its;
1564
1565	if ((u_int)which > ITIMER_MONOTONIC)
1566		return (EINVAL);
1567
1568	itimer_lock();
1569	pts = p->p_timers;
1570	if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1571		timerclear(&itvp->it_value);
1572		timerclear(&itvp->it_interval);
1573	} else {
1574		itimer_gettime(it, &its);
1575		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1576		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1577	}
1578	itimer_unlock();
1579
1580	return 0;
1581}
1582
1583/*
1584 * sys___setitimer50:
1585 *
1586 *	System call to set/arm a BSD timer.
1587 */
1588int
1589sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1590    register_t *retval)
1591{
1592	/* {
1593		syscallarg(int) which;
1594		syscallarg(const struct itimerval *) itv;
1595		syscallarg(struct itimerval *) oitv;
1596	} */
1597	struct proc *p = l->l_proc;
1598	int which = SCARG(uap, which);
1599	struct sys___getitimer50_args getargs;
1600	const struct itimerval *itvp;
1601	struct itimerval aitv;
1602	int error;
1603
1604	itvp = SCARG(uap, itv);
1605	if (itvp &&
1606	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1607		return (error);
1608	if (SCARG(uap, oitv) != NULL) {
1609		SCARG(&getargs, which) = which;
1610		SCARG(&getargs, itv) = SCARG(uap, oitv);
1611		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1612			return (error);
1613	}
1614	if (itvp == 0)
1615		return (0);
1616
1617	return dosetitimer(p, which, &aitv);
1618}
1619
1620int
1621dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1622{
1623	struct timespec now;
1624	struct ptimers *pts;
1625	struct ptimer *spare;
1626	struct itimer *it;
1627	struct itlist *itl;
1628	int error;
1629
1630	if ((u_int)which > ITIMER_MONOTONIC)
1631		return (EINVAL);
1632	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1633		return (EINVAL);
1634
1635	/*
1636	 * Don't bother allocating data structures if the process just
1637	 * wants to clear the timer.
1638	 */
1639	spare = NULL;
1640	pts = p->p_timers;
1641 retry:
1642	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1643	    pts->pts_timers[which] == NULL))
1644		return (0);
1645	if (pts == NULL)
1646		pts = ptimers_alloc(p);
1647	itimer_lock();
1648 restart:
1649	it = pts->pts_timers[which];
1650	if (it == NULL) {
1651		struct ptimer *pt;
1652
1653		if (spare == NULL) {
1654			itimer_unlock();
1655			spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1656			goto retry;
1657		}
1658		pt = spare;
1659		spare = NULL;
1660
1661		it = &pt->pt_itimer;
1662		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1663		pt->pt_ev.sigev_value.sival_int = which;
1664
1665		switch (which) {
1666		case ITIMER_REAL:
1667		case ITIMER_MONOTONIC:
1668			itl = NULL;
1669			pt->pt_ev.sigev_signo = SIGALRM;
1670			break;
1671		case ITIMER_VIRTUAL:
1672			itl = &pts->pts_virtual;
1673			pt->pt_ev.sigev_signo = SIGVTALRM;
1674			break;
1675		case ITIMER_PROF:
1676			itl = &pts->pts_prof;
1677			pt->pt_ev.sigev_signo = SIGPROF;
1678			break;
1679		default:
1680			panic("%s: can't happen %d", __func__, which);
1681		}
1682		itimer_init(it, &ptimer_itimer_ops, which, itl);
1683		pt->pt_proc = p;
1684		pt->pt_entry = which;
1685
1686		pts->pts_timers[which] = it;
1687	}
1688
1689	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1690	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1691
1692	error = 0;
1693	if (timespecisset(&it->it_time.it_value)) {
1694		/* Convert to absolute time */
1695		/* XXX need to wrap in splclock for timecounters case? */
1696		switch (which) {
1697		case ITIMER_REAL:
1698			getnanotime(&now);
1699			if (!timespecaddok(&it->it_time.it_value, &now)) {
1700				error = EINVAL;
1701				goto out;
1702			}
1703			timespecadd(&it->it_time.it_value, &now,
1704			    &it->it_time.it_value);
1705			break;
1706		case ITIMER_MONOTONIC:
1707			getnanouptime(&now);
1708			if (!timespecaddok(&it->it_time.it_value, &now)) {
1709				error = EINVAL;
1710				goto out;
1711			}
1712			timespecadd(&it->it_time.it_value, &now,
1713			    &it->it_time.it_value);
1714			break;
1715		default:
1716			break;
1717		}
1718	}
1719
1720	error = itimer_settime(it);
1721	if (error == ERESTART) {
1722		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1723		goto restart;
1724	}
1725	KASSERT(error == 0);
1726out:
1727	itimer_unlock();
1728	if (spare != NULL)
1729		kmem_free(spare, sizeof(*spare));
1730
1731	return error;
1732}
1733
1734/*
1735 * ptimer_tick:
1736 *
1737 *	Called from hardclock() to decrement per-process virtual timers.
1738 */
1739void
1740ptimer_tick(lwp_t *l, bool user)
1741{
1742	struct ptimers *pts;
1743	struct itimer *it;
1744	proc_t *p;
1745
1746	p = l->l_proc;
1747	if (p->p_timers == NULL)
1748		return;
1749
1750	itimer_lock();
1751	if ((pts = l->l_proc->p_timers) != NULL) {
1752		/*
1753		 * Run current process's virtual and profile time, as needed.
1754		 */
1755		if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1756			if (itimer_decr(it, tick * 1000))
1757				(*it->it_ops->ito_fire)(it);
1758		if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1759			if (itimer_decr(it, tick * 1000))
1760				(*it->it_ops->ito_fire)(it);
1761	}
1762	itimer_unlock();
1763}
1764
1765/*
1766 * ptimer_intr:
1767 *
1768 *	Software interrupt handler for processing per-process
1769 *	timer expiration.
1770 */
1771static void
1772ptimer_intr(void *cookie)
1773{
1774	ksiginfo_t ksi;
1775	struct itimer *it;
1776	struct ptimer *pt;
1777	proc_t *p;
1778
1779	mutex_enter(&proc_lock);
1780	itimer_lock();
1781	while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1782		it = &pt->pt_itimer;
1783
1784		TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1785		KASSERT(pt->pt_queued);
1786		pt->pt_queued = false;
1787
1788		p = pt->pt_proc;
1789		if (p->p_timers == NULL) {
1790			/* Process is dying. */
1791			continue;
1792		}
1793		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1794			continue;
1795		}
1796		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1797			it->it_overruns++;
1798			continue;
1799		}
1800
1801		KSI_INIT(&ksi);
1802		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1803		ksi.ksi_code = SI_TIMER;
1804		ksi.ksi_value = pt->pt_ev.sigev_value;
1805		pt->pt_poverruns = it->it_overruns;
1806		it->it_overruns = 0;
1807		itimer_unlock();
1808		kpsignal(p, &ksi, NULL);
1809		itimer_lock();
1810	}
1811	itimer_unlock();
1812	mutex_exit(&proc_lock);
1813}
1814