kern_time.c revision 1.209
1/*	$NetBSD: kern_time.c,v 1.209 2020/12/07 03:01:15 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5 *     The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1982, 1986, 1989, 1993
35 *	The Regents of the University of California.  All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 *    may be used to endorse or promote products derived from this software
47 *    without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
62 */
63
64#include <sys/cdefs.h>
65__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.209 2020/12/07 03:01:15 christos Exp $");
66
67#include <sys/param.h>
68#include <sys/resourcevar.h>
69#include <sys/kernel.h>
70#include <sys/systm.h>
71#include <sys/proc.h>
72#include <sys/vnode.h>
73#include <sys/signalvar.h>
74#include <sys/syslog.h>
75#include <sys/timetc.h>
76#include <sys/timex.h>
77#include <sys/kauth.h>
78#include <sys/mount.h>
79#include <sys/syscallargs.h>
80#include <sys/cpu.h>
81
82static kmutex_t	itimer_mutex __cacheline_aligned;
83static struct itlist itimer_realtime_changed_notify;
84
85static void	ptimer_intr(void *);
86static void	*ptimer_sih __read_mostly;
87static struct itqueue ptimer_queue;
88
89#define	CLOCK_VIRTUAL_P(clockid)	\
90	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
91
92CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
93CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
94CTASSERT(ITIMER_PROF == CLOCK_PROF);
95CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
96
97#define	DELAYTIMER_MAX	32
98
99/*
100 * Initialize timekeeping.
101 */
102void
103time_init(void)
104{
105
106	mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
107	LIST_INIT(&itimer_realtime_changed_notify);
108
109	TAILQ_INIT(&ptimer_queue);
110	ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
111	    ptimer_intr, NULL);
112}
113
114/*
115 * Check if the time will wrap if set to ts.
116 *
117 * ts - timespec describing the new time
118 * delta - the delta between the current time and ts
119 */
120bool
121time_wraps(struct timespec *ts, struct timespec *delta)
122{
123
124	/*
125	 * Don't allow the time to be set forward so far it
126	 * will wrap and become negative, thus allowing an
127	 * attacker to bypass the next check below.  The
128	 * cutoff is 1 year before rollover occurs, so even
129	 * if the attacker uses adjtime(2) to move the time
130	 * past the cutoff, it will take a very long time
131	 * to get to the wrap point.
132	 */
133	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
134	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
135		return true;
136
137	return false;
138}
139
140/*
141 * itimer_lock:
142 *
143 *	Acquire the interval timer data lock.
144 */
145void
146itimer_lock(void)
147{
148	mutex_spin_enter(&itimer_mutex);
149}
150
151/*
152 * itimer_unlock:
153 *
154 *	Release the interval timer data lock.
155 */
156void
157itimer_unlock(void)
158{
159	mutex_spin_exit(&itimer_mutex);
160}
161
162/*
163 * itimer_lock_held:
164 *
165 *	Check that the interval timer lock is held for diagnostic
166 *	assertions.
167 */
168static inline bool __diagused
169itimer_lock_held(void)
170{
171	return mutex_owned(&itimer_mutex);
172}
173
174/*
175 * Time of day and interval timer support.
176 *
177 * These routines provide the kernel entry points to get and set
178 * the time-of-day and per-process interval timers.  Subroutines
179 * here provide support for adding and subtracting timeval structures
180 * and decrementing interval timers, optionally reloading the interval
181 * timers when they expire.
182 */
183
184/* This function is used by clock_settime and settimeofday */
185static int
186settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
187{
188	struct timespec delta, now;
189
190	/*
191	 * The time being set to an unreasonable value will cause
192	 * unreasonable system behaviour.
193	 */
194	if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
195		return (EINVAL);
196
197	nanotime(&now);
198	timespecsub(ts, &now, &delta);
199
200	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
201	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
202	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
203		return (EPERM);
204	}
205
206#ifdef notyet
207	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
208		return (EPERM);
209	}
210#endif
211
212	tc_setclock(ts);
213
214	resettodr();
215
216	/*
217	 * Notify pending CLOCK_REALTIME timers about the real time change.
218	 * There may be inactive timers on this list, but this happens
219	 * comparatively less often than timers firing, and so it's better
220	 * to put the extra checks here than to complicate the other code
221	 * path.
222	 */
223	struct itimer *it;
224	itimer_lock();
225	LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
226		KASSERT(it->it_ops->ito_realtime_changed != NULL);
227		if (timespecisset(&it->it_time.it_value)) {
228			(*it->it_ops->ito_realtime_changed)(it);
229		}
230	}
231	itimer_unlock();
232
233	return (0);
234}
235
236int
237settime(struct proc *p, struct timespec *ts)
238{
239	return (settime1(p, ts, true));
240}
241
242/* ARGSUSED */
243int
244sys___clock_gettime50(struct lwp *l,
245    const struct sys___clock_gettime50_args *uap, register_t *retval)
246{
247	/* {
248		syscallarg(clockid_t) clock_id;
249		syscallarg(struct timespec *) tp;
250	} */
251	int error;
252	struct timespec ats;
253
254	error = clock_gettime1(SCARG(uap, clock_id), &ats);
255	if (error != 0)
256		return error;
257
258	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
259}
260
261/* ARGSUSED */
262int
263sys___clock_settime50(struct lwp *l,
264    const struct sys___clock_settime50_args *uap, register_t *retval)
265{
266	/* {
267		syscallarg(clockid_t) clock_id;
268		syscallarg(const struct timespec *) tp;
269	} */
270	int error;
271	struct timespec ats;
272
273	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
274		return error;
275
276	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
277}
278
279
280int
281clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
282    bool check_kauth)
283{
284	int error;
285
286	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
287		return EINVAL;
288
289	switch (clock_id) {
290	case CLOCK_REALTIME:
291		if ((error = settime1(p, tp, check_kauth)) != 0)
292			return (error);
293		break;
294	case CLOCK_MONOTONIC:
295		return (EINVAL);	/* read-only clock */
296	default:
297		return (EINVAL);
298	}
299
300	return 0;
301}
302
303int
304sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
305    register_t *retval)
306{
307	/* {
308		syscallarg(clockid_t) clock_id;
309		syscallarg(struct timespec *) tp;
310	} */
311	struct timespec ts;
312	int error;
313
314	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
315		return error;
316
317	if (SCARG(uap, tp))
318		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
319
320	return error;
321}
322
323int
324clock_getres1(clockid_t clock_id, struct timespec *ts)
325{
326
327	switch (clock_id) {
328	case CLOCK_REALTIME:
329	case CLOCK_MONOTONIC:
330		ts->tv_sec = 0;
331		if (tc_getfrequency() > 1000000000)
332			ts->tv_nsec = 1;
333		else
334			ts->tv_nsec = 1000000000 / tc_getfrequency();
335		break;
336	default:
337		return EINVAL;
338	}
339
340	return 0;
341}
342
343/* ARGSUSED */
344int
345sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
346    register_t *retval)
347{
348	/* {
349		syscallarg(struct timespec *) rqtp;
350		syscallarg(struct timespec *) rmtp;
351	} */
352	struct timespec rmt, rqt;
353	int error, error1;
354
355	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
356	if (error)
357		return (error);
358
359	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
360	    SCARG(uap, rmtp) ? &rmt : NULL);
361	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
362		return error;
363
364	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
365	return error1 ? error1 : error;
366}
367
368/* ARGSUSED */
369int
370sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
371    register_t *retval)
372{
373	/* {
374		syscallarg(clockid_t) clock_id;
375		syscallarg(int) flags;
376		syscallarg(struct timespec *) rqtp;
377		syscallarg(struct timespec *) rmtp;
378	} */
379	struct timespec rmt, rqt;
380	int error, error1;
381
382	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
383	if (error)
384		goto out;
385
386	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
387	    SCARG(uap, rmtp) ? &rmt : NULL);
388	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
389		goto out;
390
391	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
392	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
393		error = error1;
394out:
395	*retval = error;
396	return 0;
397}
398
399int
400nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
401    struct timespec *rmt)
402{
403	struct timespec rmtstart;
404	int error, timo;
405
406	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
407		if (error == ETIMEDOUT) {
408			error = 0;
409			if (rmt != NULL)
410				rmt->tv_sec = rmt->tv_nsec = 0;
411		}
412		return error;
413	}
414
415	/*
416	 * Avoid inadvertently sleeping forever
417	 */
418	if (timo == 0)
419		timo = 1;
420again:
421	error = kpause("nanoslp", true, timo, NULL);
422	if (error == EWOULDBLOCK)
423		error = 0;
424	if (rmt != NULL || error == 0) {
425		struct timespec rmtend;
426		struct timespec t0;
427		struct timespec *t;
428		int err;
429
430		err = clock_gettime1(clock_id, &rmtend);
431		if (err != 0)
432			return err;
433
434		t = (rmt != NULL) ? rmt : &t0;
435		if (flags & TIMER_ABSTIME) {
436			timespecsub(rqt, &rmtend, t);
437		} else {
438			timespecsub(&rmtend, &rmtstart, t);
439			timespecsub(rqt, t, t);
440		}
441		if (t->tv_sec < 0)
442			timespecclear(t);
443		if (error == 0) {
444			timo = tstohz(t);
445			if (timo > 0)
446				goto again;
447		}
448	}
449
450	if (error == ERESTART)
451		error = EINTR;
452
453	return error;
454}
455
456int
457sys_clock_getcpuclockid2(struct lwp *l,
458    const struct sys_clock_getcpuclockid2_args *uap,
459    register_t *retval)
460{
461	/* {
462		syscallarg(idtype_t idtype;
463		syscallarg(id_t id);
464		syscallarg(clockid_t *)clock_id;
465	} */
466	pid_t pid;
467	lwpid_t lid;
468	clockid_t clock_id;
469	id_t id = SCARG(uap, id);
470
471	switch (SCARG(uap, idtype)) {
472	case P_PID:
473		pid = id == 0 ? l->l_proc->p_pid : id;
474		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
475		break;
476	case P_LWPID:
477		lid = id == 0 ? l->l_lid : id;
478		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
479		break;
480	default:
481		return EINVAL;
482	}
483	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
484}
485
486/* ARGSUSED */
487int
488sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
489    register_t *retval)
490{
491	/* {
492		syscallarg(struct timeval *) tp;
493		syscallarg(void *) tzp;		really "struct timezone *";
494	} */
495	struct timeval atv;
496	int error = 0;
497	struct timezone tzfake;
498
499	if (SCARG(uap, tp)) {
500		memset(&atv, 0, sizeof(atv));
501		microtime(&atv);
502		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
503		if (error)
504			return (error);
505	}
506	if (SCARG(uap, tzp)) {
507		/*
508		 * NetBSD has no kernel notion of time zone, so we just
509		 * fake up a timezone struct and return it if demanded.
510		 */
511		tzfake.tz_minuteswest = 0;
512		tzfake.tz_dsttime = 0;
513		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
514	}
515	return (error);
516}
517
518/* ARGSUSED */
519int
520sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
521    register_t *retval)
522{
523	/* {
524		syscallarg(const struct timeval *) tv;
525		syscallarg(const void *) tzp; really "const struct timezone *";
526	} */
527
528	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
529}
530
531int
532settimeofday1(const struct timeval *utv, bool userspace,
533    const void *utzp, struct lwp *l, bool check_kauth)
534{
535	struct timeval atv;
536	struct timespec ts;
537	int error;
538
539	/* Verify all parameters before changing time. */
540
541	/*
542	 * NetBSD has no kernel notion of time zone, and only an
543	 * obsolete program would try to set it, so we log a warning.
544	 */
545	if (utzp)
546		log(LOG_WARNING, "pid %d attempted to set the "
547		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
548
549	if (utv == NULL)
550		return 0;
551
552	if (userspace) {
553		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
554			return error;
555		utv = &atv;
556	}
557
558	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
559		return EINVAL;
560
561	TIMEVAL_TO_TIMESPEC(utv, &ts);
562	return settime1(l->l_proc, &ts, check_kauth);
563}
564
565int	time_adjusted;			/* set if an adjustment is made */
566
567/* ARGSUSED */
568int
569sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
570    register_t *retval)
571{
572	/* {
573		syscallarg(const struct timeval *) delta;
574		syscallarg(struct timeval *) olddelta;
575	} */
576	int error;
577	struct timeval atv, oldatv;
578
579	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
580	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
581		return error;
582
583	if (SCARG(uap, delta)) {
584		error = copyin(SCARG(uap, delta), &atv,
585		    sizeof(*SCARG(uap, delta)));
586		if (error)
587			return (error);
588	}
589	adjtime1(SCARG(uap, delta) ? &atv : NULL,
590	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
591	if (SCARG(uap, olddelta))
592		error = copyout(&oldatv, SCARG(uap, olddelta),
593		    sizeof(*SCARG(uap, olddelta)));
594	return error;
595}
596
597void
598adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
599{
600	extern int64_t time_adjtime;  /* in kern_ntptime.c */
601
602	if (olddelta) {
603		memset(olddelta, 0, sizeof(*olddelta));
604		mutex_spin_enter(&timecounter_lock);
605		olddelta->tv_sec = time_adjtime / 1000000;
606		olddelta->tv_usec = time_adjtime % 1000000;
607		if (olddelta->tv_usec < 0) {
608			olddelta->tv_usec += 1000000;
609			olddelta->tv_sec--;
610		}
611		mutex_spin_exit(&timecounter_lock);
612	}
613
614	if (delta) {
615		mutex_spin_enter(&timecounter_lock);
616		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
617
618		if (time_adjtime) {
619			/* We need to save the system time during shutdown */
620			time_adjusted |= 1;
621		}
622		mutex_spin_exit(&timecounter_lock);
623	}
624}
625
626/*
627 * Interval timer support.
628 *
629 * The itimer_*() routines provide generic support for interval timers,
630 * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
631 * CLOCK_PROF).
632 *
633 * Real timers keep their deadline as an absolute time, and are fired
634 * by a callout.  Virtual timers are kept as a linked-list of deltas,
635 * and are processed by hardclock().
636 *
637 * Because the real time timer callout may be delayed in real time due
638 * to interrupt processing on the system, it is possible for the real
639 * time timeout routine (itimer_callout()) run past after its deadline.
640 * It does not suffice, therefore, to reload the real timer .it_value
641 * from the timer's .it_interval.  Rather, we compute the next deadline
642 * in absolute time based on the current time and the .it_interval value,
643 * and report any overruns.
644 *
645 * Note that while the virtual timers are supported in a generic fashion
646 * here, they only (currently) make sense as per-process timers, and thus
647 * only really work for that case.
648 */
649
650/*
651 * itimer_init:
652 *
653 *	Initialize the common data for an interval timer.
654 */
655static void
656itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
657    clockid_t const id, struct itlist * const itl)
658{
659
660	KASSERT(itimer_lock_held());
661	KASSERT(ops != NULL);
662
663	timespecclear(&it->it_time.it_value);
664	it->it_ops = ops;
665	it->it_clockid = id;
666	it->it_overruns = 0;
667	it->it_queued = false;
668	it->it_dying = false;
669	if (!CLOCK_VIRTUAL_P(id)) {
670		KASSERT(itl == NULL);
671		callout_init(&it->it_ch, CALLOUT_MPSAFE);
672		if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
673			LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
674			    it, it_rtchgq);
675		}
676	} else {
677		KASSERT(itl != NULL);
678		it->it_vlist = itl;
679		it->it_active = false;
680	}
681}
682
683/*
684 * itimer_fini:
685 *
686 *	Release resources used by an interval timer.
687 *
688 *	N.B. itimer_lock must be held on entry, and is released on exit.
689 */
690static void
691itimer_fini(struct itimer * const it)
692{
693
694	KASSERT(itimer_lock_held());
695
696	it->it_dying = true;
697
698	/*
699	 * For non-virtual timers, stop the callout, or wait for it to
700	 * run if it has already fired.  It cannot restart again after
701	 * this point: the callout won't restart itself when dying, no
702	 * other users holding the lock can restart it, and any other
703	 * users waiting for callout_halt concurrently (itimer_settime)
704	 * will restart from the top.
705	 */
706	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
707		callout_halt(&it->it_ch, &itimer_mutex);
708		if (it->it_clockid == CLOCK_REALTIME &&
709		    it->it_ops->ito_realtime_changed != NULL) {
710			LIST_REMOVE(it, it_rtchgq);
711		}
712	}
713
714	/* Remove it from the queue to be signalled.  */
715	if (it->it_queued) {
716		TAILQ_REMOVE(it->it_ops->ito_queue, it, it_chain);
717		it->it_queued = false;
718	}
719
720	/* All done with the global state.  */
721	itimer_unlock();
722
723	/* Destroy the callout, if needed. */
724	if (!CLOCK_VIRTUAL_P(it->it_clockid))
725		callout_destroy(&it->it_ch);
726}
727
728/*
729 * itimer_decr:
730 *
731 *	Decrement an interval timer by a specified number of nanoseconds,
732 *	which must be less than a second, i.e. < 1000000000.  If the timer
733 *	expires, then reload it.  In this case, carry over (nsec - old value)
734 *	to reduce the value reloaded into the timer so that the timer does
735 *	not drift.  This routine assumes that it is called in a context where
736 *	the timers on which it is operating cannot change in value.
737 *
738 *	Returns true if the timer has expired.
739 */
740static bool
741itimer_decr(struct itimer *it, int nsec)
742{
743	struct itimerspec *itp;
744	int error __diagused;
745
746	KASSERT(itimer_lock_held());
747	KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
748
749	itp = &it->it_time;
750	if (itp->it_value.tv_nsec < nsec) {
751		if (itp->it_value.tv_sec == 0) {
752			/* expired, and already in next interval */
753			nsec -= itp->it_value.tv_nsec;
754			goto expire;
755		}
756		itp->it_value.tv_nsec += 1000000000;
757		itp->it_value.tv_sec--;
758	}
759	itp->it_value.tv_nsec -= nsec;
760	nsec = 0;
761	if (timespecisset(&itp->it_value))
762		return false;
763	/* expired, exactly at end of interval */
764 expire:
765	if (timespecisset(&itp->it_interval)) {
766		itp->it_value = itp->it_interval;
767		itp->it_value.tv_nsec -= nsec;
768		if (itp->it_value.tv_nsec < 0) {
769			itp->it_value.tv_nsec += 1000000000;
770			itp->it_value.tv_sec--;
771		}
772		error = itimer_settime(it);
773		KASSERT(error == 0); /* virtual, never fails */
774	} else
775		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
776	return true;
777}
778
779/*
780 * itimer_fire:
781 *
782 *	An interval timer has fired.  Enqueue it for processing, if
783 *	needed.
784 */
785void
786itimer_fire(struct itimer * const it)
787{
788
789	KASSERT(itimer_lock_held());
790
791	if (!it->it_queued) {
792		TAILQ_INSERT_TAIL(it->it_ops->ito_queue, it, it_chain);
793		it->it_queued = true;
794		softint_schedule(*it->it_ops->ito_sihp);
795	}
796}
797
798static void itimer_callout(void *);
799
800/*
801 * itimer_arm_real:
802 *
803 *	Arm a non-virtual timer.
804 */
805static void
806itimer_arm_real(struct itimer * const it)
807{
808	/*
809	 * Don't need to check tshzto() return value, here.
810	 * callout_reset() does it for us.
811	 */
812	callout_reset(&it->it_ch,
813	    (it->it_clockid == CLOCK_MONOTONIC
814		? tshztoup(&it->it_time.it_value)
815		: tshzto(&it->it_time.it_value)),
816	    itimer_callout, it);
817}
818
819/*
820 * itimer_callout:
821 *
822 *	Callout to expire a non-virtual timer.  Queue it up for processing,
823 *	and then reload, if it is configured to do so.
824 *
825 *	N.B. A delay in processing this callout causes multiple
826 *	SIGALRM calls to be compressed into one.
827 */
828static void
829itimer_callout(void *arg)
830{
831	uint64_t last_val, next_val, interval, now_ns;
832	struct timespec now, next;
833	struct itimer * const it = arg;
834	int backwards;
835
836	itimer_lock();
837	(*it->it_ops->ito_fire)(it);
838
839	if (!timespecisset(&it->it_time.it_interval)) {
840		timespecclear(&it->it_time.it_value);
841		itimer_unlock();
842		return;
843	}
844
845	if (it->it_clockid == CLOCK_MONOTONIC) {
846		getnanouptime(&now);
847	} else {
848		getnanotime(&now);
849	}
850	backwards = (timespeccmp(&it->it_time.it_value, &now, >));
851	timespecadd(&it->it_time.it_value, &it->it_time.it_interval, &next);
852	/* Handle the easy case of non-overflown timers first. */
853	if (!backwards && timespeccmp(&next, &now, >)) {
854		it->it_time.it_value = next;
855	} else {
856		now_ns = timespec2ns(&now);
857		last_val = timespec2ns(&it->it_time.it_value);
858		interval = timespec2ns(&it->it_time.it_interval);
859
860		next_val = now_ns +
861		    (now_ns - last_val + interval - 1) % interval;
862
863		if (backwards)
864			next_val += interval;
865		else
866			it->it_overruns += (now_ns - last_val) / interval;
867
868		it->it_time.it_value.tv_sec = next_val / 1000000000;
869		it->it_time.it_value.tv_nsec = next_val % 1000000000;
870	}
871
872	/*
873	 * Reset the callout, if it's not going away.
874	 */
875	if (!it->it_dying)
876		itimer_arm_real(it);
877	itimer_unlock();
878}
879
880/*
881 * itimer_settime:
882 *
883 *	Set up the given interval timer. The value in it->it_time.it_value
884 *	is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
885 *	timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
886 *
887 *	If the callout had already fired but not yet run, fails with
888 *	ERESTART -- caller must restart from the top to look up a timer.
889 */
890int
891itimer_settime(struct itimer *it)
892{
893	struct itimer *itn, *pitn;
894	struct itlist *itl;
895
896	KASSERT(itimer_lock_held());
897
898	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
899		/*
900		 * Try to stop the callout.  However, if it had already
901		 * fired, we have to drop the lock to wait for it, so
902		 * the world may have changed and pt may not be there
903		 * any more.  In that case, tell the caller to start
904		 * over from the top.
905		 */
906		if (callout_halt(&it->it_ch, &itimer_mutex))
907			return ERESTART;
908
909		/* Now we can touch it and start it up again. */
910		if (timespecisset(&it->it_time.it_value))
911			itimer_arm_real(it);
912	} else {
913		if (it->it_active) {
914			itn = LIST_NEXT(it, it_list);
915			LIST_REMOVE(it, it_list);
916			for ( ; itn; itn = LIST_NEXT(itn, it_list))
917				timespecadd(&it->it_time.it_value,
918				    &itn->it_time.it_value,
919				    &itn->it_time.it_value);
920		}
921		if (timespecisset(&it->it_time.it_value)) {
922			itl = it->it_vlist;
923			for (itn = LIST_FIRST(itl), pitn = NULL;
924			     itn && timespeccmp(&it->it_time.it_value,
925				 &itn->it_time.it_value, >);
926			     pitn = itn, itn = LIST_NEXT(itn, it_list))
927				timespecsub(&it->it_time.it_value,
928				    &itn->it_time.it_value,
929				    &it->it_time.it_value);
930
931			if (pitn)
932				LIST_INSERT_AFTER(pitn, it, it_list);
933			else
934				LIST_INSERT_HEAD(itl, it, it_list);
935
936			for ( ; itn ; itn = LIST_NEXT(itn, it_list))
937				timespecsub(&itn->it_time.it_value,
938				    &it->it_time.it_value,
939				    &itn->it_time.it_value);
940
941			it->it_active = true;
942		} else {
943			it->it_active = false;
944		}
945	}
946
947	/* Success!  */
948	return 0;
949}
950
951/*
952 * itimer_gettime:
953 *
954 *	Return the remaining time of an interval timer.
955 */
956void
957itimer_gettime(const struct itimer *it, struct itimerspec *aits)
958{
959	struct timespec now;
960	struct itimer *itn;
961
962	KASSERT(itimer_lock_held());
963
964	*aits = it->it_time;
965	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
966		/*
967		 * Convert from absolute to relative time in .it_value
968		 * part of real time timer.  If time for real time
969		 * timer has passed return 0, else return difference
970		 * between current time and time for the timer to go
971		 * off.
972		 */
973		if (timespecisset(&aits->it_value)) {
974			if (it->it_clockid == CLOCK_REALTIME) {
975				getnanotime(&now);
976			} else { /* CLOCK_MONOTONIC */
977				getnanouptime(&now);
978			}
979			if (timespeccmp(&aits->it_value, &now, <))
980				timespecclear(&aits->it_value);
981			else
982				timespecsub(&aits->it_value, &now,
983				    &aits->it_value);
984		}
985	} else if (it->it_active) {
986		for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
987		     itn = LIST_NEXT(itn, it_list))
988			timespecadd(&aits->it_value,
989			    &itn->it_time.it_value, &aits->it_value);
990		KASSERT(itn != NULL); /* it should be findable on the list */
991	} else
992		timespecclear(&aits->it_value);
993}
994
995/*
996 * Per-process timer support.
997 *
998 * Both the BSD getitimer() family and the POSIX timer_*() family of
999 * routines are supported.
1000 *
1001 * All timers are kept in an array pointed to by p_timers, which is
1002 * allocated on demand - many processes don't use timers at all. The
1003 * first four elements in this array are reserved for the BSD timers:
1004 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
1005 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
1006 * allocated by the timer_create() syscall.
1007 *
1008 * These timers are a "sub-class" of interval timer.
1009 */
1010
1011/*
1012 * ptimer_free:
1013 *
1014 *	Free the per-process timer at the specified index.
1015 */
1016static void
1017ptimer_free(struct ptimers *pts, int index)
1018{
1019	struct itimer *it;
1020	struct ptimer *pt;
1021
1022	KASSERT(itimer_lock_held());
1023
1024	it = pts->pts_timers[index];
1025	pt = container_of(it, struct ptimer, pt_itimer);
1026	pts->pts_timers[index] = NULL;
1027	itimer_fini(it);	/* releases itimer_lock */
1028	kmem_free(pt, sizeof(*pt));
1029}
1030
1031/*
1032 * ptimers_alloc:
1033 *
1034 *	Allocate a ptimers for the specified process.
1035 */
1036static struct ptimers *
1037ptimers_alloc(struct proc *p)
1038{
1039	struct ptimers *pts;
1040	int i;
1041
1042	pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1043	LIST_INIT(&pts->pts_virtual);
1044	LIST_INIT(&pts->pts_prof);
1045	for (i = 0; i < TIMER_MAX; i++)
1046		pts->pts_timers[i] = NULL;
1047	itimer_lock();
1048	if (p->p_timers == NULL) {
1049		p->p_timers = pts;
1050		itimer_unlock();
1051		return pts;
1052	}
1053	itimer_unlock();
1054	kmem_free(pts, sizeof(*pts));
1055	return p->p_timers;
1056}
1057
1058/*
1059 * ptimers_free:
1060 *
1061 *	Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1062 *	then clean up all timers and free all the data structures. If
1063 *	"which" is set to TIMERS_POSIX, only clean up the timers allocated
1064 *	by timer_create(), not the BSD setitimer() timers, and only free the
1065 *	structure if none of those remain.
1066 *
1067 *	This function is exported because it is needed in the exec and
1068 *	exit code paths.
1069 */
1070void
1071ptimers_free(struct proc *p, int which)
1072{
1073	struct ptimers *pts;
1074	struct itimer *itn;
1075	struct timespec ts;
1076	int i;
1077
1078	if (p->p_timers == NULL)
1079		return;
1080
1081	pts = p->p_timers;
1082	itimer_lock();
1083	if (which == TIMERS_ALL) {
1084		p->p_timers = NULL;
1085		i = 0;
1086	} else {
1087		timespecclear(&ts);
1088		for (itn = LIST_FIRST(&pts->pts_virtual);
1089		     itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1090		     itn = LIST_NEXT(itn, it_list)) {
1091			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1092			timespecadd(&ts, &itn->it_time.it_value, &ts);
1093		}
1094		LIST_FIRST(&pts->pts_virtual) = NULL;
1095		if (itn) {
1096			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1097			timespecadd(&ts, &itn->it_time.it_value,
1098			    &itn->it_time.it_value);
1099			LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1100		}
1101		timespecclear(&ts);
1102		for (itn = LIST_FIRST(&pts->pts_prof);
1103		     itn && itn != pts->pts_timers[ITIMER_PROF];
1104		     itn = LIST_NEXT(itn, it_list)) {
1105			KASSERT(itn->it_clockid == CLOCK_PROF);
1106			timespecadd(&ts, &itn->it_time.it_value, &ts);
1107		}
1108		LIST_FIRST(&pts->pts_prof) = NULL;
1109		if (itn) {
1110			KASSERT(itn->it_clockid == CLOCK_PROF);
1111			timespecadd(&ts, &itn->it_time.it_value,
1112			    &itn->it_time.it_value);
1113			LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1114		}
1115		i = TIMER_MIN;
1116	}
1117	for ( ; i < TIMER_MAX; i++) {
1118		if (pts->pts_timers[i] != NULL) {
1119			/* Free the timer and release the lock.  */
1120			ptimer_free(pts, i);
1121			/* Reacquire the lock for the next one.  */
1122			itimer_lock();
1123		}
1124	}
1125	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1126	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1127		p->p_timers = NULL;
1128		itimer_unlock();
1129		kmem_free(pts, sizeof(*pts));
1130	} else
1131		itimer_unlock();
1132}
1133
1134/*
1135 * ptimer_fire:
1136 *
1137 *	Fire a per-process timer.
1138 */
1139static void
1140ptimer_fire(struct itimer *it)
1141{
1142	struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1143
1144	KASSERT(itimer_lock_held());
1145
1146	/*
1147	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1148	 * XXX Relying on the clock interrupt is stupid.
1149	 */
1150	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1151		return;
1152	}
1153	itimer_fire(it);
1154}
1155
1156/*
1157 * Operations vector for per-process timers (BSD and POSIX).
1158 */
1159static const struct itimer_ops ptimer_itimer_ops = {
1160	.ito_queue = &ptimer_queue,
1161	.ito_sihp = &ptimer_sih,
1162	.ito_fire = &ptimer_fire,
1163};
1164
1165/*
1166 * sys_timer_create:
1167 *
1168 *	System call to create a POSIX timer.
1169 */
1170int
1171sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1172    register_t *retval)
1173{
1174	/* {
1175		syscallarg(clockid_t) clock_id;
1176		syscallarg(struct sigevent *) evp;
1177		syscallarg(timer_t *) timerid;
1178	} */
1179
1180	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1181	    SCARG(uap, evp), copyin, l);
1182}
1183
1184int
1185timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1186    copyin_t fetch_event, struct lwp *l)
1187{
1188	int error;
1189	timer_t timerid;
1190	struct itlist *itl;
1191	struct ptimers *pts;
1192	struct ptimer *pt;
1193	struct proc *p;
1194
1195	p = l->l_proc;
1196
1197	if ((u_int)id > CLOCK_MONOTONIC)
1198		return (EINVAL);
1199
1200	if ((pts = p->p_timers) == NULL)
1201		pts = ptimers_alloc(p);
1202
1203	pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1204	if (evp != NULL) {
1205		if (((error =
1206		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1207		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1208			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1209			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1210			 (pt->pt_ev.sigev_signo <= 0 ||
1211			  pt->pt_ev.sigev_signo >= NSIG))) {
1212			kmem_free(pt, sizeof(*pt));
1213			return (error ? error : EINVAL);
1214		}
1215	}
1216
1217	/* Find a free timer slot, skipping those reserved for setitimer(). */
1218	itimer_lock();
1219	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1220		if (pts->pts_timers[timerid] == NULL)
1221			break;
1222	if (timerid == TIMER_MAX) {
1223		itimer_unlock();
1224		kmem_free(pt, sizeof(*pt));
1225		return EAGAIN;
1226	}
1227	if (evp == NULL) {
1228		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1229		switch (id) {
1230		case CLOCK_REALTIME:
1231		case CLOCK_MONOTONIC:
1232			pt->pt_ev.sigev_signo = SIGALRM;
1233			break;
1234		case CLOCK_VIRTUAL:
1235			pt->pt_ev.sigev_signo = SIGVTALRM;
1236			break;
1237		case CLOCK_PROF:
1238			pt->pt_ev.sigev_signo = SIGPROF;
1239			break;
1240		}
1241		pt->pt_ev.sigev_value.sival_int = timerid;
1242	}
1243
1244	switch (id) {
1245	case CLOCK_VIRTUAL:
1246		itl = &pts->pts_virtual;
1247		break;
1248	case CLOCK_PROF:
1249		itl = &pts->pts_prof;
1250		break;
1251	default:
1252		itl = NULL;
1253	}
1254
1255	itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1256	pt->pt_proc = p;
1257	pt->pt_poverruns = 0;
1258	pt->pt_entry = timerid;
1259
1260	pts->pts_timers[timerid] = &pt->pt_itimer;
1261	itimer_unlock();
1262
1263	return copyout(&timerid, tid, sizeof(timerid));
1264}
1265
1266/*
1267 * sys_timer_delete:
1268 *
1269 *	System call to delete a POSIX timer.
1270 */
1271int
1272sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1273    register_t *retval)
1274{
1275	/* {
1276		syscallarg(timer_t) timerid;
1277	} */
1278	struct proc *p = l->l_proc;
1279	timer_t timerid;
1280	struct ptimers *pts;
1281	struct itimer *it, *itn;
1282
1283	timerid = SCARG(uap, timerid);
1284	pts = p->p_timers;
1285
1286	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1287		return (EINVAL);
1288
1289	itimer_lock();
1290	if ((it = pts->pts_timers[timerid]) == NULL) {
1291		itimer_unlock();
1292		return (EINVAL);
1293	}
1294
1295	if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1296		if (it->it_active) {
1297			itn = LIST_NEXT(it, it_list);
1298			LIST_REMOVE(it, it_list);
1299			for ( ; itn; itn = LIST_NEXT(itn, it_list))
1300				timespecadd(&it->it_time.it_value,
1301				    &itn->it_time.it_value,
1302				    &itn->it_time.it_value);
1303			it->it_active = false;
1304		}
1305	}
1306
1307	/* Free the timer and release the lock.  */
1308	ptimer_free(pts, timerid);
1309
1310	return (0);
1311}
1312
1313/*
1314 * sys___timer_settime50:
1315 *
1316 *	System call to set/arm a POSIX timer.
1317 */
1318int
1319sys___timer_settime50(struct lwp *l,
1320    const struct sys___timer_settime50_args *uap,
1321    register_t *retval)
1322{
1323	/* {
1324		syscallarg(timer_t) timerid;
1325		syscallarg(int) flags;
1326		syscallarg(const struct itimerspec *) value;
1327		syscallarg(struct itimerspec *) ovalue;
1328	} */
1329	int error;
1330	struct itimerspec value, ovalue, *ovp = NULL;
1331
1332	if ((error = copyin(SCARG(uap, value), &value,
1333	    sizeof(struct itimerspec))) != 0)
1334		return (error);
1335
1336	if (SCARG(uap, ovalue))
1337		ovp = &ovalue;
1338
1339	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1340	    SCARG(uap, flags), l->l_proc)) != 0)
1341		return error;
1342
1343	if (ovp)
1344		return copyout(&ovalue, SCARG(uap, ovalue),
1345		    sizeof(struct itimerspec));
1346	return 0;
1347}
1348
1349int
1350dotimer_settime(int timerid, struct itimerspec *value,
1351    struct itimerspec *ovalue, int flags, struct proc *p)
1352{
1353	struct timespec now;
1354	struct itimerspec val, oval;
1355	struct ptimers *pts;
1356	struct itimer *it;
1357	int error;
1358
1359	pts = p->p_timers;
1360
1361	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1362		return EINVAL;
1363	val = *value;
1364	if ((error = itimespecfix(&val.it_value)) != 0 ||
1365	    (error = itimespecfix(&val.it_interval)) != 0)
1366		return error;
1367
1368	itimer_lock();
1369 restart:
1370	if ((it = pts->pts_timers[timerid]) == NULL) {
1371		itimer_unlock();
1372		return EINVAL;
1373	}
1374
1375	oval = it->it_time;
1376	it->it_time = val;
1377
1378	/*
1379	 * If we've been passed a relative time for a realtime timer,
1380	 * convert it to absolute; if an absolute time for a virtual
1381	 * timer, convert it to relative and make sure we don't set it
1382	 * to zero, which would cancel the timer, or let it go
1383	 * negative, which would confuse the comparison tests.
1384	 */
1385	if (timespecisset(&it->it_time.it_value)) {
1386		if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1387			if ((flags & TIMER_ABSTIME) == 0) {
1388				if (it->it_clockid == CLOCK_REALTIME) {
1389					getnanotime(&now);
1390				} else { /* CLOCK_MONOTONIC */
1391					getnanouptime(&now);
1392				}
1393				timespecadd(&it->it_time.it_value, &now,
1394				    &it->it_time.it_value);
1395			}
1396		} else {
1397			if ((flags & TIMER_ABSTIME) != 0) {
1398				getnanotime(&now);
1399				timespecsub(&it->it_time.it_value, &now,
1400				    &it->it_time.it_value);
1401				if (!timespecisset(&it->it_time.it_value) ||
1402				    it->it_time.it_value.tv_sec < 0) {
1403					it->it_time.it_value.tv_sec = 0;
1404					it->it_time.it_value.tv_nsec = 1;
1405				}
1406			}
1407		}
1408	}
1409
1410	error = itimer_settime(it);
1411	if (error == ERESTART) {
1412		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1413		goto restart;
1414	}
1415	KASSERT(error == 0);
1416	itimer_unlock();
1417
1418	if (ovalue)
1419		*ovalue = oval;
1420
1421	return (0);
1422}
1423
1424/*
1425 * sys___timer_gettime50:
1426 *
1427 *	System call to return the time remaining until a POSIX timer fires.
1428 */
1429int
1430sys___timer_gettime50(struct lwp *l,
1431    const struct sys___timer_gettime50_args *uap, register_t *retval)
1432{
1433	/* {
1434		syscallarg(timer_t) timerid;
1435		syscallarg(struct itimerspec *) value;
1436	} */
1437	struct itimerspec its;
1438	int error;
1439
1440	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1441	    &its)) != 0)
1442		return error;
1443
1444	return copyout(&its, SCARG(uap, value), sizeof(its));
1445}
1446
1447int
1448dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1449{
1450	struct itimer *it;
1451	struct ptimers *pts;
1452
1453	pts = p->p_timers;
1454	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1455		return (EINVAL);
1456	itimer_lock();
1457	if ((it = pts->pts_timers[timerid]) == NULL) {
1458		itimer_unlock();
1459		return (EINVAL);
1460	}
1461	itimer_gettime(it, its);
1462	itimer_unlock();
1463
1464	return 0;
1465}
1466
1467/*
1468 * sys_timer_getoverrun:
1469 *
1470 *	System call to return the number of times a POSIX timer has
1471 *	expired while a notification was already pending.  The counter
1472 *	is reset when a timer expires and a notification can be posted.
1473 */
1474int
1475sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1476    register_t *retval)
1477{
1478	/* {
1479		syscallarg(timer_t) timerid;
1480	} */
1481	struct proc *p = l->l_proc;
1482	struct ptimers *pts;
1483	int timerid;
1484	struct itimer *it;
1485	struct ptimer *pt;
1486
1487	timerid = SCARG(uap, timerid);
1488
1489	pts = p->p_timers;
1490	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1491		return (EINVAL);
1492	itimer_lock();
1493	if ((it = pts->pts_timers[timerid]) == NULL) {
1494		itimer_unlock();
1495		return (EINVAL);
1496	}
1497	pt = container_of(it, struct ptimer, pt_itimer);
1498	*retval = pt->pt_poverruns;
1499	if (*retval >= DELAYTIMER_MAX)
1500		*retval = DELAYTIMER_MAX;
1501	itimer_unlock();
1502
1503	return (0);
1504}
1505
1506/*
1507 * sys___getitimer50:
1508 *
1509 *	System call to get the time remaining before a BSD timer fires.
1510 */
1511int
1512sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1513    register_t *retval)
1514{
1515	/* {
1516		syscallarg(int) which;
1517		syscallarg(struct itimerval *) itv;
1518	} */
1519	struct proc *p = l->l_proc;
1520	struct itimerval aitv;
1521	int error;
1522
1523	memset(&aitv, 0, sizeof(aitv));
1524	error = dogetitimer(p, SCARG(uap, which), &aitv);
1525	if (error)
1526		return error;
1527	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1528}
1529
1530int
1531dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1532{
1533	struct ptimers *pts;
1534	struct itimer *it;
1535	struct itimerspec its;
1536
1537	if ((u_int)which > ITIMER_MONOTONIC)
1538		return (EINVAL);
1539
1540	itimer_lock();
1541	pts = p->p_timers;
1542	if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1543		timerclear(&itvp->it_value);
1544		timerclear(&itvp->it_interval);
1545	} else {
1546		itimer_gettime(it, &its);
1547		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1548		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1549	}
1550	itimer_unlock();
1551
1552	return 0;
1553}
1554
1555/*
1556 * sys___setitimer50:
1557 *
1558 *	System call to set/arm a BSD timer.
1559 */
1560int
1561sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1562    register_t *retval)
1563{
1564	/* {
1565		syscallarg(int) which;
1566		syscallarg(const struct itimerval *) itv;
1567		syscallarg(struct itimerval *) oitv;
1568	} */
1569	struct proc *p = l->l_proc;
1570	int which = SCARG(uap, which);
1571	struct sys___getitimer50_args getargs;
1572	const struct itimerval *itvp;
1573	struct itimerval aitv;
1574	int error;
1575
1576	if ((u_int)which > ITIMER_MONOTONIC)
1577		return (EINVAL);
1578	itvp = SCARG(uap, itv);
1579	if (itvp &&
1580	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1581		return (error);
1582	if (SCARG(uap, oitv) != NULL) {
1583		SCARG(&getargs, which) = which;
1584		SCARG(&getargs, itv) = SCARG(uap, oitv);
1585		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1586			return (error);
1587	}
1588	if (itvp == 0)
1589		return (0);
1590
1591	return dosetitimer(p, which, &aitv);
1592}
1593
1594int
1595dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1596{
1597	struct timespec now;
1598	struct ptimers *pts;
1599	struct ptimer *spare;
1600	struct itimer *it;
1601	struct itlist *itl;
1602	int error;
1603
1604	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1605	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1606		return (EINVAL);
1607
1608	/*
1609	 * Don't bother allocating data structures if the process just
1610	 * wants to clear the timer.
1611	 */
1612	spare = NULL;
1613	pts = p->p_timers;
1614 retry:
1615	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1616	    pts->pts_timers[which] == NULL))
1617		return (0);
1618	if (pts == NULL)
1619		pts = ptimers_alloc(p);
1620	itimer_lock();
1621 restart:
1622	it = pts->pts_timers[which];
1623	if (it == NULL) {
1624		struct ptimer *pt;
1625
1626		if (spare == NULL) {
1627			itimer_unlock();
1628			spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1629			goto retry;
1630		}
1631		pt = spare;
1632		spare = NULL;
1633
1634		it = &pt->pt_itimer;
1635		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1636		pt->pt_ev.sigev_value.sival_int = which;
1637
1638		switch (which) {
1639		case ITIMER_REAL:
1640		case ITIMER_MONOTONIC:
1641			itl = NULL;
1642			pt->pt_ev.sigev_signo = SIGALRM;
1643			break;
1644		case ITIMER_VIRTUAL:
1645			itl = &pts->pts_virtual;
1646			pt->pt_ev.sigev_signo = SIGVTALRM;
1647			break;
1648		case ITIMER_PROF:
1649			itl = &pts->pts_prof;
1650			pt->pt_ev.sigev_signo = SIGPROF;
1651			break;
1652		default:
1653			panic("%s: can't happen %d", __func__, which);
1654		}
1655		itimer_init(it, &ptimer_itimer_ops, which, itl);
1656		pt->pt_proc = p;
1657		pt->pt_entry = which;
1658
1659		pts->pts_timers[which] = it;
1660	}
1661
1662	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1663	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1664
1665	if (timespecisset(&it->it_time.it_value)) {
1666		/* Convert to absolute time */
1667		/* XXX need to wrap in splclock for timecounters case? */
1668		switch (which) {
1669		case ITIMER_REAL:
1670			getnanotime(&now);
1671			timespecadd(&it->it_time.it_value, &now,
1672			    &it->it_time.it_value);
1673			break;
1674		case ITIMER_MONOTONIC:
1675			getnanouptime(&now);
1676			timespecadd(&it->it_time.it_value, &now,
1677			    &it->it_time.it_value);
1678			break;
1679		default:
1680			break;
1681		}
1682	}
1683	error = itimer_settime(it);
1684	if (error == ERESTART) {
1685		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1686		goto restart;
1687	}
1688	KASSERT(error == 0);
1689	itimer_unlock();
1690	if (spare != NULL)
1691		kmem_free(spare, sizeof(*spare));
1692
1693	return (0);
1694}
1695
1696/*
1697 * ptimer_tick:
1698 *
1699 *	Called from hardclock() to decrement per-process virtual timers.
1700 */
1701void
1702ptimer_tick(lwp_t *l, bool user)
1703{
1704	struct ptimers *pts;
1705	struct itimer *it;
1706	proc_t *p;
1707
1708	p = l->l_proc;
1709	if (p->p_timers == NULL)
1710		return;
1711
1712	itimer_lock();
1713	if ((pts = l->l_proc->p_timers) != NULL) {
1714		/*
1715		 * Run current process's virtual and profile time, as needed.
1716		 */
1717		if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1718			if (itimer_decr(it, tick * 1000))
1719				(*it->it_ops->ito_fire)(it);
1720		if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1721			if (itimer_decr(it, tick * 1000))
1722				(*it->it_ops->ito_fire)(it);
1723	}
1724	itimer_unlock();
1725}
1726
1727/*
1728 * ptimer_intr:
1729 *
1730 *	Software interrupt handler for processing per-process
1731 *	timer expiration.
1732 */
1733static void
1734ptimer_intr(void *cookie)
1735{
1736	ksiginfo_t ksi;
1737	struct itimer *it;
1738	struct ptimer *pt;
1739	proc_t *p;
1740
1741	mutex_enter(&proc_lock);
1742	itimer_lock();
1743	while ((it = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1744		TAILQ_REMOVE(&ptimer_queue, it, it_chain);
1745		KASSERT(it->it_ops->ito_queue == &ptimer_queue);
1746		KASSERT(it->it_queued);
1747		it->it_queued = false;
1748
1749		pt = container_of(it, struct ptimer, pt_itimer);
1750
1751		p = pt->pt_proc;
1752		if (p->p_timers == NULL) {
1753			/* Process is dying. */
1754			continue;
1755		}
1756		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1757			continue;
1758		}
1759		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1760			it->it_overruns++;
1761			continue;
1762		}
1763
1764		KSI_INIT(&ksi);
1765		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1766		ksi.ksi_code = SI_TIMER;
1767		ksi.ksi_value = pt->pt_ev.sigev_value;
1768		pt->pt_poverruns = it->it_overruns;
1769		it->it_overruns = 0;
1770		itimer_unlock();
1771		kpsignal(p, &ksi, NULL);
1772		itimer_lock();
1773	}
1774	itimer_unlock();
1775	mutex_exit(&proc_lock);
1776}
1777