kern_time.c revision 1.215
1/*	$NetBSD: kern_time.c,v 1.215 2022/06/26 22:31:58 riastradh Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5 *     The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1982, 1986, 1989, 1993
35 *	The Regents of the University of California.  All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 *    may be used to endorse or promote products derived from this software
47 *    without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
62 */
63
64#include <sys/cdefs.h>
65__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.215 2022/06/26 22:31:58 riastradh Exp $");
66
67#include <sys/param.h>
68#include <sys/resourcevar.h>
69#include <sys/kernel.h>
70#include <sys/systm.h>
71#include <sys/proc.h>
72#include <sys/vnode.h>
73#include <sys/signalvar.h>
74#include <sys/syslog.h>
75#include <sys/timetc.h>
76#include <sys/timex.h>
77#include <sys/kauth.h>
78#include <sys/mount.h>
79#include <sys/syscallargs.h>
80#include <sys/cpu.h>
81
82kmutex_t	itimer_mutex __cacheline_aligned;	/* XXX static */
83static struct itlist itimer_realtime_changed_notify;
84
85static void	ptimer_intr(void *);
86static void	*ptimer_sih __read_mostly;
87static TAILQ_HEAD(, ptimer) ptimer_queue;
88
89#define	CLOCK_VIRTUAL_P(clockid)	\
90	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
91
92CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
93CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
94CTASSERT(ITIMER_PROF == CLOCK_PROF);
95CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
96
97#define	DELAYTIMER_MAX	32
98
99/*
100 * Initialize timekeeping.
101 */
102void
103time_init(void)
104{
105
106	mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
107	LIST_INIT(&itimer_realtime_changed_notify);
108
109	TAILQ_INIT(&ptimer_queue);
110	ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
111	    ptimer_intr, NULL);
112}
113
114/*
115 * Check if the time will wrap if set to ts.
116 *
117 * ts - timespec describing the new time
118 * delta - the delta between the current time and ts
119 */
120bool
121time_wraps(struct timespec *ts, struct timespec *delta)
122{
123
124	/*
125	 * Don't allow the time to be set forward so far it
126	 * will wrap and become negative, thus allowing an
127	 * attacker to bypass the next check below.  The
128	 * cutoff is 1 year before rollover occurs, so even
129	 * if the attacker uses adjtime(2) to move the time
130	 * past the cutoff, it will take a very long time
131	 * to get to the wrap point.
132	 */
133	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
134	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
135		return true;
136
137	return false;
138}
139
140/*
141 * itimer_lock:
142 *
143 *	Acquire the interval timer data lock.
144 */
145void
146itimer_lock(void)
147{
148	mutex_spin_enter(&itimer_mutex);
149}
150
151/*
152 * itimer_unlock:
153 *
154 *	Release the interval timer data lock.
155 */
156void
157itimer_unlock(void)
158{
159	mutex_spin_exit(&itimer_mutex);
160}
161
162/*
163 * itimer_lock_held:
164 *
165 *	Check that the interval timer lock is held for diagnostic
166 *	assertions.
167 */
168inline bool __diagused
169itimer_lock_held(void)
170{
171	return mutex_owned(&itimer_mutex);
172}
173
174/*
175 * Time of day and interval timer support.
176 *
177 * These routines provide the kernel entry points to get and set
178 * the time-of-day and per-process interval timers.  Subroutines
179 * here provide support for adding and subtracting timeval structures
180 * and decrementing interval timers, optionally reloading the interval
181 * timers when they expire.
182 */
183
184/* This function is used by clock_settime and settimeofday */
185static int
186settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
187{
188	struct timespec delta, now;
189
190	/*
191	 * The time being set to an unreasonable value will cause
192	 * unreasonable system behaviour.
193	 */
194	if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
195		return (EINVAL);
196
197	nanotime(&now);
198	timespecsub(ts, &now, &delta);
199
200	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
201	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
202	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
203		return (EPERM);
204	}
205
206#ifdef notyet
207	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
208		return (EPERM);
209	}
210#endif
211
212	tc_setclock(ts);
213
214	resettodr();
215
216	/*
217	 * Notify pending CLOCK_REALTIME timers about the real time change.
218	 * There may be inactive timers on this list, but this happens
219	 * comparatively less often than timers firing, and so it's better
220	 * to put the extra checks here than to complicate the other code
221	 * path.
222	 */
223	struct itimer *it;
224	itimer_lock();
225	LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
226		KASSERT(it->it_ops->ito_realtime_changed != NULL);
227		if (timespecisset(&it->it_time.it_value)) {
228			(*it->it_ops->ito_realtime_changed)(it);
229		}
230	}
231	itimer_unlock();
232
233	return (0);
234}
235
236int
237settime(struct proc *p, struct timespec *ts)
238{
239	return (settime1(p, ts, true));
240}
241
242/* ARGSUSED */
243int
244sys___clock_gettime50(struct lwp *l,
245    const struct sys___clock_gettime50_args *uap, register_t *retval)
246{
247	/* {
248		syscallarg(clockid_t) clock_id;
249		syscallarg(struct timespec *) tp;
250	} */
251	int error;
252	struct timespec ats;
253
254	error = clock_gettime1(SCARG(uap, clock_id), &ats);
255	if (error != 0)
256		return error;
257
258	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
259}
260
261/* ARGSUSED */
262int
263sys___clock_settime50(struct lwp *l,
264    const struct sys___clock_settime50_args *uap, register_t *retval)
265{
266	/* {
267		syscallarg(clockid_t) clock_id;
268		syscallarg(const struct timespec *) tp;
269	} */
270	int error;
271	struct timespec ats;
272
273	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
274		return error;
275
276	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
277}
278
279
280int
281clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
282    bool check_kauth)
283{
284	int error;
285
286	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
287		return EINVAL;
288
289	switch (clock_id) {
290	case CLOCK_REALTIME:
291		if ((error = settime1(p, tp, check_kauth)) != 0)
292			return (error);
293		break;
294	case CLOCK_MONOTONIC:
295		return (EINVAL);	/* read-only clock */
296	default:
297		return (EINVAL);
298	}
299
300	return 0;
301}
302
303int
304sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
305    register_t *retval)
306{
307	/* {
308		syscallarg(clockid_t) clock_id;
309		syscallarg(struct timespec *) tp;
310	} */
311	struct timespec ts;
312	int error;
313
314	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
315		return error;
316
317	if (SCARG(uap, tp))
318		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
319
320	return error;
321}
322
323int
324clock_getres1(clockid_t clock_id, struct timespec *ts)
325{
326
327	switch (clock_id) {
328	case CLOCK_REALTIME:
329	case CLOCK_MONOTONIC:
330		ts->tv_sec = 0;
331		if (tc_getfrequency() > 1000000000)
332			ts->tv_nsec = 1;
333		else
334			ts->tv_nsec = 1000000000 / tc_getfrequency();
335		break;
336	default:
337		return EINVAL;
338	}
339
340	return 0;
341}
342
343/* ARGSUSED */
344int
345sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
346    register_t *retval)
347{
348	/* {
349		syscallarg(struct timespec *) rqtp;
350		syscallarg(struct timespec *) rmtp;
351	} */
352	struct timespec rmt, rqt;
353	int error, error1;
354
355	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
356	if (error)
357		return (error);
358
359	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
360	    SCARG(uap, rmtp) ? &rmt : NULL);
361	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
362		return error;
363
364	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
365	return error1 ? error1 : error;
366}
367
368/* ARGSUSED */
369int
370sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
371    register_t *retval)
372{
373	/* {
374		syscallarg(clockid_t) clock_id;
375		syscallarg(int) flags;
376		syscallarg(struct timespec *) rqtp;
377		syscallarg(struct timespec *) rmtp;
378	} */
379	struct timespec rmt, rqt;
380	int error, error1;
381
382	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
383	if (error)
384		goto out;
385
386	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
387	    SCARG(uap, rmtp) ? &rmt : NULL);
388	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
389		goto out;
390
391	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
392	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
393		error = error1;
394out:
395	*retval = error;
396	return 0;
397}
398
399int
400nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
401    struct timespec *rmt)
402{
403	struct timespec rmtstart;
404	int error, timo;
405
406	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
407		if (error == ETIMEDOUT) {
408			error = 0;
409			if (rmt != NULL)
410				rmt->tv_sec = rmt->tv_nsec = 0;
411		}
412		return error;
413	}
414
415	/*
416	 * Avoid inadvertently sleeping forever
417	 */
418	if (timo == 0)
419		timo = 1;
420again:
421	error = kpause("nanoslp", true, timo, NULL);
422	if (error == EWOULDBLOCK)
423		error = 0;
424	if (rmt != NULL || error == 0) {
425		struct timespec rmtend;
426		struct timespec t0;
427		struct timespec *t;
428		int err;
429
430		err = clock_gettime1(clock_id, &rmtend);
431		if (err != 0)
432			return err;
433
434		t = (rmt != NULL) ? rmt : &t0;
435		if (flags & TIMER_ABSTIME) {
436			timespecsub(rqt, &rmtend, t);
437		} else {
438			if (timespeccmp(&rmtend, &rmtstart, <))
439				timespecclear(t); /* clock wound back */
440			else
441				timespecsub(&rmtend, &rmtstart, t);
442			if (timespeccmp(rqt, t, <))
443				timespecclear(t);
444			else
445				timespecsub(rqt, t, t);
446		}
447		if (t->tv_sec < 0)
448			timespecclear(t);
449		if (error == 0) {
450			timo = tstohz(t);
451			if (timo > 0)
452				goto again;
453		}
454	}
455
456	if (error == ERESTART)
457		error = EINTR;
458
459	return error;
460}
461
462int
463sys_clock_getcpuclockid2(struct lwp *l,
464    const struct sys_clock_getcpuclockid2_args *uap,
465    register_t *retval)
466{
467	/* {
468		syscallarg(idtype_t idtype;
469		syscallarg(id_t id);
470		syscallarg(clockid_t *)clock_id;
471	} */
472	pid_t pid;
473	lwpid_t lid;
474	clockid_t clock_id;
475	id_t id = SCARG(uap, id);
476
477	switch (SCARG(uap, idtype)) {
478	case P_PID:
479		pid = id == 0 ? l->l_proc->p_pid : id;
480		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
481		break;
482	case P_LWPID:
483		lid = id == 0 ? l->l_lid : id;
484		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
485		break;
486	default:
487		return EINVAL;
488	}
489	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
490}
491
492/* ARGSUSED */
493int
494sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
495    register_t *retval)
496{
497	/* {
498		syscallarg(struct timeval *) tp;
499		syscallarg(void *) tzp;		really "struct timezone *";
500	} */
501	struct timeval atv;
502	int error = 0;
503	struct timezone tzfake;
504
505	if (SCARG(uap, tp)) {
506		memset(&atv, 0, sizeof(atv));
507		microtime(&atv);
508		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
509		if (error)
510			return (error);
511	}
512	if (SCARG(uap, tzp)) {
513		/*
514		 * NetBSD has no kernel notion of time zone, so we just
515		 * fake up a timezone struct and return it if demanded.
516		 */
517		tzfake.tz_minuteswest = 0;
518		tzfake.tz_dsttime = 0;
519		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
520	}
521	return (error);
522}
523
524/* ARGSUSED */
525int
526sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
527    register_t *retval)
528{
529	/* {
530		syscallarg(const struct timeval *) tv;
531		syscallarg(const void *) tzp; really "const struct timezone *";
532	} */
533
534	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
535}
536
537int
538settimeofday1(const struct timeval *utv, bool userspace,
539    const void *utzp, struct lwp *l, bool check_kauth)
540{
541	struct timeval atv;
542	struct timespec ts;
543	int error;
544
545	/* Verify all parameters before changing time. */
546
547	/*
548	 * NetBSD has no kernel notion of time zone, and only an
549	 * obsolete program would try to set it, so we log a warning.
550	 */
551	if (utzp)
552		log(LOG_WARNING, "pid %d attempted to set the "
553		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
554
555	if (utv == NULL)
556		return 0;
557
558	if (userspace) {
559		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
560			return error;
561		utv = &atv;
562	}
563
564	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
565		return EINVAL;
566
567	TIMEVAL_TO_TIMESPEC(utv, &ts);
568	return settime1(l->l_proc, &ts, check_kauth);
569}
570
571int	time_adjusted;			/* set if an adjustment is made */
572
573/* ARGSUSED */
574int
575sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
576    register_t *retval)
577{
578	/* {
579		syscallarg(const struct timeval *) delta;
580		syscallarg(struct timeval *) olddelta;
581	} */
582	int error;
583	struct timeval atv, oldatv;
584
585	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
586	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
587		return error;
588
589	if (SCARG(uap, delta)) {
590		error = copyin(SCARG(uap, delta), &atv,
591		    sizeof(*SCARG(uap, delta)));
592		if (error)
593			return (error);
594	}
595	adjtime1(SCARG(uap, delta) ? &atv : NULL,
596	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
597	if (SCARG(uap, olddelta))
598		error = copyout(&oldatv, SCARG(uap, olddelta),
599		    sizeof(*SCARG(uap, olddelta)));
600	return error;
601}
602
603void
604adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
605{
606	extern int64_t time_adjtime;  /* in kern_ntptime.c */
607
608	if (olddelta) {
609		memset(olddelta, 0, sizeof(*olddelta));
610		mutex_spin_enter(&timecounter_lock);
611		olddelta->tv_sec = time_adjtime / 1000000;
612		olddelta->tv_usec = time_adjtime % 1000000;
613		if (olddelta->tv_usec < 0) {
614			olddelta->tv_usec += 1000000;
615			olddelta->tv_sec--;
616		}
617		mutex_spin_exit(&timecounter_lock);
618	}
619
620	if (delta) {
621		mutex_spin_enter(&timecounter_lock);
622		/*
623		 * XXX This should maybe just report failure to
624		 * userland for nonsense deltas.
625		 */
626		if (delta->tv_sec > INT64_MAX/1000000 - 1) {
627			time_adjtime = INT64_MAX;
628		} else if (delta->tv_sec < INT64_MIN/1000000 + 1) {
629			time_adjtime = INT64_MIN;
630		} else {
631			time_adjtime = delta->tv_sec * 1000000
632			    + MAX(-999999, MIN(999999, delta->tv_usec));
633		}
634
635		if (time_adjtime) {
636			/* We need to save the system time during shutdown */
637			time_adjusted |= 1;
638		}
639		mutex_spin_exit(&timecounter_lock);
640	}
641}
642
643/*
644 * Interval timer support.
645 *
646 * The itimer_*() routines provide generic support for interval timers,
647 * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
648 * CLOCK_PROF).
649 *
650 * Real timers keep their deadline as an absolute time, and are fired
651 * by a callout.  Virtual timers are kept as a linked-list of deltas,
652 * and are processed by hardclock().
653 *
654 * Because the real time timer callout may be delayed in real time due
655 * to interrupt processing on the system, it is possible for the real
656 * time timeout routine (itimer_callout()) run past after its deadline.
657 * It does not suffice, therefore, to reload the real timer .it_value
658 * from the timer's .it_interval.  Rather, we compute the next deadline
659 * in absolute time based on the current time and the .it_interval value,
660 * and report any overruns.
661 *
662 * Note that while the virtual timers are supported in a generic fashion
663 * here, they only (currently) make sense as per-process timers, and thus
664 * only really work for that case.
665 */
666
667/*
668 * itimer_init:
669 *
670 *	Initialize the common data for an interval timer.
671 */
672void
673itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
674    clockid_t const id, struct itlist * const itl)
675{
676
677	KASSERT(itimer_lock_held());
678	KASSERT(ops != NULL);
679
680	timespecclear(&it->it_time.it_value);
681	it->it_ops = ops;
682	it->it_clockid = id;
683	it->it_overruns = 0;
684	it->it_dying = false;
685	if (!CLOCK_VIRTUAL_P(id)) {
686		KASSERT(itl == NULL);
687		callout_init(&it->it_ch, CALLOUT_MPSAFE);
688		if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
689			LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
690			    it, it_rtchgq);
691		}
692	} else {
693		KASSERT(itl != NULL);
694		it->it_vlist = itl;
695		it->it_active = false;
696	}
697}
698
699/*
700 * itimer_poison:
701 *
702 *	Poison an interval timer, preventing it from being scheduled
703 *	or processed, in preparation for freeing the timer.
704 */
705void
706itimer_poison(struct itimer * const it)
707{
708
709	KASSERT(itimer_lock_held());
710
711	it->it_dying = true;
712
713	/*
714	 * For non-virtual timers, stop the callout, or wait for it to
715	 * run if it has already fired.  It cannot restart again after
716	 * this point: the callout won't restart itself when dying, no
717	 * other users holding the lock can restart it, and any other
718	 * users waiting for callout_halt concurrently (itimer_settime)
719	 * will restart from the top.
720	 */
721	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
722		callout_halt(&it->it_ch, &itimer_mutex);
723		if (it->it_clockid == CLOCK_REALTIME &&
724		    it->it_ops->ito_realtime_changed != NULL) {
725			LIST_REMOVE(it, it_rtchgq);
726		}
727	}
728}
729
730/*
731 * itimer_fini:
732 *
733 *	Release resources used by an interval timer.
734 *
735 *	N.B. itimer_lock must be held on entry, and is released on exit.
736 */
737void
738itimer_fini(struct itimer * const it)
739{
740
741	KASSERT(itimer_lock_held());
742
743	/* All done with the global state. */
744	itimer_unlock();
745
746	/* Destroy the callout, if needed. */
747	if (!CLOCK_VIRTUAL_P(it->it_clockid))
748		callout_destroy(&it->it_ch);
749}
750
751/*
752 * itimer_decr:
753 *
754 *	Decrement an interval timer by a specified number of nanoseconds,
755 *	which must be less than a second, i.e. < 1000000000.  If the timer
756 *	expires, then reload it.  In this case, carry over (nsec - old value)
757 *	to reduce the value reloaded into the timer so that the timer does
758 *	not drift.  This routine assumes that it is called in a context where
759 *	the timers on which it is operating cannot change in value.
760 *
761 *	Returns true if the timer has expired.
762 */
763static bool
764itimer_decr(struct itimer *it, int nsec)
765{
766	struct itimerspec *itp;
767	int error __diagused;
768
769	KASSERT(itimer_lock_held());
770	KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
771
772	itp = &it->it_time;
773	if (itp->it_value.tv_nsec < nsec) {
774		if (itp->it_value.tv_sec == 0) {
775			/* expired, and already in next interval */
776			nsec -= itp->it_value.tv_nsec;
777			goto expire;
778		}
779		itp->it_value.tv_nsec += 1000000000;
780		itp->it_value.tv_sec--;
781	}
782	itp->it_value.tv_nsec -= nsec;
783	nsec = 0;
784	if (timespecisset(&itp->it_value))
785		return false;
786	/* expired, exactly at end of interval */
787 expire:
788	if (timespecisset(&itp->it_interval)) {
789		itp->it_value = itp->it_interval;
790		itp->it_value.tv_nsec -= nsec;
791		if (itp->it_value.tv_nsec < 0) {
792			itp->it_value.tv_nsec += 1000000000;
793			itp->it_value.tv_sec--;
794		}
795		error = itimer_settime(it);
796		KASSERT(error == 0); /* virtual, never fails */
797	} else
798		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
799	return true;
800}
801
802static void itimer_callout(void *);
803
804/*
805 * itimer_arm_real:
806 *
807 *	Arm a non-virtual timer.
808 */
809static void
810itimer_arm_real(struct itimer * const it)
811{
812	/*
813	 * Don't need to check tshzto() return value, here.
814	 * callout_reset() does it for us.
815	 */
816	callout_reset(&it->it_ch,
817	    (it->it_clockid == CLOCK_MONOTONIC
818		? tshztoup(&it->it_time.it_value)
819		: tshzto(&it->it_time.it_value)),
820	    itimer_callout, it);
821}
822
823/*
824 * itimer_callout:
825 *
826 *	Callout to expire a non-virtual timer.  Queue it up for processing,
827 *	and then reload, if it is configured to do so.
828 *
829 *	N.B. A delay in processing this callout causes multiple
830 *	SIGALRM calls to be compressed into one.
831 */
832static void
833itimer_callout(void *arg)
834{
835	uint64_t last_val, next_val, interval, now_ns;
836	struct timespec now, next;
837	struct itimer * const it = arg;
838	int backwards;
839
840	itimer_lock();
841	(*it->it_ops->ito_fire)(it);
842
843	if (!timespecisset(&it->it_time.it_interval)) {
844		timespecclear(&it->it_time.it_value);
845		itimer_unlock();
846		return;
847	}
848
849	if (it->it_clockid == CLOCK_MONOTONIC) {
850		getnanouptime(&now);
851	} else {
852		getnanotime(&now);
853	}
854	backwards = (timespeccmp(&it->it_time.it_value, &now, >));
855	timespecadd(&it->it_time.it_value, &it->it_time.it_interval, &next);
856	/* Handle the easy case of non-overflown timers first. */
857	if (!backwards && timespeccmp(&next, &now, >)) {
858		it->it_time.it_value = next;
859	} else {
860		now_ns = timespec2ns(&now);
861		last_val = timespec2ns(&it->it_time.it_value);
862		interval = timespec2ns(&it->it_time.it_interval);
863
864		next_val = now_ns +
865		    (now_ns - last_val + interval - 1) % interval;
866
867		if (backwards)
868			next_val += interval;
869		else
870			it->it_overruns += (now_ns - last_val) / interval;
871
872		it->it_time.it_value.tv_sec = next_val / 1000000000;
873		it->it_time.it_value.tv_nsec = next_val % 1000000000;
874	}
875
876	/*
877	 * Reset the callout, if it's not going away.
878	 */
879	if (!it->it_dying)
880		itimer_arm_real(it);
881	itimer_unlock();
882}
883
884/*
885 * itimer_settime:
886 *
887 *	Set up the given interval timer. The value in it->it_time.it_value
888 *	is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
889 *	timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
890 *
891 *	If the callout had already fired but not yet run, fails with
892 *	ERESTART -- caller must restart from the top to look up a timer.
893 */
894int
895itimer_settime(struct itimer *it)
896{
897	struct itimer *itn, *pitn;
898	struct itlist *itl;
899
900	KASSERT(itimer_lock_held());
901
902	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
903		/*
904		 * Try to stop the callout.  However, if it had already
905		 * fired, we have to drop the lock to wait for it, so
906		 * the world may have changed and pt may not be there
907		 * any more.  In that case, tell the caller to start
908		 * over from the top.
909		 */
910		if (callout_halt(&it->it_ch, &itimer_mutex))
911			return ERESTART;
912
913		/* Now we can touch it and start it up again. */
914		if (timespecisset(&it->it_time.it_value))
915			itimer_arm_real(it);
916	} else {
917		if (it->it_active) {
918			itn = LIST_NEXT(it, it_list);
919			LIST_REMOVE(it, it_list);
920			for ( ; itn; itn = LIST_NEXT(itn, it_list))
921				timespecadd(&it->it_time.it_value,
922				    &itn->it_time.it_value,
923				    &itn->it_time.it_value);
924		}
925		if (timespecisset(&it->it_time.it_value)) {
926			itl = it->it_vlist;
927			for (itn = LIST_FIRST(itl), pitn = NULL;
928			     itn && timespeccmp(&it->it_time.it_value,
929				 &itn->it_time.it_value, >);
930			     pitn = itn, itn = LIST_NEXT(itn, it_list))
931				timespecsub(&it->it_time.it_value,
932				    &itn->it_time.it_value,
933				    &it->it_time.it_value);
934
935			if (pitn)
936				LIST_INSERT_AFTER(pitn, it, it_list);
937			else
938				LIST_INSERT_HEAD(itl, it, it_list);
939
940			for ( ; itn ; itn = LIST_NEXT(itn, it_list))
941				timespecsub(&itn->it_time.it_value,
942				    &it->it_time.it_value,
943				    &itn->it_time.it_value);
944
945			it->it_active = true;
946		} else {
947			it->it_active = false;
948		}
949	}
950
951	/* Success!  */
952	return 0;
953}
954
955/*
956 * itimer_gettime:
957 *
958 *	Return the remaining time of an interval timer.
959 */
960void
961itimer_gettime(const struct itimer *it, struct itimerspec *aits)
962{
963	struct timespec now;
964	struct itimer *itn;
965
966	KASSERT(itimer_lock_held());
967
968	*aits = it->it_time;
969	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
970		/*
971		 * Convert from absolute to relative time in .it_value
972		 * part of real time timer.  If time for real time
973		 * timer has passed return 0, else return difference
974		 * between current time and time for the timer to go
975		 * off.
976		 */
977		if (timespecisset(&aits->it_value)) {
978			if (it->it_clockid == CLOCK_REALTIME) {
979				getnanotime(&now);
980			} else { /* CLOCK_MONOTONIC */
981				getnanouptime(&now);
982			}
983			if (timespeccmp(&aits->it_value, &now, <))
984				timespecclear(&aits->it_value);
985			else
986				timespecsub(&aits->it_value, &now,
987				    &aits->it_value);
988		}
989	} else if (it->it_active) {
990		for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
991		     itn = LIST_NEXT(itn, it_list))
992			timespecadd(&aits->it_value,
993			    &itn->it_time.it_value, &aits->it_value);
994		KASSERT(itn != NULL); /* it should be findable on the list */
995	} else
996		timespecclear(&aits->it_value);
997}
998
999/*
1000 * Per-process timer support.
1001 *
1002 * Both the BSD getitimer() family and the POSIX timer_*() family of
1003 * routines are supported.
1004 *
1005 * All timers are kept in an array pointed to by p_timers, which is
1006 * allocated on demand - many processes don't use timers at all. The
1007 * first four elements in this array are reserved for the BSD timers:
1008 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
1009 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
1010 * allocated by the timer_create() syscall.
1011 *
1012 * These timers are a "sub-class" of interval timer.
1013 */
1014
1015/*
1016 * ptimer_free:
1017 *
1018 *	Free the per-process timer at the specified index.
1019 */
1020static void
1021ptimer_free(struct ptimers *pts, int index)
1022{
1023	struct itimer *it;
1024	struct ptimer *pt;
1025
1026	KASSERT(itimer_lock_held());
1027
1028	it = pts->pts_timers[index];
1029	pt = container_of(it, struct ptimer, pt_itimer);
1030	pts->pts_timers[index] = NULL;
1031	itimer_poison(it);
1032
1033	/*
1034	 * Remove it from the queue to be signalled.  Must be done
1035	 * after itimer is poisoned, because we may have had to wait
1036	 * for the callout to complete.
1037	 */
1038	if (pt->pt_queued) {
1039		TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1040		pt->pt_queued = false;
1041	}
1042
1043	itimer_fini(it);	/* releases itimer_lock */
1044	kmem_free(pt, sizeof(*pt));
1045}
1046
1047/*
1048 * ptimers_alloc:
1049 *
1050 *	Allocate a ptimers for the specified process.
1051 */
1052static struct ptimers *
1053ptimers_alloc(struct proc *p)
1054{
1055	struct ptimers *pts;
1056	int i;
1057
1058	pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1059	LIST_INIT(&pts->pts_virtual);
1060	LIST_INIT(&pts->pts_prof);
1061	for (i = 0; i < TIMER_MAX; i++)
1062		pts->pts_timers[i] = NULL;
1063	itimer_lock();
1064	if (p->p_timers == NULL) {
1065		p->p_timers = pts;
1066		itimer_unlock();
1067		return pts;
1068	}
1069	itimer_unlock();
1070	kmem_free(pts, sizeof(*pts));
1071	return p->p_timers;
1072}
1073
1074/*
1075 * ptimers_free:
1076 *
1077 *	Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1078 *	then clean up all timers and free all the data structures. If
1079 *	"which" is set to TIMERS_POSIX, only clean up the timers allocated
1080 *	by timer_create(), not the BSD setitimer() timers, and only free the
1081 *	structure if none of those remain.
1082 *
1083 *	This function is exported because it is needed in the exec and
1084 *	exit code paths.
1085 */
1086void
1087ptimers_free(struct proc *p, int which)
1088{
1089	struct ptimers *pts;
1090	struct itimer *itn;
1091	struct timespec ts;
1092	int i;
1093
1094	if (p->p_timers == NULL)
1095		return;
1096
1097	pts = p->p_timers;
1098	itimer_lock();
1099	if (which == TIMERS_ALL) {
1100		p->p_timers = NULL;
1101		i = 0;
1102	} else {
1103		timespecclear(&ts);
1104		for (itn = LIST_FIRST(&pts->pts_virtual);
1105		     itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1106		     itn = LIST_NEXT(itn, it_list)) {
1107			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1108			timespecadd(&ts, &itn->it_time.it_value, &ts);
1109		}
1110		LIST_FIRST(&pts->pts_virtual) = NULL;
1111		if (itn) {
1112			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1113			timespecadd(&ts, &itn->it_time.it_value,
1114			    &itn->it_time.it_value);
1115			LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1116		}
1117		timespecclear(&ts);
1118		for (itn = LIST_FIRST(&pts->pts_prof);
1119		     itn && itn != pts->pts_timers[ITIMER_PROF];
1120		     itn = LIST_NEXT(itn, it_list)) {
1121			KASSERT(itn->it_clockid == CLOCK_PROF);
1122			timespecadd(&ts, &itn->it_time.it_value, &ts);
1123		}
1124		LIST_FIRST(&pts->pts_prof) = NULL;
1125		if (itn) {
1126			KASSERT(itn->it_clockid == CLOCK_PROF);
1127			timespecadd(&ts, &itn->it_time.it_value,
1128			    &itn->it_time.it_value);
1129			LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1130		}
1131		i = TIMER_MIN;
1132	}
1133	for ( ; i < TIMER_MAX; i++) {
1134		if (pts->pts_timers[i] != NULL) {
1135			/* Free the timer and release the lock.  */
1136			ptimer_free(pts, i);
1137			/* Reacquire the lock for the next one.  */
1138			itimer_lock();
1139		}
1140	}
1141	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1142	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1143		p->p_timers = NULL;
1144		itimer_unlock();
1145		kmem_free(pts, sizeof(*pts));
1146	} else
1147		itimer_unlock();
1148}
1149
1150/*
1151 * ptimer_fire:
1152 *
1153 *	Fire a per-process timer.
1154 */
1155static void
1156ptimer_fire(struct itimer *it)
1157{
1158	struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1159
1160	KASSERT(itimer_lock_held());
1161
1162	/*
1163	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1164	 * XXX Relying on the clock interrupt is stupid.
1165	 */
1166	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1167		return;
1168	}
1169
1170	if (!pt->pt_queued) {
1171		TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
1172		pt->pt_queued = true;
1173		softint_schedule(ptimer_sih);
1174	}
1175}
1176
1177/*
1178 * Operations vector for per-process timers (BSD and POSIX).
1179 */
1180static const struct itimer_ops ptimer_itimer_ops = {
1181	.ito_fire = ptimer_fire,
1182};
1183
1184/*
1185 * sys_timer_create:
1186 *
1187 *	System call to create a POSIX timer.
1188 */
1189int
1190sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1191    register_t *retval)
1192{
1193	/* {
1194		syscallarg(clockid_t) clock_id;
1195		syscallarg(struct sigevent *) evp;
1196		syscallarg(timer_t *) timerid;
1197	} */
1198
1199	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1200	    SCARG(uap, evp), copyin, l);
1201}
1202
1203int
1204timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1205    copyin_t fetch_event, struct lwp *l)
1206{
1207	int error;
1208	timer_t timerid;
1209	struct itlist *itl;
1210	struct ptimers *pts;
1211	struct ptimer *pt;
1212	struct proc *p;
1213
1214	p = l->l_proc;
1215
1216	if ((u_int)id > CLOCK_MONOTONIC)
1217		return (EINVAL);
1218
1219	if ((pts = p->p_timers) == NULL)
1220		pts = ptimers_alloc(p);
1221
1222	pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1223	if (evp != NULL) {
1224		if (((error =
1225		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1226		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1227			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1228			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1229			 (pt->pt_ev.sigev_signo <= 0 ||
1230			  pt->pt_ev.sigev_signo >= NSIG))) {
1231			kmem_free(pt, sizeof(*pt));
1232			return (error ? error : EINVAL);
1233		}
1234	}
1235
1236	/* Find a free timer slot, skipping those reserved for setitimer(). */
1237	itimer_lock();
1238	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1239		if (pts->pts_timers[timerid] == NULL)
1240			break;
1241	if (timerid == TIMER_MAX) {
1242		itimer_unlock();
1243		kmem_free(pt, sizeof(*pt));
1244		return EAGAIN;
1245	}
1246	if (evp == NULL) {
1247		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1248		switch (id) {
1249		case CLOCK_REALTIME:
1250		case CLOCK_MONOTONIC:
1251			pt->pt_ev.sigev_signo = SIGALRM;
1252			break;
1253		case CLOCK_VIRTUAL:
1254			pt->pt_ev.sigev_signo = SIGVTALRM;
1255			break;
1256		case CLOCK_PROF:
1257			pt->pt_ev.sigev_signo = SIGPROF;
1258			break;
1259		}
1260		pt->pt_ev.sigev_value.sival_int = timerid;
1261	}
1262
1263	switch (id) {
1264	case CLOCK_VIRTUAL:
1265		itl = &pts->pts_virtual;
1266		break;
1267	case CLOCK_PROF:
1268		itl = &pts->pts_prof;
1269		break;
1270	default:
1271		itl = NULL;
1272	}
1273
1274	itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1275	pt->pt_proc = p;
1276	pt->pt_poverruns = 0;
1277	pt->pt_entry = timerid;
1278	pt->pt_queued = false;
1279
1280	pts->pts_timers[timerid] = &pt->pt_itimer;
1281	itimer_unlock();
1282
1283	return copyout(&timerid, tid, sizeof(timerid));
1284}
1285
1286/*
1287 * sys_timer_delete:
1288 *
1289 *	System call to delete a POSIX timer.
1290 */
1291int
1292sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1293    register_t *retval)
1294{
1295	/* {
1296		syscallarg(timer_t) timerid;
1297	} */
1298	struct proc *p = l->l_proc;
1299	timer_t timerid;
1300	struct ptimers *pts;
1301	struct itimer *it, *itn;
1302
1303	timerid = SCARG(uap, timerid);
1304	pts = p->p_timers;
1305
1306	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1307		return (EINVAL);
1308
1309	itimer_lock();
1310	if ((it = pts->pts_timers[timerid]) == NULL) {
1311		itimer_unlock();
1312		return (EINVAL);
1313	}
1314
1315	if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1316		if (it->it_active) {
1317			itn = LIST_NEXT(it, it_list);
1318			LIST_REMOVE(it, it_list);
1319			for ( ; itn; itn = LIST_NEXT(itn, it_list))
1320				timespecadd(&it->it_time.it_value,
1321				    &itn->it_time.it_value,
1322				    &itn->it_time.it_value);
1323			it->it_active = false;
1324		}
1325	}
1326
1327	/* Free the timer and release the lock.  */
1328	ptimer_free(pts, timerid);
1329
1330	return (0);
1331}
1332
1333/*
1334 * sys___timer_settime50:
1335 *
1336 *	System call to set/arm a POSIX timer.
1337 */
1338int
1339sys___timer_settime50(struct lwp *l,
1340    const struct sys___timer_settime50_args *uap,
1341    register_t *retval)
1342{
1343	/* {
1344		syscallarg(timer_t) timerid;
1345		syscallarg(int) flags;
1346		syscallarg(const struct itimerspec *) value;
1347		syscallarg(struct itimerspec *) ovalue;
1348	} */
1349	int error;
1350	struct itimerspec value, ovalue, *ovp = NULL;
1351
1352	if ((error = copyin(SCARG(uap, value), &value,
1353	    sizeof(struct itimerspec))) != 0)
1354		return (error);
1355
1356	if (SCARG(uap, ovalue))
1357		ovp = &ovalue;
1358
1359	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1360	    SCARG(uap, flags), l->l_proc)) != 0)
1361		return error;
1362
1363	if (ovp)
1364		return copyout(&ovalue, SCARG(uap, ovalue),
1365		    sizeof(struct itimerspec));
1366	return 0;
1367}
1368
1369int
1370dotimer_settime(int timerid, struct itimerspec *value,
1371    struct itimerspec *ovalue, int flags, struct proc *p)
1372{
1373	struct timespec now;
1374	struct itimerspec val, oval;
1375	struct ptimers *pts;
1376	struct itimer *it;
1377	int error;
1378
1379	pts = p->p_timers;
1380
1381	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1382		return EINVAL;
1383	val = *value;
1384	if ((error = itimespecfix(&val.it_value)) != 0 ||
1385	    (error = itimespecfix(&val.it_interval)) != 0)
1386		return error;
1387
1388	itimer_lock();
1389 restart:
1390	if ((it = pts->pts_timers[timerid]) == NULL) {
1391		itimer_unlock();
1392		return EINVAL;
1393	}
1394
1395	oval = it->it_time;
1396	it->it_time = val;
1397
1398	/*
1399	 * If we've been passed a relative time for a realtime timer,
1400	 * convert it to absolute; if an absolute time for a virtual
1401	 * timer, convert it to relative and make sure we don't set it
1402	 * to zero, which would cancel the timer, or let it go
1403	 * negative, which would confuse the comparison tests.
1404	 */
1405	if (timespecisset(&it->it_time.it_value)) {
1406		if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1407			if ((flags & TIMER_ABSTIME) == 0) {
1408				if (it->it_clockid == CLOCK_REALTIME) {
1409					getnanotime(&now);
1410				} else { /* CLOCK_MONOTONIC */
1411					getnanouptime(&now);
1412				}
1413				timespecadd(&it->it_time.it_value, &now,
1414				    &it->it_time.it_value);
1415			}
1416		} else {
1417			if ((flags & TIMER_ABSTIME) != 0) {
1418				getnanotime(&now);
1419				timespecsub(&it->it_time.it_value, &now,
1420				    &it->it_time.it_value);
1421				if (!timespecisset(&it->it_time.it_value) ||
1422				    it->it_time.it_value.tv_sec < 0) {
1423					it->it_time.it_value.tv_sec = 0;
1424					it->it_time.it_value.tv_nsec = 1;
1425				}
1426			}
1427		}
1428	}
1429
1430	error = itimer_settime(it);
1431	if (error == ERESTART) {
1432		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1433		goto restart;
1434	}
1435	KASSERT(error == 0);
1436	itimer_unlock();
1437
1438	if (ovalue)
1439		*ovalue = oval;
1440
1441	return (0);
1442}
1443
1444/*
1445 * sys___timer_gettime50:
1446 *
1447 *	System call to return the time remaining until a POSIX timer fires.
1448 */
1449int
1450sys___timer_gettime50(struct lwp *l,
1451    const struct sys___timer_gettime50_args *uap, register_t *retval)
1452{
1453	/* {
1454		syscallarg(timer_t) timerid;
1455		syscallarg(struct itimerspec *) value;
1456	} */
1457	struct itimerspec its;
1458	int error;
1459
1460	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1461	    &its)) != 0)
1462		return error;
1463
1464	return copyout(&its, SCARG(uap, value), sizeof(its));
1465}
1466
1467int
1468dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1469{
1470	struct itimer *it;
1471	struct ptimers *pts;
1472
1473	pts = p->p_timers;
1474	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1475		return (EINVAL);
1476	itimer_lock();
1477	if ((it = pts->pts_timers[timerid]) == NULL) {
1478		itimer_unlock();
1479		return (EINVAL);
1480	}
1481	itimer_gettime(it, its);
1482	itimer_unlock();
1483
1484	return 0;
1485}
1486
1487/*
1488 * sys_timer_getoverrun:
1489 *
1490 *	System call to return the number of times a POSIX timer has
1491 *	expired while a notification was already pending.  The counter
1492 *	is reset when a timer expires and a notification can be posted.
1493 */
1494int
1495sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1496    register_t *retval)
1497{
1498	/* {
1499		syscallarg(timer_t) timerid;
1500	} */
1501	struct proc *p = l->l_proc;
1502	struct ptimers *pts;
1503	int timerid;
1504	struct itimer *it;
1505	struct ptimer *pt;
1506
1507	timerid = SCARG(uap, timerid);
1508
1509	pts = p->p_timers;
1510	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1511		return (EINVAL);
1512	itimer_lock();
1513	if ((it = pts->pts_timers[timerid]) == NULL) {
1514		itimer_unlock();
1515		return (EINVAL);
1516	}
1517	pt = container_of(it, struct ptimer, pt_itimer);
1518	*retval = pt->pt_poverruns;
1519	if (*retval >= DELAYTIMER_MAX)
1520		*retval = DELAYTIMER_MAX;
1521	itimer_unlock();
1522
1523	return (0);
1524}
1525
1526/*
1527 * sys___getitimer50:
1528 *
1529 *	System call to get the time remaining before a BSD timer fires.
1530 */
1531int
1532sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1533    register_t *retval)
1534{
1535	/* {
1536		syscallarg(int) which;
1537		syscallarg(struct itimerval *) itv;
1538	} */
1539	struct proc *p = l->l_proc;
1540	struct itimerval aitv;
1541	int error;
1542
1543	memset(&aitv, 0, sizeof(aitv));
1544	error = dogetitimer(p, SCARG(uap, which), &aitv);
1545	if (error)
1546		return error;
1547	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1548}
1549
1550int
1551dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1552{
1553	struct ptimers *pts;
1554	struct itimer *it;
1555	struct itimerspec its;
1556
1557	if ((u_int)which > ITIMER_MONOTONIC)
1558		return (EINVAL);
1559
1560	itimer_lock();
1561	pts = p->p_timers;
1562	if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1563		timerclear(&itvp->it_value);
1564		timerclear(&itvp->it_interval);
1565	} else {
1566		itimer_gettime(it, &its);
1567		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1568		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1569	}
1570	itimer_unlock();
1571
1572	return 0;
1573}
1574
1575/*
1576 * sys___setitimer50:
1577 *
1578 *	System call to set/arm a BSD timer.
1579 */
1580int
1581sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1582    register_t *retval)
1583{
1584	/* {
1585		syscallarg(int) which;
1586		syscallarg(const struct itimerval *) itv;
1587		syscallarg(struct itimerval *) oitv;
1588	} */
1589	struct proc *p = l->l_proc;
1590	int which = SCARG(uap, which);
1591	struct sys___getitimer50_args getargs;
1592	const struct itimerval *itvp;
1593	struct itimerval aitv;
1594	int error;
1595
1596	itvp = SCARG(uap, itv);
1597	if (itvp &&
1598	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1599		return (error);
1600	if (SCARG(uap, oitv) != NULL) {
1601		SCARG(&getargs, which) = which;
1602		SCARG(&getargs, itv) = SCARG(uap, oitv);
1603		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1604			return (error);
1605	}
1606	if (itvp == 0)
1607		return (0);
1608
1609	return dosetitimer(p, which, &aitv);
1610}
1611
1612int
1613dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1614{
1615	struct timespec now;
1616	struct ptimers *pts;
1617	struct ptimer *spare;
1618	struct itimer *it;
1619	struct itlist *itl;
1620	int error;
1621
1622	if ((u_int)which > ITIMER_MONOTONIC)
1623		return (EINVAL);
1624	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1625		return (EINVAL);
1626
1627	/*
1628	 * Don't bother allocating data structures if the process just
1629	 * wants to clear the timer.
1630	 */
1631	spare = NULL;
1632	pts = p->p_timers;
1633 retry:
1634	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1635	    pts->pts_timers[which] == NULL))
1636		return (0);
1637	if (pts == NULL)
1638		pts = ptimers_alloc(p);
1639	itimer_lock();
1640 restart:
1641	it = pts->pts_timers[which];
1642	if (it == NULL) {
1643		struct ptimer *pt;
1644
1645		if (spare == NULL) {
1646			itimer_unlock();
1647			spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1648			goto retry;
1649		}
1650		pt = spare;
1651		spare = NULL;
1652
1653		it = &pt->pt_itimer;
1654		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1655		pt->pt_ev.sigev_value.sival_int = which;
1656
1657		switch (which) {
1658		case ITIMER_REAL:
1659		case ITIMER_MONOTONIC:
1660			itl = NULL;
1661			pt->pt_ev.sigev_signo = SIGALRM;
1662			break;
1663		case ITIMER_VIRTUAL:
1664			itl = &pts->pts_virtual;
1665			pt->pt_ev.sigev_signo = SIGVTALRM;
1666			break;
1667		case ITIMER_PROF:
1668			itl = &pts->pts_prof;
1669			pt->pt_ev.sigev_signo = SIGPROF;
1670			break;
1671		default:
1672			panic("%s: can't happen %d", __func__, which);
1673		}
1674		itimer_init(it, &ptimer_itimer_ops, which, itl);
1675		pt->pt_proc = p;
1676		pt->pt_entry = which;
1677
1678		pts->pts_timers[which] = it;
1679	}
1680
1681	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1682	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1683
1684	error = 0;
1685	if (timespecisset(&it->it_time.it_value)) {
1686		/* Convert to absolute time */
1687		/* XXX need to wrap in splclock for timecounters case? */
1688		switch (which) {
1689		case ITIMER_REAL:
1690			getnanotime(&now);
1691			if (!timespecaddok(&it->it_time.it_value, &now)) {
1692				error = EINVAL;
1693				goto out;
1694			}
1695			timespecadd(&it->it_time.it_value, &now,
1696			    &it->it_time.it_value);
1697			break;
1698		case ITIMER_MONOTONIC:
1699			getnanouptime(&now);
1700			if (!timespecaddok(&it->it_time.it_value, &now)) {
1701				error = EINVAL;
1702				goto out;
1703			}
1704			timespecadd(&it->it_time.it_value, &now,
1705			    &it->it_time.it_value);
1706			break;
1707		default:
1708			break;
1709		}
1710	}
1711
1712	error = itimer_settime(it);
1713	if (error == ERESTART) {
1714		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1715		goto restart;
1716	}
1717	KASSERT(error == 0);
1718out:
1719	itimer_unlock();
1720	if (spare != NULL)
1721		kmem_free(spare, sizeof(*spare));
1722
1723	return error;
1724}
1725
1726/*
1727 * ptimer_tick:
1728 *
1729 *	Called from hardclock() to decrement per-process virtual timers.
1730 */
1731void
1732ptimer_tick(lwp_t *l, bool user)
1733{
1734	struct ptimers *pts;
1735	struct itimer *it;
1736	proc_t *p;
1737
1738	p = l->l_proc;
1739	if (p->p_timers == NULL)
1740		return;
1741
1742	itimer_lock();
1743	if ((pts = l->l_proc->p_timers) != NULL) {
1744		/*
1745		 * Run current process's virtual and profile time, as needed.
1746		 */
1747		if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1748			if (itimer_decr(it, tick * 1000))
1749				(*it->it_ops->ito_fire)(it);
1750		if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1751			if (itimer_decr(it, tick * 1000))
1752				(*it->it_ops->ito_fire)(it);
1753	}
1754	itimer_unlock();
1755}
1756
1757/*
1758 * ptimer_intr:
1759 *
1760 *	Software interrupt handler for processing per-process
1761 *	timer expiration.
1762 */
1763static void
1764ptimer_intr(void *cookie)
1765{
1766	ksiginfo_t ksi;
1767	struct itimer *it;
1768	struct ptimer *pt;
1769	proc_t *p;
1770
1771	mutex_enter(&proc_lock);
1772	itimer_lock();
1773	while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1774		it = &pt->pt_itimer;
1775
1776		TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1777		KASSERT(pt->pt_queued);
1778		pt->pt_queued = false;
1779
1780		p = pt->pt_proc;
1781		if (p->p_timers == NULL) {
1782			/* Process is dying. */
1783			continue;
1784		}
1785		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1786			continue;
1787		}
1788		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1789			it->it_overruns++;
1790			continue;
1791		}
1792
1793		KSI_INIT(&ksi);
1794		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1795		ksi.ksi_code = SI_TIMER;
1796		ksi.ksi_value = pt->pt_ev.sigev_value;
1797		pt->pt_poverruns = it->it_overruns;
1798		it->it_overruns = 0;
1799		itimer_unlock();
1800		kpsignal(p, &ksi, NULL);
1801		itimer_lock();
1802	}
1803	itimer_unlock();
1804	mutex_exit(&proc_lock);
1805}
1806