kern_time.c revision 1.205
1/*	$NetBSD: kern_time.c,v 1.205 2020/05/23 23:42:43 ad Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61 */
62
63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.205 2020/05/23 23:42:43 ad Exp $");
65
66#include <sys/param.h>
67#include <sys/resourcevar.h>
68#include <sys/kernel.h>
69#include <sys/systm.h>
70#include <sys/proc.h>
71#include <sys/vnode.h>
72#include <sys/signalvar.h>
73#include <sys/syslog.h>
74#include <sys/timetc.h>
75#include <sys/timex.h>
76#include <sys/kauth.h>
77#include <sys/mount.h>
78#include <sys/syscallargs.h>
79#include <sys/cpu.h>
80
81static void	timer_intr(void *);
82static void	itimerfire(struct ptimer *);
83static void	itimerfree(struct ptimers *, int);
84
85kmutex_t	timer_lock;
86
87static void	*timer_sih;
88static TAILQ_HEAD(, ptimer) timer_queue;
89
90struct pool ptimer_pool, ptimers_pool;
91
92#define	CLOCK_VIRTUAL_P(clockid)	\
93	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97CTASSERT(ITIMER_PROF == CLOCK_PROF);
98CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100#define	DELAYTIMER_MAX	32
101
102/*
103 * Initialize timekeeping.
104 */
105void
106time_init(void)
107{
108
109	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110	    &pool_allocator_nointr, IPL_NONE);
111	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112	    &pool_allocator_nointr, IPL_NONE);
113}
114
115void
116time_init2(void)
117{
118
119	TAILQ_INIT(&timer_queue);
120	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122	    timer_intr, NULL);
123}
124
125/* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers.  Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134/* This function is used by clock_settime and settimeofday */
135static int
136settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137{
138	struct timespec delta, now;
139
140	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
141	nanotime(&now);
142	timespecsub(ts, &now, &delta);
143
144	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147		return (EPERM);
148	}
149
150#ifdef notyet
151	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
152		return (EPERM);
153	}
154#endif
155
156	tc_setclock(ts);
157
158	resettodr();
159
160	return (0);
161}
162
163int
164settime(struct proc *p, struct timespec *ts)
165{
166	return (settime1(p, ts, true));
167}
168
169/* ARGSUSED */
170int
171sys___clock_gettime50(struct lwp *l,
172    const struct sys___clock_gettime50_args *uap, register_t *retval)
173{
174	/* {
175		syscallarg(clockid_t) clock_id;
176		syscallarg(struct timespec *) tp;
177	} */
178	int error;
179	struct timespec ats;
180
181	error = clock_gettime1(SCARG(uap, clock_id), &ats);
182	if (error != 0)
183		return error;
184
185	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
186}
187
188/* ARGSUSED */
189int
190sys___clock_settime50(struct lwp *l,
191    const struct sys___clock_settime50_args *uap, register_t *retval)
192{
193	/* {
194		syscallarg(clockid_t) clock_id;
195		syscallarg(const struct timespec *) tp;
196	} */
197	int error;
198	struct timespec ats;
199
200	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
201		return error;
202
203	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
204}
205
206
207int
208clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
209    bool check_kauth)
210{
211	int error;
212
213	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
214		return EINVAL;
215
216	switch (clock_id) {
217	case CLOCK_REALTIME:
218		if ((error = settime1(p, tp, check_kauth)) != 0)
219			return (error);
220		break;
221	case CLOCK_MONOTONIC:
222		return (EINVAL);	/* read-only clock */
223	default:
224		return (EINVAL);
225	}
226
227	return 0;
228}
229
230int
231sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
232    register_t *retval)
233{
234	/* {
235		syscallarg(clockid_t) clock_id;
236		syscallarg(struct timespec *) tp;
237	} */
238	struct timespec ts;
239	int error;
240
241	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
242		return error;
243
244	if (SCARG(uap, tp))
245		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
246
247	return error;
248}
249
250int
251clock_getres1(clockid_t clock_id, struct timespec *ts)
252{
253
254	switch (clock_id) {
255	case CLOCK_REALTIME:
256	case CLOCK_MONOTONIC:
257		ts->tv_sec = 0;
258		if (tc_getfrequency() > 1000000000)
259			ts->tv_nsec = 1;
260		else
261			ts->tv_nsec = 1000000000 / tc_getfrequency();
262		break;
263	default:
264		return EINVAL;
265	}
266
267	return 0;
268}
269
270/* ARGSUSED */
271int
272sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
273    register_t *retval)
274{
275	/* {
276		syscallarg(struct timespec *) rqtp;
277		syscallarg(struct timespec *) rmtp;
278	} */
279	struct timespec rmt, rqt;
280	int error, error1;
281
282	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
283	if (error)
284		return (error);
285
286	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
287	    SCARG(uap, rmtp) ? &rmt : NULL);
288	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
289		return error;
290
291	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
292	return error1 ? error1 : error;
293}
294
295/* ARGSUSED */
296int
297sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
298    register_t *retval)
299{
300	/* {
301		syscallarg(clockid_t) clock_id;
302		syscallarg(int) flags;
303		syscallarg(struct timespec *) rqtp;
304		syscallarg(struct timespec *) rmtp;
305	} */
306	struct timespec rmt, rqt;
307	int error, error1;
308
309	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
310	if (error)
311		goto out;
312
313	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
314	    SCARG(uap, rmtp) ? &rmt : NULL);
315	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
316		goto out;
317
318	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
319	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
320		error = error1;
321out:
322	*retval = error;
323	return 0;
324}
325
326int
327nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
328    struct timespec *rmt)
329{
330	struct timespec rmtstart;
331	int error, timo;
332
333	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
334		if (error == ETIMEDOUT) {
335			error = 0;
336			if (rmt != NULL)
337				rmt->tv_sec = rmt->tv_nsec = 0;
338		}
339		return error;
340	}
341
342	/*
343	 * Avoid inadvertently sleeping forever
344	 */
345	if (timo == 0)
346		timo = 1;
347again:
348	error = kpause("nanoslp", true, timo, NULL);
349	if (error == EWOULDBLOCK)
350		error = 0;
351	if (rmt != NULL || error == 0) {
352		struct timespec rmtend;
353		struct timespec t0;
354		struct timespec *t;
355		int err;
356
357		err = clock_gettime1(clock_id, &rmtend);
358		if (err != 0)
359			return err;
360
361		t = (rmt != NULL) ? rmt : &t0;
362		if (flags & TIMER_ABSTIME) {
363			timespecsub(rqt, &rmtend, t);
364		} else {
365			timespecsub(&rmtend, &rmtstart, t);
366			timespecsub(rqt, t, t);
367		}
368		if (t->tv_sec < 0)
369			timespecclear(t);
370		if (error == 0) {
371			timo = tstohz(t);
372			if (timo > 0)
373				goto again;
374		}
375	}
376
377	if (error == ERESTART)
378		error = EINTR;
379
380	return error;
381}
382
383int
384sys_clock_getcpuclockid2(struct lwp *l,
385    const struct sys_clock_getcpuclockid2_args *uap,
386    register_t *retval)
387{
388	/* {
389		syscallarg(idtype_t idtype;
390		syscallarg(id_t id);
391		syscallarg(clockid_t *)clock_id;
392	} */
393	pid_t pid;
394	lwpid_t lid;
395	clockid_t clock_id;
396	id_t id = SCARG(uap, id);
397
398	switch (SCARG(uap, idtype)) {
399	case P_PID:
400		pid = id == 0 ? l->l_proc->p_pid : id;
401		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
402		break;
403	case P_LWPID:
404		lid = id == 0 ? l->l_lid : id;
405		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
406		break;
407	default:
408		return EINVAL;
409	}
410	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
411}
412
413/* ARGSUSED */
414int
415sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
416    register_t *retval)
417{
418	/* {
419		syscallarg(struct timeval *) tp;
420		syscallarg(void *) tzp;		really "struct timezone *";
421	} */
422	struct timeval atv;
423	int error = 0;
424	struct timezone tzfake;
425
426	if (SCARG(uap, tp)) {
427		memset(&atv, 0, sizeof(atv));
428		microtime(&atv);
429		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
430		if (error)
431			return (error);
432	}
433	if (SCARG(uap, tzp)) {
434		/*
435		 * NetBSD has no kernel notion of time zone, so we just
436		 * fake up a timezone struct and return it if demanded.
437		 */
438		tzfake.tz_minuteswest = 0;
439		tzfake.tz_dsttime = 0;
440		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
441	}
442	return (error);
443}
444
445/* ARGSUSED */
446int
447sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
448    register_t *retval)
449{
450	/* {
451		syscallarg(const struct timeval *) tv;
452		syscallarg(const void *) tzp; really "const struct timezone *";
453	} */
454
455	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
456}
457
458int
459settimeofday1(const struct timeval *utv, bool userspace,
460    const void *utzp, struct lwp *l, bool check_kauth)
461{
462	struct timeval atv;
463	struct timespec ts;
464	int error;
465
466	/* Verify all parameters before changing time. */
467
468	/*
469	 * NetBSD has no kernel notion of time zone, and only an
470	 * obsolete program would try to set it, so we log a warning.
471	 */
472	if (utzp)
473		log(LOG_WARNING, "pid %d attempted to set the "
474		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
475
476	if (utv == NULL)
477		return 0;
478
479	if (userspace) {
480		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
481			return error;
482		utv = &atv;
483	}
484
485	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
486		return EINVAL;
487
488	TIMEVAL_TO_TIMESPEC(utv, &ts);
489	return settime1(l->l_proc, &ts, check_kauth);
490}
491
492int	time_adjusted;			/* set if an adjustment is made */
493
494/* ARGSUSED */
495int
496sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
497    register_t *retval)
498{
499	/* {
500		syscallarg(const struct timeval *) delta;
501		syscallarg(struct timeval *) olddelta;
502	} */
503	int error;
504	struct timeval atv, oldatv;
505
506	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
507	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
508		return error;
509
510	if (SCARG(uap, delta)) {
511		error = copyin(SCARG(uap, delta), &atv,
512		    sizeof(*SCARG(uap, delta)));
513		if (error)
514			return (error);
515	}
516	adjtime1(SCARG(uap, delta) ? &atv : NULL,
517	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
518	if (SCARG(uap, olddelta))
519		error = copyout(&oldatv, SCARG(uap, olddelta),
520		    sizeof(*SCARG(uap, olddelta)));
521	return error;
522}
523
524void
525adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
526{
527	extern int64_t time_adjtime;  /* in kern_ntptime.c */
528
529	if (olddelta) {
530		memset(olddelta, 0, sizeof(*olddelta));
531		mutex_spin_enter(&timecounter_lock);
532		olddelta->tv_sec = time_adjtime / 1000000;
533		olddelta->tv_usec = time_adjtime % 1000000;
534		if (olddelta->tv_usec < 0) {
535			olddelta->tv_usec += 1000000;
536			olddelta->tv_sec--;
537		}
538		mutex_spin_exit(&timecounter_lock);
539	}
540
541	if (delta) {
542		mutex_spin_enter(&timecounter_lock);
543		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
544
545		if (time_adjtime) {
546			/* We need to save the system time during shutdown */
547			time_adjusted |= 1;
548		}
549		mutex_spin_exit(&timecounter_lock);
550	}
551}
552
553/*
554 * Interval timer support. Both the BSD getitimer() family and the POSIX
555 * timer_*() family of routines are supported.
556 *
557 * All timers are kept in an array pointed to by p_timers, which is
558 * allocated on demand - many processes don't use timers at all. The
559 * first four elements in this array are reserved for the BSD timers:
560 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
561 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
562 * allocated by the timer_create() syscall.
563 *
564 * Realtime timers are kept in the ptimer structure as an absolute
565 * time; virtual time timers are kept as a linked list of deltas.
566 * Virtual time timers are processed in the hardclock() routine of
567 * kern_clock.c.  The real time timer is processed by a callout
568 * routine, called from the softclock() routine.  Since a callout may
569 * be delayed in real time due to interrupt processing in the system,
570 * it is possible for the real time timeout routine (realtimeexpire,
571 * given below), to be delayed in real time past when it is supposed
572 * to occur.  It does not suffice, therefore, to reload the real timer
573 * .it_value from the real time timers .it_interval.  Rather, we
574 * compute the next time in absolute time the timer should go off.  */
575
576/* Allocate a POSIX realtime timer. */
577int
578sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
579    register_t *retval)
580{
581	/* {
582		syscallarg(clockid_t) clock_id;
583		syscallarg(struct sigevent *) evp;
584		syscallarg(timer_t *) timerid;
585	} */
586
587	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
588	    SCARG(uap, evp), copyin, l);
589}
590
591int
592timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
593    copyin_t fetch_event, struct lwp *l)
594{
595	int error;
596	timer_t timerid;
597	struct ptimers *pts;
598	struct ptimer *pt;
599	struct proc *p;
600
601	p = l->l_proc;
602
603	if ((u_int)id > CLOCK_MONOTONIC)
604		return (EINVAL);
605
606	if ((pts = p->p_timers) == NULL)
607		pts = timers_alloc(p);
608
609	pt = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
610	if (evp != NULL) {
611		if (((error =
612		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
613		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
614			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
615			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
616			 (pt->pt_ev.sigev_signo <= 0 ||
617			  pt->pt_ev.sigev_signo >= NSIG))) {
618			pool_put(&ptimer_pool, pt);
619			return (error ? error : EINVAL);
620		}
621	}
622
623	/* Find a free timer slot, skipping those reserved for setitimer(). */
624	mutex_spin_enter(&timer_lock);
625	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
626		if (pts->pts_timers[timerid] == NULL)
627			break;
628	if (timerid == TIMER_MAX) {
629		mutex_spin_exit(&timer_lock);
630		pool_put(&ptimer_pool, pt);
631		return EAGAIN;
632	}
633	if (evp == NULL) {
634		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
635		switch (id) {
636		case CLOCK_REALTIME:
637		case CLOCK_MONOTONIC:
638			pt->pt_ev.sigev_signo = SIGALRM;
639			break;
640		case CLOCK_VIRTUAL:
641			pt->pt_ev.sigev_signo = SIGVTALRM;
642			break;
643		case CLOCK_PROF:
644			pt->pt_ev.sigev_signo = SIGPROF;
645			break;
646		}
647		pt->pt_ev.sigev_value.sival_int = timerid;
648	}
649	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
650	pt->pt_info.ksi_errno = 0;
651	pt->pt_info.ksi_code = 0;
652	pt->pt_info.ksi_pid = p->p_pid;
653	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
654	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
655	pt->pt_type = id;
656	pt->pt_proc = p;
657	pt->pt_overruns = 0;
658	pt->pt_poverruns = 0;
659	pt->pt_entry = timerid;
660	pt->pt_queued = false;
661	timespecclear(&pt->pt_time.it_value);
662	if (!CLOCK_VIRTUAL_P(id))
663		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
664	else
665		pt->pt_active = 0;
666
667	pts->pts_timers[timerid] = pt;
668	mutex_spin_exit(&timer_lock);
669
670	return copyout(&timerid, tid, sizeof(timerid));
671}
672
673/* Delete a POSIX realtime timer */
674int
675sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
676    register_t *retval)
677{
678	/* {
679		syscallarg(timer_t) timerid;
680	} */
681	struct proc *p = l->l_proc;
682	timer_t timerid;
683	struct ptimers *pts;
684	struct ptimer *pt, *ptn;
685
686	timerid = SCARG(uap, timerid);
687	pts = p->p_timers;
688
689	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
690		return (EINVAL);
691
692	mutex_spin_enter(&timer_lock);
693	if ((pt = pts->pts_timers[timerid]) == NULL) {
694		mutex_spin_exit(&timer_lock);
695		return (EINVAL);
696	}
697	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
698		if (pt->pt_active) {
699			ptn = LIST_NEXT(pt, pt_list);
700			LIST_REMOVE(pt, pt_list);
701			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
702				timespecadd(&pt->pt_time.it_value,
703				    &ptn->pt_time.it_value,
704				    &ptn->pt_time.it_value);
705			pt->pt_active = 0;
706		}
707	}
708
709	/* Free the timer and release the lock.  */
710	itimerfree(pts, timerid);
711
712	return (0);
713}
714
715/*
716 * Set up the given timer. The value in pt->pt_time.it_value is taken
717 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
718 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
719 *
720 * If the callout had already fired but not yet run, fails with
721 * ERESTART -- caller must restart from the top to look up a timer.
722 */
723int
724timer_settime(struct ptimer *pt)
725{
726	struct ptimer *ptn, *pptn;
727	struct ptlist *ptl;
728
729	KASSERT(mutex_owned(&timer_lock));
730
731	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
732		/*
733		 * Try to stop the callout.  However, if it had already
734		 * fired, we have to drop the lock to wait for it, so
735		 * the world may have changed and pt may not be there
736		 * any more.  In that case, tell the caller to start
737		 * over from the top.
738		 */
739		if (callout_halt(&pt->pt_ch, &timer_lock))
740			return ERESTART;
741
742		/* Now we can touch pt and start it up again.  */
743		if (timespecisset(&pt->pt_time.it_value)) {
744			/*
745			 * Don't need to check tshzto() return value, here.
746			 * callout_reset() does it for us.
747			 */
748			callout_reset(&pt->pt_ch,
749			    pt->pt_type == CLOCK_MONOTONIC ?
750			    tshztoup(&pt->pt_time.it_value) :
751			    tshzto(&pt->pt_time.it_value),
752			    realtimerexpire, pt);
753		}
754	} else {
755		if (pt->pt_active) {
756			ptn = LIST_NEXT(pt, pt_list);
757			LIST_REMOVE(pt, pt_list);
758			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
759				timespecadd(&pt->pt_time.it_value,
760				    &ptn->pt_time.it_value,
761				    &ptn->pt_time.it_value);
762		}
763		if (timespecisset(&pt->pt_time.it_value)) {
764			if (pt->pt_type == CLOCK_VIRTUAL)
765				ptl = &pt->pt_proc->p_timers->pts_virtual;
766			else
767				ptl = &pt->pt_proc->p_timers->pts_prof;
768
769			for (ptn = LIST_FIRST(ptl), pptn = NULL;
770			     ptn && timespeccmp(&pt->pt_time.it_value,
771				 &ptn->pt_time.it_value, >);
772			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
773				timespecsub(&pt->pt_time.it_value,
774				    &ptn->pt_time.it_value,
775				    &pt->pt_time.it_value);
776
777			if (pptn)
778				LIST_INSERT_AFTER(pptn, pt, pt_list);
779			else
780				LIST_INSERT_HEAD(ptl, pt, pt_list);
781
782			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
783				timespecsub(&ptn->pt_time.it_value,
784				    &pt->pt_time.it_value,
785				    &ptn->pt_time.it_value);
786
787			pt->pt_active = 1;
788		} else
789			pt->pt_active = 0;
790	}
791
792	/* Success!  */
793	return 0;
794}
795
796void
797timer_gettime(struct ptimer *pt, struct itimerspec *aits)
798{
799	struct timespec now;
800	struct ptimer *ptn;
801
802	KASSERT(mutex_owned(&timer_lock));
803
804	*aits = pt->pt_time;
805	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
806		/*
807		 * Convert from absolute to relative time in .it_value
808		 * part of real time timer.  If time for real time
809		 * timer has passed return 0, else return difference
810		 * between current time and time for the timer to go
811		 * off.
812		 */
813		if (timespecisset(&aits->it_value)) {
814			if (pt->pt_type == CLOCK_REALTIME) {
815				getnanotime(&now);
816			} else { /* CLOCK_MONOTONIC */
817				getnanouptime(&now);
818			}
819			if (timespeccmp(&aits->it_value, &now, <))
820				timespecclear(&aits->it_value);
821			else
822				timespecsub(&aits->it_value, &now,
823				    &aits->it_value);
824		}
825	} else if (pt->pt_active) {
826		if (pt->pt_type == CLOCK_VIRTUAL)
827			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
828		else
829			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
830		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
831			timespecadd(&aits->it_value,
832			    &ptn->pt_time.it_value, &aits->it_value);
833		KASSERT(ptn != NULL); /* pt should be findable on the list */
834	} else
835		timespecclear(&aits->it_value);
836}
837
838
839
840/* Set and arm a POSIX realtime timer */
841int
842sys___timer_settime50(struct lwp *l,
843    const struct sys___timer_settime50_args *uap,
844    register_t *retval)
845{
846	/* {
847		syscallarg(timer_t) timerid;
848		syscallarg(int) flags;
849		syscallarg(const struct itimerspec *) value;
850		syscallarg(struct itimerspec *) ovalue;
851	} */
852	int error;
853	struct itimerspec value, ovalue, *ovp = NULL;
854
855	if ((error = copyin(SCARG(uap, value), &value,
856	    sizeof(struct itimerspec))) != 0)
857		return (error);
858
859	if (SCARG(uap, ovalue))
860		ovp = &ovalue;
861
862	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
863	    SCARG(uap, flags), l->l_proc)) != 0)
864		return error;
865
866	if (ovp)
867		return copyout(&ovalue, SCARG(uap, ovalue),
868		    sizeof(struct itimerspec));
869	return 0;
870}
871
872int
873dotimer_settime(int timerid, struct itimerspec *value,
874    struct itimerspec *ovalue, int flags, struct proc *p)
875{
876	struct timespec now;
877	struct itimerspec val, oval;
878	struct ptimers *pts;
879	struct ptimer *pt;
880	int error;
881
882	pts = p->p_timers;
883
884	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
885		return EINVAL;
886	val = *value;
887	if ((error = itimespecfix(&val.it_value)) != 0 ||
888	    (error = itimespecfix(&val.it_interval)) != 0)
889		return error;
890
891	mutex_spin_enter(&timer_lock);
892restart:
893	if ((pt = pts->pts_timers[timerid]) == NULL) {
894		mutex_spin_exit(&timer_lock);
895		return EINVAL;
896	}
897
898	oval = pt->pt_time;
899	pt->pt_time = val;
900
901	/*
902	 * If we've been passed a relative time for a realtime timer,
903	 * convert it to absolute; if an absolute time for a virtual
904	 * timer, convert it to relative and make sure we don't set it
905	 * to zero, which would cancel the timer, or let it go
906	 * negative, which would confuse the comparison tests.
907	 */
908	if (timespecisset(&pt->pt_time.it_value)) {
909		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
910			if ((flags & TIMER_ABSTIME) == 0) {
911				if (pt->pt_type == CLOCK_REALTIME) {
912					getnanotime(&now);
913				} else { /* CLOCK_MONOTONIC */
914					getnanouptime(&now);
915				}
916				timespecadd(&pt->pt_time.it_value, &now,
917				    &pt->pt_time.it_value);
918			}
919		} else {
920			if ((flags & TIMER_ABSTIME) != 0) {
921				getnanotime(&now);
922				timespecsub(&pt->pt_time.it_value, &now,
923				    &pt->pt_time.it_value);
924				if (!timespecisset(&pt->pt_time.it_value) ||
925				    pt->pt_time.it_value.tv_sec < 0) {
926					pt->pt_time.it_value.tv_sec = 0;
927					pt->pt_time.it_value.tv_nsec = 1;
928				}
929			}
930		}
931	}
932
933	error = timer_settime(pt);
934	if (error == ERESTART) {
935		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
936		goto restart;
937	}
938	KASSERT(error == 0);
939	mutex_spin_exit(&timer_lock);
940
941	if (ovalue)
942		*ovalue = oval;
943
944	return (0);
945}
946
947/* Return the time remaining until a POSIX timer fires. */
948int
949sys___timer_gettime50(struct lwp *l,
950    const struct sys___timer_gettime50_args *uap, register_t *retval)
951{
952	/* {
953		syscallarg(timer_t) timerid;
954		syscallarg(struct itimerspec *) value;
955	} */
956	struct itimerspec its;
957	int error;
958
959	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
960	    &its)) != 0)
961		return error;
962
963	return copyout(&its, SCARG(uap, value), sizeof(its));
964}
965
966int
967dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
968{
969	struct ptimer *pt;
970	struct ptimers *pts;
971
972	pts = p->p_timers;
973	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
974		return (EINVAL);
975	mutex_spin_enter(&timer_lock);
976	if ((pt = pts->pts_timers[timerid]) == NULL) {
977		mutex_spin_exit(&timer_lock);
978		return (EINVAL);
979	}
980	timer_gettime(pt, its);
981	mutex_spin_exit(&timer_lock);
982
983	return 0;
984}
985
986/*
987 * Return the count of the number of times a periodic timer expired
988 * while a notification was already pending. The counter is reset when
989 * a timer expires and a notification can be posted.
990 */
991int
992sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
993    register_t *retval)
994{
995	/* {
996		syscallarg(timer_t) timerid;
997	} */
998	struct proc *p = l->l_proc;
999	struct ptimers *pts;
1000	int timerid;
1001	struct ptimer *pt;
1002
1003	timerid = SCARG(uap, timerid);
1004
1005	pts = p->p_timers;
1006	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1007		return (EINVAL);
1008	mutex_spin_enter(&timer_lock);
1009	if ((pt = pts->pts_timers[timerid]) == NULL) {
1010		mutex_spin_exit(&timer_lock);
1011		return (EINVAL);
1012	}
1013	*retval = pt->pt_poverruns;
1014	if (*retval >= DELAYTIMER_MAX)
1015		*retval = DELAYTIMER_MAX;
1016	mutex_spin_exit(&timer_lock);
1017
1018	return (0);
1019}
1020
1021/*
1022 * Real interval timer expired:
1023 * send process whose timer expired an alarm signal.
1024 * If time is not set up to reload, then just return.
1025 * Else compute next time timer should go off which is > current time.
1026 * This is where delay in processing this timeout causes multiple
1027 * SIGALRM calls to be compressed into one.
1028 */
1029void
1030realtimerexpire(void *arg)
1031{
1032	uint64_t last_val, next_val, interval, now_ns;
1033	struct timespec now, next;
1034	struct ptimer *pt;
1035	int backwards;
1036
1037	pt = arg;
1038
1039	mutex_spin_enter(&timer_lock);
1040	itimerfire(pt);
1041
1042	if (!timespecisset(&pt->pt_time.it_interval)) {
1043		timespecclear(&pt->pt_time.it_value);
1044		mutex_spin_exit(&timer_lock);
1045		return;
1046	}
1047
1048	if (pt->pt_type == CLOCK_MONOTONIC) {
1049		getnanouptime(&now);
1050	} else {
1051		getnanotime(&now);
1052	}
1053	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1054	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1055	/* Handle the easy case of non-overflown timers first. */
1056	if (!backwards && timespeccmp(&next, &now, >)) {
1057		pt->pt_time.it_value = next;
1058	} else {
1059		now_ns = timespec2ns(&now);
1060		last_val = timespec2ns(&pt->pt_time.it_value);
1061		interval = timespec2ns(&pt->pt_time.it_interval);
1062
1063		next_val = now_ns +
1064		    (now_ns - last_val + interval - 1) % interval;
1065
1066		if (backwards)
1067			next_val += interval;
1068		else
1069			pt->pt_overruns += (now_ns - last_val) / interval;
1070
1071		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1072		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1073	}
1074
1075	/*
1076	 * Reset the callout, if it's not going away.
1077	 *
1078	 * Don't need to check tshzto() return value, here.
1079	 * callout_reset() does it for us.
1080	 */
1081	if (!pt->pt_dying)
1082		callout_reset(&pt->pt_ch,
1083		    (pt->pt_type == CLOCK_MONOTONIC
1084			? tshztoup(&pt->pt_time.it_value)
1085			: tshzto(&pt->pt_time.it_value)),
1086		    realtimerexpire, pt);
1087	mutex_spin_exit(&timer_lock);
1088}
1089
1090/* BSD routine to get the value of an interval timer. */
1091/* ARGSUSED */
1092int
1093sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1094    register_t *retval)
1095{
1096	/* {
1097		syscallarg(int) which;
1098		syscallarg(struct itimerval *) itv;
1099	} */
1100	struct proc *p = l->l_proc;
1101	struct itimerval aitv;
1102	int error;
1103
1104	memset(&aitv, 0, sizeof(aitv));
1105	error = dogetitimer(p, SCARG(uap, which), &aitv);
1106	if (error)
1107		return error;
1108	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1109}
1110
1111int
1112dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1113{
1114	struct ptimers *pts;
1115	struct ptimer *pt;
1116	struct itimerspec its;
1117
1118	if ((u_int)which > ITIMER_MONOTONIC)
1119		return (EINVAL);
1120
1121	mutex_spin_enter(&timer_lock);
1122	pts = p->p_timers;
1123	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1124		timerclear(&itvp->it_value);
1125		timerclear(&itvp->it_interval);
1126	} else {
1127		timer_gettime(pt, &its);
1128		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1129		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1130	}
1131	mutex_spin_exit(&timer_lock);
1132
1133	return 0;
1134}
1135
1136/* BSD routine to set/arm an interval timer. */
1137/* ARGSUSED */
1138int
1139sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1140    register_t *retval)
1141{
1142	/* {
1143		syscallarg(int) which;
1144		syscallarg(const struct itimerval *) itv;
1145		syscallarg(struct itimerval *) oitv;
1146	} */
1147	struct proc *p = l->l_proc;
1148	int which = SCARG(uap, which);
1149	struct sys___getitimer50_args getargs;
1150	const struct itimerval *itvp;
1151	struct itimerval aitv;
1152	int error;
1153
1154	if ((u_int)which > ITIMER_MONOTONIC)
1155		return (EINVAL);
1156	itvp = SCARG(uap, itv);
1157	if (itvp &&
1158	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1159		return (error);
1160	if (SCARG(uap, oitv) != NULL) {
1161		SCARG(&getargs, which) = which;
1162		SCARG(&getargs, itv) = SCARG(uap, oitv);
1163		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1164			return (error);
1165	}
1166	if (itvp == 0)
1167		return (0);
1168
1169	return dosetitimer(p, which, &aitv);
1170}
1171
1172int
1173dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1174{
1175	struct timespec now;
1176	struct ptimers *pts;
1177	struct ptimer *pt, *spare;
1178	int error;
1179
1180	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1181	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1182		return (EINVAL);
1183
1184	/*
1185	 * Don't bother allocating data structures if the process just
1186	 * wants to clear the timer.
1187	 */
1188	spare = NULL;
1189	pts = p->p_timers;
1190 retry:
1191	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1192	    pts->pts_timers[which] == NULL))
1193		return (0);
1194	if (pts == NULL)
1195		pts = timers_alloc(p);
1196	mutex_spin_enter(&timer_lock);
1197restart:
1198	pt = pts->pts_timers[which];
1199	if (pt == NULL) {
1200		if (spare == NULL) {
1201			mutex_spin_exit(&timer_lock);
1202			spare = pool_get(&ptimer_pool, PR_WAITOK | PR_ZERO);
1203			goto retry;
1204		}
1205		pt = spare;
1206		spare = NULL;
1207		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1208		pt->pt_ev.sigev_value.sival_int = which;
1209		pt->pt_overruns = 0;
1210		pt->pt_proc = p;
1211		pt->pt_type = which;
1212		pt->pt_entry = which;
1213		pt->pt_queued = false;
1214		if (!CLOCK_VIRTUAL_P(which))
1215			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1216		else
1217			pt->pt_active = 0;
1218
1219		switch (which) {
1220		case ITIMER_REAL:
1221		case ITIMER_MONOTONIC:
1222			pt->pt_ev.sigev_signo = SIGALRM;
1223			break;
1224		case ITIMER_VIRTUAL:
1225			pt->pt_ev.sigev_signo = SIGVTALRM;
1226			break;
1227		case ITIMER_PROF:
1228			pt->pt_ev.sigev_signo = SIGPROF;
1229			break;
1230		}
1231		pts->pts_timers[which] = pt;
1232	}
1233
1234	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1235	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1236
1237	if (timespecisset(&pt->pt_time.it_value)) {
1238		/* Convert to absolute time */
1239		/* XXX need to wrap in splclock for timecounters case? */
1240		switch (which) {
1241		case ITIMER_REAL:
1242			getnanotime(&now);
1243			timespecadd(&pt->pt_time.it_value, &now,
1244			    &pt->pt_time.it_value);
1245			break;
1246		case ITIMER_MONOTONIC:
1247			getnanouptime(&now);
1248			timespecadd(&pt->pt_time.it_value, &now,
1249			    &pt->pt_time.it_value);
1250			break;
1251		default:
1252			break;
1253		}
1254	}
1255	error = timer_settime(pt);
1256	if (error == ERESTART) {
1257		KASSERT(!CLOCK_VIRTUAL_P(pt->pt_type));
1258		goto restart;
1259	}
1260	KASSERT(error == 0);
1261	mutex_spin_exit(&timer_lock);
1262	if (spare != NULL)
1263		pool_put(&ptimer_pool, spare);
1264
1265	return (0);
1266}
1267
1268/* Utility routines to manage the array of pointers to timers. */
1269struct ptimers *
1270timers_alloc(struct proc *p)
1271{
1272	struct ptimers *pts;
1273	int i;
1274
1275	pts = pool_get(&ptimers_pool, PR_WAITOK);
1276	LIST_INIT(&pts->pts_virtual);
1277	LIST_INIT(&pts->pts_prof);
1278	for (i = 0; i < TIMER_MAX; i++)
1279		pts->pts_timers[i] = NULL;
1280	mutex_spin_enter(&timer_lock);
1281	if (p->p_timers == NULL) {
1282		p->p_timers = pts;
1283		mutex_spin_exit(&timer_lock);
1284		return pts;
1285	}
1286	mutex_spin_exit(&timer_lock);
1287	pool_put(&ptimers_pool, pts);
1288	return p->p_timers;
1289}
1290
1291/*
1292 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1293 * then clean up all timers and free all the data structures. If
1294 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1295 * by timer_create(), not the BSD setitimer() timers, and only free the
1296 * structure if none of those remain.
1297 */
1298void
1299timers_free(struct proc *p, int which)
1300{
1301	struct ptimers *pts;
1302	struct ptimer *ptn;
1303	struct timespec ts;
1304	int i;
1305
1306	if (p->p_timers == NULL)
1307		return;
1308
1309	pts = p->p_timers;
1310	mutex_spin_enter(&timer_lock);
1311	if (which == TIMERS_ALL) {
1312		p->p_timers = NULL;
1313		i = 0;
1314	} else {
1315		timespecclear(&ts);
1316		for (ptn = LIST_FIRST(&pts->pts_virtual);
1317		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1318		     ptn = LIST_NEXT(ptn, pt_list)) {
1319			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1320			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1321		}
1322		LIST_FIRST(&pts->pts_virtual) = NULL;
1323		if (ptn) {
1324			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1325			timespecadd(&ts, &ptn->pt_time.it_value,
1326			    &ptn->pt_time.it_value);
1327			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1328		}
1329		timespecclear(&ts);
1330		for (ptn = LIST_FIRST(&pts->pts_prof);
1331		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1332		     ptn = LIST_NEXT(ptn, pt_list)) {
1333			KASSERT(ptn->pt_type == CLOCK_PROF);
1334			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1335		}
1336		LIST_FIRST(&pts->pts_prof) = NULL;
1337		if (ptn) {
1338			KASSERT(ptn->pt_type == CLOCK_PROF);
1339			timespecadd(&ts, &ptn->pt_time.it_value,
1340			    &ptn->pt_time.it_value);
1341			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1342		}
1343		i = TIMER_MIN;
1344	}
1345	for ( ; i < TIMER_MAX; i++) {
1346		if (pts->pts_timers[i] != NULL) {
1347			/* Free the timer and release the lock.  */
1348			itimerfree(pts, i);
1349			/* Reacquire the lock for the next one.  */
1350			mutex_spin_enter(&timer_lock);
1351		}
1352	}
1353	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1354	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1355		p->p_timers = NULL;
1356		mutex_spin_exit(&timer_lock);
1357		pool_put(&ptimers_pool, pts);
1358	} else
1359		mutex_spin_exit(&timer_lock);
1360}
1361
1362static void
1363itimerfree(struct ptimers *pts, int index)
1364{
1365	struct ptimer *pt;
1366
1367	KASSERT(mutex_owned(&timer_lock));
1368
1369	pt = pts->pts_timers[index];
1370
1371	/*
1372	 * Prevent new references, and notify the callout not to
1373	 * restart itself.
1374	 */
1375	pts->pts_timers[index] = NULL;
1376	pt->pt_dying = true;
1377
1378	/*
1379	 * For non-virtual timers, stop the callout, or wait for it to
1380	 * run if it has already fired.  It cannot restart again after
1381	 * this point: the callout won't restart itself when dying, no
1382	 * other users holding the lock can restart it, and any other
1383	 * users waiting for callout_halt concurrently (timer_settime)
1384	 * will restart from the top.
1385	 */
1386	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1387		callout_halt(&pt->pt_ch, &timer_lock);
1388
1389	/* Remove it from the queue to be signalled.  */
1390	if (pt->pt_queued)
1391		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1392
1393	/* All done with the global state.  */
1394	mutex_spin_exit(&timer_lock);
1395
1396	/* Destroy the callout, if needed, and free the ptimer.  */
1397	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1398		callout_destroy(&pt->pt_ch);
1399	pool_put(&ptimer_pool, pt);
1400}
1401
1402/*
1403 * Decrement an interval timer by a specified number
1404 * of nanoseconds, which must be less than a second,
1405 * i.e. < 1000000000.  If the timer expires, then reload
1406 * it.  In this case, carry over (nsec - old value) to
1407 * reduce the value reloaded into the timer so that
1408 * the timer does not drift.  This routine assumes
1409 * that it is called in a context where the timers
1410 * on which it is operating cannot change in value.
1411 */
1412static int
1413itimerdecr(struct ptimer *pt, int nsec)
1414{
1415	struct itimerspec *itp;
1416	int error __diagused;
1417
1418	KASSERT(mutex_owned(&timer_lock));
1419	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1420
1421	itp = &pt->pt_time;
1422	if (itp->it_value.tv_nsec < nsec) {
1423		if (itp->it_value.tv_sec == 0) {
1424			/* expired, and already in next interval */
1425			nsec -= itp->it_value.tv_nsec;
1426			goto expire;
1427		}
1428		itp->it_value.tv_nsec += 1000000000;
1429		itp->it_value.tv_sec--;
1430	}
1431	itp->it_value.tv_nsec -= nsec;
1432	nsec = 0;
1433	if (timespecisset(&itp->it_value))
1434		return (1);
1435	/* expired, exactly at end of interval */
1436expire:
1437	if (timespecisset(&itp->it_interval)) {
1438		itp->it_value = itp->it_interval;
1439		itp->it_value.tv_nsec -= nsec;
1440		if (itp->it_value.tv_nsec < 0) {
1441			itp->it_value.tv_nsec += 1000000000;
1442			itp->it_value.tv_sec--;
1443		}
1444		error = timer_settime(pt);
1445		KASSERT(error == 0); /* virtual, never fails */
1446	} else
1447		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
1448	return (0);
1449}
1450
1451static void
1452itimerfire(struct ptimer *pt)
1453{
1454
1455	KASSERT(mutex_owned(&timer_lock));
1456
1457	/*
1458	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1459	 * XXX Relying on the clock interrupt is stupid.
1460	 */
1461	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1462		return;
1463	}
1464	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1465	pt->pt_queued = true;
1466	softint_schedule(timer_sih);
1467}
1468
1469void
1470timer_tick(lwp_t *l, bool user)
1471{
1472	struct ptimers *pts;
1473	struct ptimer *pt;
1474	proc_t *p;
1475
1476	p = l->l_proc;
1477	if (p->p_timers == NULL)
1478		return;
1479
1480	mutex_spin_enter(&timer_lock);
1481	if ((pts = l->l_proc->p_timers) != NULL) {
1482		/*
1483		 * Run current process's virtual and profile time, as needed.
1484		 */
1485		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1486			if (itimerdecr(pt, tick * 1000) == 0)
1487				itimerfire(pt);
1488		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1489			if (itimerdecr(pt, tick * 1000) == 0)
1490				itimerfire(pt);
1491	}
1492	mutex_spin_exit(&timer_lock);
1493}
1494
1495static void
1496timer_intr(void *cookie)
1497{
1498	ksiginfo_t ksi;
1499	struct ptimer *pt;
1500	proc_t *p;
1501
1502	mutex_enter(&proc_lock);
1503	mutex_spin_enter(&timer_lock);
1504	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1505		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1506		KASSERT(pt->pt_queued);
1507		pt->pt_queued = false;
1508
1509		if (pt->pt_proc->p_timers == NULL) {
1510			/* Process is dying. */
1511			continue;
1512		}
1513		p = pt->pt_proc;
1514		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1515			continue;
1516		}
1517		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1518			pt->pt_overruns++;
1519			continue;
1520		}
1521
1522		KSI_INIT(&ksi);
1523		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1524		ksi.ksi_code = SI_TIMER;
1525		ksi.ksi_value = pt->pt_ev.sigev_value;
1526		pt->pt_poverruns = pt->pt_overruns;
1527		pt->pt_overruns = 0;
1528		mutex_spin_exit(&timer_lock);
1529		kpsignal(p, &ksi, NULL);
1530		mutex_spin_enter(&timer_lock);
1531	}
1532	mutex_spin_exit(&timer_lock);
1533	mutex_exit(&proc_lock);
1534}
1535
1536/*
1537 * Check if the time will wrap if set to ts.
1538 *
1539 * ts - timespec describing the new time
1540 * delta - the delta between the current time and ts
1541 */
1542bool
1543time_wraps(struct timespec *ts, struct timespec *delta)
1544{
1545
1546	/*
1547	 * Don't allow the time to be set forward so far it
1548	 * will wrap and become negative, thus allowing an
1549	 * attacker to bypass the next check below.  The
1550	 * cutoff is 1 year before rollover occurs, so even
1551	 * if the attacker uses adjtime(2) to move the time
1552	 * past the cutoff, it will take a very long time
1553	 * to get to the wrap point.
1554	 */
1555	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1556	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
1557		return true;
1558
1559	return false;
1560}
1561