kern_time.c revision 1.192
1/*	$NetBSD: kern_time.c,v 1.192 2018/11/28 15:10:40 maxv Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61 */
62
63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.192 2018/11/28 15:10:40 maxv Exp $");
65
66#include <sys/param.h>
67#include <sys/resourcevar.h>
68#include <sys/kernel.h>
69#include <sys/systm.h>
70#include <sys/proc.h>
71#include <sys/vnode.h>
72#include <sys/signalvar.h>
73#include <sys/syslog.h>
74#include <sys/timetc.h>
75#include <sys/timex.h>
76#include <sys/kauth.h>
77#include <sys/mount.h>
78#include <sys/syscallargs.h>
79#include <sys/cpu.h>
80
81static void	timer_intr(void *);
82static void	itimerfire(struct ptimer *);
83static void	itimerfree(struct ptimers *, int);
84
85kmutex_t	timer_lock;
86
87static void	*timer_sih;
88static TAILQ_HEAD(, ptimer) timer_queue;
89
90struct pool ptimer_pool, ptimers_pool;
91
92#define	CLOCK_VIRTUAL_P(clockid)	\
93	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97CTASSERT(ITIMER_PROF == CLOCK_PROF);
98CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100#define	DELAYTIMER_MAX	32
101
102/*
103 * Initialize timekeeping.
104 */
105void
106time_init(void)
107{
108
109	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110	    &pool_allocator_nointr, IPL_NONE);
111	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112	    &pool_allocator_nointr, IPL_NONE);
113}
114
115void
116time_init2(void)
117{
118
119	TAILQ_INIT(&timer_queue);
120	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122	    timer_intr, NULL);
123}
124
125/* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers.  Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134/* This function is used by clock_settime and settimeofday */
135static int
136settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137{
138	struct timespec delta, now;
139	int s;
140
141	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
142	s = splclock();
143	nanotime(&now);
144	timespecsub(ts, &now, &delta);
145
146	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
147	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
148	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
149		splx(s);
150		return (EPERM);
151	}
152
153#ifdef notyet
154	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
155		splx(s);
156		return (EPERM);
157	}
158#endif
159
160	tc_setclock(ts);
161
162	timespecadd(&boottime, &delta, &boottime);
163
164	resettodr();
165	splx(s);
166
167	return (0);
168}
169
170int
171settime(struct proc *p, struct timespec *ts)
172{
173	return (settime1(p, ts, true));
174}
175
176/* ARGSUSED */
177int
178sys___clock_gettime50(struct lwp *l,
179    const struct sys___clock_gettime50_args *uap, register_t *retval)
180{
181	/* {
182		syscallarg(clockid_t) clock_id;
183		syscallarg(struct timespec *) tp;
184	} */
185	int error;
186	struct timespec ats;
187
188	error = clock_gettime1(SCARG(uap, clock_id), &ats);
189	if (error != 0)
190		return error;
191
192	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
193}
194
195/* ARGSUSED */
196int
197sys___clock_settime50(struct lwp *l,
198    const struct sys___clock_settime50_args *uap, register_t *retval)
199{
200	/* {
201		syscallarg(clockid_t) clock_id;
202		syscallarg(const struct timespec *) tp;
203	} */
204	int error;
205	struct timespec ats;
206
207	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
208		return error;
209
210	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
211}
212
213
214int
215clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
216    bool check_kauth)
217{
218	int error;
219
220	switch (clock_id) {
221	case CLOCK_REALTIME:
222		if ((error = settime1(p, tp, check_kauth)) != 0)
223			return (error);
224		break;
225	case CLOCK_MONOTONIC:
226		return (EINVAL);	/* read-only clock */
227	default:
228		return (EINVAL);
229	}
230
231	return 0;
232}
233
234int
235sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
236    register_t *retval)
237{
238	/* {
239		syscallarg(clockid_t) clock_id;
240		syscallarg(struct timespec *) tp;
241	} */
242	struct timespec ts;
243	int error;
244
245	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
246		return error;
247
248	if (SCARG(uap, tp))
249		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
250
251	return error;
252}
253
254int
255clock_getres1(clockid_t clock_id, struct timespec *ts)
256{
257
258	switch (clock_id) {
259	case CLOCK_REALTIME:
260	case CLOCK_MONOTONIC:
261		ts->tv_sec = 0;
262		if (tc_getfrequency() > 1000000000)
263			ts->tv_nsec = 1;
264		else
265			ts->tv_nsec = 1000000000 / tc_getfrequency();
266		break;
267	default:
268		return EINVAL;
269	}
270
271	return 0;
272}
273
274/* ARGSUSED */
275int
276sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
277    register_t *retval)
278{
279	/* {
280		syscallarg(struct timespec *) rqtp;
281		syscallarg(struct timespec *) rmtp;
282	} */
283	struct timespec rmt, rqt;
284	int error, error1;
285
286	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
287	if (error)
288		return (error);
289
290	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
291	    SCARG(uap, rmtp) ? &rmt : NULL);
292	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
293		return error;
294
295	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
296	return error1 ? error1 : error;
297}
298
299/* ARGSUSED */
300int
301sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
302    register_t *retval)
303{
304	/* {
305		syscallarg(clockid_t) clock_id;
306		syscallarg(int) flags;
307		syscallarg(struct timespec *) rqtp;
308		syscallarg(struct timespec *) rmtp;
309	} */
310	struct timespec rmt, rqt;
311	int error, error1;
312
313	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
314	if (error)
315		goto out;
316
317	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
318	    SCARG(uap, rmtp) ? &rmt : NULL);
319	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
320		goto out;
321
322	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
323	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
324		error = error1;
325out:
326	*retval = error;
327	return 0;
328}
329
330int
331nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
332    struct timespec *rmt)
333{
334	struct timespec rmtstart;
335	int error, timo;
336
337	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
338		if (error == ETIMEDOUT) {
339			error = 0;
340			if (rmt != NULL)
341				rmt->tv_sec = rmt->tv_nsec = 0;
342		}
343		return error;
344	}
345
346	/*
347	 * Avoid inadvertently sleeping forever
348	 */
349	if (timo == 0)
350		timo = 1;
351again:
352	error = kpause("nanoslp", true, timo, NULL);
353	if (rmt != NULL || error == 0) {
354		struct timespec rmtend;
355		struct timespec t0;
356		struct timespec *t;
357
358		(void)clock_gettime1(clock_id, &rmtend);
359		t = (rmt != NULL) ? rmt : &t0;
360		if (flags & TIMER_ABSTIME) {
361			timespecsub(rqt, &rmtend, t);
362		} else {
363			timespecsub(&rmtend, &rmtstart, t);
364			timespecsub(rqt, t, t);
365		}
366		if (t->tv_sec < 0)
367			timespecclear(t);
368		if (error == 0) {
369			timo = tstohz(t);
370			if (timo > 0)
371				goto again;
372		}
373	}
374
375	if (error == ERESTART)
376		error = EINTR;
377	if (error == EWOULDBLOCK)
378		error = 0;
379
380	return error;
381}
382
383int
384sys_clock_getcpuclockid2(struct lwp *l,
385    const struct sys_clock_getcpuclockid2_args *uap,
386    register_t *retval)
387{
388	/* {
389		syscallarg(idtype_t idtype;
390		syscallarg(id_t id);
391		syscallarg(clockid_t *)clock_id;
392	} */
393	pid_t pid;
394	lwpid_t lid;
395	clockid_t clock_id;
396	id_t id = SCARG(uap, id);
397
398	switch (SCARG(uap, idtype)) {
399	case P_PID:
400		pid = id == 0 ? l->l_proc->p_pid : id;
401		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
402		break;
403	case P_LWPID:
404		lid = id == 0 ? l->l_lid : id;
405		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
406		break;
407	default:
408		return EINVAL;
409	}
410	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
411}
412
413/* ARGSUSED */
414int
415sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
416    register_t *retval)
417{
418	/* {
419		syscallarg(struct timeval *) tp;
420		syscallarg(void *) tzp;		really "struct timezone *";
421	} */
422	struct timeval atv;
423	int error = 0;
424	struct timezone tzfake;
425
426	if (SCARG(uap, tp)) {
427		memset(&atv, 0, sizeof(atv));
428		microtime(&atv);
429		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
430		if (error)
431			return (error);
432	}
433	if (SCARG(uap, tzp)) {
434		/*
435		 * NetBSD has no kernel notion of time zone, so we just
436		 * fake up a timezone struct and return it if demanded.
437		 */
438		tzfake.tz_minuteswest = 0;
439		tzfake.tz_dsttime = 0;
440		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
441	}
442	return (error);
443}
444
445/* ARGSUSED */
446int
447sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
448    register_t *retval)
449{
450	/* {
451		syscallarg(const struct timeval *) tv;
452		syscallarg(const void *) tzp; really "const struct timezone *";
453	} */
454
455	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
456}
457
458int
459settimeofday1(const struct timeval *utv, bool userspace,
460    const void *utzp, struct lwp *l, bool check_kauth)
461{
462	struct timeval atv;
463	struct timespec ts;
464	int error;
465
466	/* Verify all parameters before changing time. */
467
468	/*
469	 * NetBSD has no kernel notion of time zone, and only an
470	 * obsolete program would try to set it, so we log a warning.
471	 */
472	if (utzp)
473		log(LOG_WARNING, "pid %d attempted to set the "
474		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
475
476	if (utv == NULL)
477		return 0;
478
479	if (userspace) {
480		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
481			return error;
482		utv = &atv;
483	}
484
485	TIMEVAL_TO_TIMESPEC(utv, &ts);
486	return settime1(l->l_proc, &ts, check_kauth);
487}
488
489int	time_adjusted;			/* set if an adjustment is made */
490
491/* ARGSUSED */
492int
493sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
494    register_t *retval)
495{
496	/* {
497		syscallarg(const struct timeval *) delta;
498		syscallarg(struct timeval *) olddelta;
499	} */
500	int error;
501	struct timeval atv, oldatv;
502
503	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
504	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
505		return error;
506
507	if (SCARG(uap, delta)) {
508		error = copyin(SCARG(uap, delta), &atv,
509		    sizeof(*SCARG(uap, delta)));
510		if (error)
511			return (error);
512	}
513	adjtime1(SCARG(uap, delta) ? &atv : NULL,
514	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
515	if (SCARG(uap, olddelta))
516		error = copyout(&oldatv, SCARG(uap, olddelta),
517		    sizeof(*SCARG(uap, olddelta)));
518	return error;
519}
520
521void
522adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
523{
524	extern int64_t time_adjtime;  /* in kern_ntptime.c */
525
526	if (olddelta) {
527		mutex_spin_enter(&timecounter_lock);
528		olddelta->tv_sec = time_adjtime / 1000000;
529		olddelta->tv_usec = time_adjtime % 1000000;
530		if (olddelta->tv_usec < 0) {
531			olddelta->tv_usec += 1000000;
532			olddelta->tv_sec--;
533		}
534		mutex_spin_exit(&timecounter_lock);
535	}
536
537	if (delta) {
538		mutex_spin_enter(&timecounter_lock);
539		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
540
541		if (time_adjtime) {
542			/* We need to save the system time during shutdown */
543			time_adjusted |= 1;
544		}
545		mutex_spin_exit(&timecounter_lock);
546	}
547}
548
549/*
550 * Interval timer support. Both the BSD getitimer() family and the POSIX
551 * timer_*() family of routines are supported.
552 *
553 * All timers are kept in an array pointed to by p_timers, which is
554 * allocated on demand - many processes don't use timers at all. The
555 * first four elements in this array are reserved for the BSD timers:
556 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
557 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
558 * allocated by the timer_create() syscall.
559 *
560 * Realtime timers are kept in the ptimer structure as an absolute
561 * time; virtual time timers are kept as a linked list of deltas.
562 * Virtual time timers are processed in the hardclock() routine of
563 * kern_clock.c.  The real time timer is processed by a callout
564 * routine, called from the softclock() routine.  Since a callout may
565 * be delayed in real time due to interrupt processing in the system,
566 * it is possible for the real time timeout routine (realtimeexpire,
567 * given below), to be delayed in real time past when it is supposed
568 * to occur.  It does not suffice, therefore, to reload the real timer
569 * .it_value from the real time timers .it_interval.  Rather, we
570 * compute the next time in absolute time the timer should go off.  */
571
572/* Allocate a POSIX realtime timer. */
573int
574sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
575    register_t *retval)
576{
577	/* {
578		syscallarg(clockid_t) clock_id;
579		syscallarg(struct sigevent *) evp;
580		syscallarg(timer_t *) timerid;
581	} */
582
583	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
584	    SCARG(uap, evp), copyin, l);
585}
586
587int
588timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
589    copyin_t fetch_event, struct lwp *l)
590{
591	int error;
592	timer_t timerid;
593	struct ptimers *pts;
594	struct ptimer *pt;
595	struct proc *p;
596
597	p = l->l_proc;
598
599	if ((u_int)id > CLOCK_MONOTONIC)
600		return (EINVAL);
601
602	if ((pts = p->p_timers) == NULL)
603		pts = timers_alloc(p);
604
605	pt = pool_get(&ptimer_pool, PR_WAITOK);
606	memset(pt, 0, sizeof(*pt));
607	if (evp != NULL) {
608		if (((error =
609		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
610		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
611			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
612			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
613			 (pt->pt_ev.sigev_signo <= 0 ||
614			  pt->pt_ev.sigev_signo >= NSIG))) {
615			pool_put(&ptimer_pool, pt);
616			return (error ? error : EINVAL);
617		}
618	}
619
620	/* Find a free timer slot, skipping those reserved for setitimer(). */
621	mutex_spin_enter(&timer_lock);
622	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
623		if (pts->pts_timers[timerid] == NULL)
624			break;
625	if (timerid == TIMER_MAX) {
626		mutex_spin_exit(&timer_lock);
627		pool_put(&ptimer_pool, pt);
628		return EAGAIN;
629	}
630	if (evp == NULL) {
631		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
632		switch (id) {
633		case CLOCK_REALTIME:
634		case CLOCK_MONOTONIC:
635			pt->pt_ev.sigev_signo = SIGALRM;
636			break;
637		case CLOCK_VIRTUAL:
638			pt->pt_ev.sigev_signo = SIGVTALRM;
639			break;
640		case CLOCK_PROF:
641			pt->pt_ev.sigev_signo = SIGPROF;
642			break;
643		}
644		pt->pt_ev.sigev_value.sival_int = timerid;
645	}
646	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
647	pt->pt_info.ksi_errno = 0;
648	pt->pt_info.ksi_code = 0;
649	pt->pt_info.ksi_pid = p->p_pid;
650	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
651	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
652	pt->pt_type = id;
653	pt->pt_proc = p;
654	pt->pt_overruns = 0;
655	pt->pt_poverruns = 0;
656	pt->pt_entry = timerid;
657	pt->pt_queued = false;
658	timespecclear(&pt->pt_time.it_value);
659	if (!CLOCK_VIRTUAL_P(id))
660		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
661	else
662		pt->pt_active = 0;
663
664	pts->pts_timers[timerid] = pt;
665	mutex_spin_exit(&timer_lock);
666
667	return copyout(&timerid, tid, sizeof(timerid));
668}
669
670/* Delete a POSIX realtime timer */
671int
672sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
673    register_t *retval)
674{
675	/* {
676		syscallarg(timer_t) timerid;
677	} */
678	struct proc *p = l->l_proc;
679	timer_t timerid;
680	struct ptimers *pts;
681	struct ptimer *pt, *ptn;
682
683	timerid = SCARG(uap, timerid);
684	pts = p->p_timers;
685
686	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
687		return (EINVAL);
688
689	mutex_spin_enter(&timer_lock);
690	if ((pt = pts->pts_timers[timerid]) == NULL) {
691		mutex_spin_exit(&timer_lock);
692		return (EINVAL);
693	}
694	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
695		if (pt->pt_active) {
696			ptn = LIST_NEXT(pt, pt_list);
697			LIST_REMOVE(pt, pt_list);
698			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
699				timespecadd(&pt->pt_time.it_value,
700				    &ptn->pt_time.it_value,
701				    &ptn->pt_time.it_value);
702			pt->pt_active = 0;
703		}
704	}
705	itimerfree(pts, timerid);
706
707	return (0);
708}
709
710/*
711 * Set up the given timer. The value in pt->pt_time.it_value is taken
712 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
713 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
714 */
715void
716timer_settime(struct ptimer *pt)
717{
718	struct ptimer *ptn, *pptn;
719	struct ptlist *ptl;
720
721	KASSERT(mutex_owned(&timer_lock));
722
723	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
724		callout_halt(&pt->pt_ch, &timer_lock);
725		if (timespecisset(&pt->pt_time.it_value)) {
726			/*
727			 * Don't need to check tshzto() return value, here.
728			 * callout_reset() does it for us.
729			 */
730			callout_reset(&pt->pt_ch,
731			    pt->pt_type == CLOCK_MONOTONIC ?
732			    tshztoup(&pt->pt_time.it_value) :
733			    tshzto(&pt->pt_time.it_value),
734			    realtimerexpire, pt);
735		}
736	} else {
737		if (pt->pt_active) {
738			ptn = LIST_NEXT(pt, pt_list);
739			LIST_REMOVE(pt, pt_list);
740			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
741				timespecadd(&pt->pt_time.it_value,
742				    &ptn->pt_time.it_value,
743				    &ptn->pt_time.it_value);
744		}
745		if (timespecisset(&pt->pt_time.it_value)) {
746			if (pt->pt_type == CLOCK_VIRTUAL)
747				ptl = &pt->pt_proc->p_timers->pts_virtual;
748			else
749				ptl = &pt->pt_proc->p_timers->pts_prof;
750
751			for (ptn = LIST_FIRST(ptl), pptn = NULL;
752			     ptn && timespeccmp(&pt->pt_time.it_value,
753				 &ptn->pt_time.it_value, >);
754			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
755				timespecsub(&pt->pt_time.it_value,
756				    &ptn->pt_time.it_value,
757				    &pt->pt_time.it_value);
758
759			if (pptn)
760				LIST_INSERT_AFTER(pptn, pt, pt_list);
761			else
762				LIST_INSERT_HEAD(ptl, pt, pt_list);
763
764			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
765				timespecsub(&ptn->pt_time.it_value,
766				    &pt->pt_time.it_value,
767				    &ptn->pt_time.it_value);
768
769			pt->pt_active = 1;
770		} else
771			pt->pt_active = 0;
772	}
773}
774
775void
776timer_gettime(struct ptimer *pt, struct itimerspec *aits)
777{
778	struct timespec now;
779	struct ptimer *ptn;
780
781	KASSERT(mutex_owned(&timer_lock));
782
783	*aits = pt->pt_time;
784	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
785		/*
786		 * Convert from absolute to relative time in .it_value
787		 * part of real time timer.  If time for real time
788		 * timer has passed return 0, else return difference
789		 * between current time and time for the timer to go
790		 * off.
791		 */
792		if (timespecisset(&aits->it_value)) {
793			if (pt->pt_type == CLOCK_REALTIME) {
794				getnanotime(&now);
795			} else { /* CLOCK_MONOTONIC */
796				getnanouptime(&now);
797			}
798			if (timespeccmp(&aits->it_value, &now, <))
799				timespecclear(&aits->it_value);
800			else
801				timespecsub(&aits->it_value, &now,
802				    &aits->it_value);
803		}
804	} else if (pt->pt_active) {
805		if (pt->pt_type == CLOCK_VIRTUAL)
806			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
807		else
808			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
809		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
810			timespecadd(&aits->it_value,
811			    &ptn->pt_time.it_value, &aits->it_value);
812		KASSERT(ptn != NULL); /* pt should be findable on the list */
813	} else
814		timespecclear(&aits->it_value);
815}
816
817
818
819/* Set and arm a POSIX realtime timer */
820int
821sys___timer_settime50(struct lwp *l,
822    const struct sys___timer_settime50_args *uap,
823    register_t *retval)
824{
825	/* {
826		syscallarg(timer_t) timerid;
827		syscallarg(int) flags;
828		syscallarg(const struct itimerspec *) value;
829		syscallarg(struct itimerspec *) ovalue;
830	} */
831	int error;
832	struct itimerspec value, ovalue, *ovp = NULL;
833
834	if ((error = copyin(SCARG(uap, value), &value,
835	    sizeof(struct itimerspec))) != 0)
836		return (error);
837
838	if (SCARG(uap, ovalue))
839		ovp = &ovalue;
840
841	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
842	    SCARG(uap, flags), l->l_proc)) != 0)
843		return error;
844
845	if (ovp)
846		return copyout(&ovalue, SCARG(uap, ovalue),
847		    sizeof(struct itimerspec));
848	return 0;
849}
850
851int
852dotimer_settime(int timerid, struct itimerspec *value,
853    struct itimerspec *ovalue, int flags, struct proc *p)
854{
855	struct timespec now;
856	struct itimerspec val, oval;
857	struct ptimers *pts;
858	struct ptimer *pt;
859	int error;
860
861	pts = p->p_timers;
862
863	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
864		return EINVAL;
865	val = *value;
866	if ((error = itimespecfix(&val.it_value)) != 0 ||
867	    (error = itimespecfix(&val.it_interval)) != 0)
868		return error;
869
870	mutex_spin_enter(&timer_lock);
871	if ((pt = pts->pts_timers[timerid]) == NULL) {
872		mutex_spin_exit(&timer_lock);
873		return EINVAL;
874	}
875
876	oval = pt->pt_time;
877	pt->pt_time = val;
878
879	/*
880	 * If we've been passed a relative time for a realtime timer,
881	 * convert it to absolute; if an absolute time for a virtual
882	 * timer, convert it to relative and make sure we don't set it
883	 * to zero, which would cancel the timer, or let it go
884	 * negative, which would confuse the comparison tests.
885	 */
886	if (timespecisset(&pt->pt_time.it_value)) {
887		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
888			if ((flags & TIMER_ABSTIME) == 0) {
889				if (pt->pt_type == CLOCK_REALTIME) {
890					getnanotime(&now);
891				} else { /* CLOCK_MONOTONIC */
892					getnanouptime(&now);
893				}
894				timespecadd(&pt->pt_time.it_value, &now,
895				    &pt->pt_time.it_value);
896			}
897		} else {
898			if ((flags & TIMER_ABSTIME) != 0) {
899				getnanotime(&now);
900				timespecsub(&pt->pt_time.it_value, &now,
901				    &pt->pt_time.it_value);
902				if (!timespecisset(&pt->pt_time.it_value) ||
903				    pt->pt_time.it_value.tv_sec < 0) {
904					pt->pt_time.it_value.tv_sec = 0;
905					pt->pt_time.it_value.tv_nsec = 1;
906				}
907			}
908		}
909	}
910
911	timer_settime(pt);
912	mutex_spin_exit(&timer_lock);
913
914	if (ovalue)
915		*ovalue = oval;
916
917	return (0);
918}
919
920/* Return the time remaining until a POSIX timer fires. */
921int
922sys___timer_gettime50(struct lwp *l,
923    const struct sys___timer_gettime50_args *uap, register_t *retval)
924{
925	/* {
926		syscallarg(timer_t) timerid;
927		syscallarg(struct itimerspec *) value;
928	} */
929	struct itimerspec its;
930	int error;
931
932	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
933	    &its)) != 0)
934		return error;
935
936	return copyout(&its, SCARG(uap, value), sizeof(its));
937}
938
939int
940dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
941{
942	struct ptimer *pt;
943	struct ptimers *pts;
944
945	pts = p->p_timers;
946	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
947		return (EINVAL);
948	mutex_spin_enter(&timer_lock);
949	if ((pt = pts->pts_timers[timerid]) == NULL) {
950		mutex_spin_exit(&timer_lock);
951		return (EINVAL);
952	}
953	timer_gettime(pt, its);
954	mutex_spin_exit(&timer_lock);
955
956	return 0;
957}
958
959/*
960 * Return the count of the number of times a periodic timer expired
961 * while a notification was already pending. The counter is reset when
962 * a timer expires and a notification can be posted.
963 */
964int
965sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
966    register_t *retval)
967{
968	/* {
969		syscallarg(timer_t) timerid;
970	} */
971	struct proc *p = l->l_proc;
972	struct ptimers *pts;
973	int timerid;
974	struct ptimer *pt;
975
976	timerid = SCARG(uap, timerid);
977
978	pts = p->p_timers;
979	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
980		return (EINVAL);
981	mutex_spin_enter(&timer_lock);
982	if ((pt = pts->pts_timers[timerid]) == NULL) {
983		mutex_spin_exit(&timer_lock);
984		return (EINVAL);
985	}
986	*retval = pt->pt_poverruns;
987	if (*retval >= DELAYTIMER_MAX)
988		*retval = DELAYTIMER_MAX;
989	mutex_spin_exit(&timer_lock);
990
991	return (0);
992}
993
994/*
995 * Real interval timer expired:
996 * send process whose timer expired an alarm signal.
997 * If time is not set up to reload, then just return.
998 * Else compute next time timer should go off which is > current time.
999 * This is where delay in processing this timeout causes multiple
1000 * SIGALRM calls to be compressed into one.
1001 */
1002void
1003realtimerexpire(void *arg)
1004{
1005	uint64_t last_val, next_val, interval, now_ns;
1006	struct timespec now, next;
1007	struct ptimer *pt;
1008	int backwards;
1009
1010	pt = arg;
1011
1012	mutex_spin_enter(&timer_lock);
1013	itimerfire(pt);
1014
1015	if (!timespecisset(&pt->pt_time.it_interval)) {
1016		timespecclear(&pt->pt_time.it_value);
1017		mutex_spin_exit(&timer_lock);
1018		return;
1019	}
1020
1021	if (pt->pt_type == CLOCK_MONOTONIC) {
1022		getnanouptime(&now);
1023	} else {
1024		getnanotime(&now);
1025	}
1026	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1027	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1028	/* Handle the easy case of non-overflown timers first. */
1029	if (!backwards && timespeccmp(&next, &now, >)) {
1030		pt->pt_time.it_value = next;
1031	} else {
1032		now_ns = timespec2ns(&now);
1033		last_val = timespec2ns(&pt->pt_time.it_value);
1034		interval = timespec2ns(&pt->pt_time.it_interval);
1035
1036		next_val = now_ns +
1037		    (now_ns - last_val + interval - 1) % interval;
1038
1039		if (backwards)
1040			next_val += interval;
1041		else
1042			pt->pt_overruns += (now_ns - last_val) / interval;
1043
1044		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1045		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1046	}
1047
1048	/*
1049	 * Don't need to check tshzto() return value, here.
1050	 * callout_reset() does it for us.
1051	 */
1052	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1053	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1054	    realtimerexpire, pt);
1055	mutex_spin_exit(&timer_lock);
1056}
1057
1058/* BSD routine to get the value of an interval timer. */
1059/* ARGSUSED */
1060int
1061sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1062    register_t *retval)
1063{
1064	/* {
1065		syscallarg(int) which;
1066		syscallarg(struct itimerval *) itv;
1067	} */
1068	struct proc *p = l->l_proc;
1069	struct itimerval aitv;
1070	int error;
1071
1072	memset(&aitv, 0, sizeof(aitv));
1073	error = dogetitimer(p, SCARG(uap, which), &aitv);
1074	if (error)
1075		return error;
1076	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1077}
1078
1079int
1080dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1081{
1082	struct ptimers *pts;
1083	struct ptimer *pt;
1084	struct itimerspec its;
1085
1086	if ((u_int)which > ITIMER_MONOTONIC)
1087		return (EINVAL);
1088
1089	mutex_spin_enter(&timer_lock);
1090	pts = p->p_timers;
1091	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1092		timerclear(&itvp->it_value);
1093		timerclear(&itvp->it_interval);
1094	} else {
1095		timer_gettime(pt, &its);
1096		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1097		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1098	}
1099	mutex_spin_exit(&timer_lock);
1100
1101	return 0;
1102}
1103
1104/* BSD routine to set/arm an interval timer. */
1105/* ARGSUSED */
1106int
1107sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1108    register_t *retval)
1109{
1110	/* {
1111		syscallarg(int) which;
1112		syscallarg(const struct itimerval *) itv;
1113		syscallarg(struct itimerval *) oitv;
1114	} */
1115	struct proc *p = l->l_proc;
1116	int which = SCARG(uap, which);
1117	struct sys___getitimer50_args getargs;
1118	const struct itimerval *itvp;
1119	struct itimerval aitv;
1120	int error;
1121
1122	if ((u_int)which > ITIMER_MONOTONIC)
1123		return (EINVAL);
1124	itvp = SCARG(uap, itv);
1125	if (itvp &&
1126	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1127		return (error);
1128	if (SCARG(uap, oitv) != NULL) {
1129		SCARG(&getargs, which) = which;
1130		SCARG(&getargs, itv) = SCARG(uap, oitv);
1131		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1132			return (error);
1133	}
1134	if (itvp == 0)
1135		return (0);
1136
1137	return dosetitimer(p, which, &aitv);
1138}
1139
1140int
1141dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1142{
1143	struct timespec now;
1144	struct ptimers *pts;
1145	struct ptimer *pt, *spare;
1146
1147	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1148	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1149		return (EINVAL);
1150
1151	/*
1152	 * Don't bother allocating data structures if the process just
1153	 * wants to clear the timer.
1154	 */
1155	spare = NULL;
1156	pts = p->p_timers;
1157 retry:
1158	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1159	    pts->pts_timers[which] == NULL))
1160		return (0);
1161	if (pts == NULL)
1162		pts = timers_alloc(p);
1163	mutex_spin_enter(&timer_lock);
1164	pt = pts->pts_timers[which];
1165	if (pt == NULL) {
1166		if (spare == NULL) {
1167			mutex_spin_exit(&timer_lock);
1168			spare = pool_get(&ptimer_pool, PR_WAITOK);
1169			goto retry;
1170		}
1171		pt = spare;
1172		spare = NULL;
1173		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1174		pt->pt_ev.sigev_value.sival_int = which;
1175		pt->pt_overruns = 0;
1176		pt->pt_proc = p;
1177		pt->pt_type = which;
1178		pt->pt_entry = which;
1179		pt->pt_queued = false;
1180		if (pt->pt_type == CLOCK_REALTIME)
1181			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1182		else
1183			pt->pt_active = 0;
1184
1185		switch (which) {
1186		case ITIMER_REAL:
1187		case ITIMER_MONOTONIC:
1188			pt->pt_ev.sigev_signo = SIGALRM;
1189			break;
1190		case ITIMER_VIRTUAL:
1191			pt->pt_ev.sigev_signo = SIGVTALRM;
1192			break;
1193		case ITIMER_PROF:
1194			pt->pt_ev.sigev_signo = SIGPROF;
1195			break;
1196		}
1197		pts->pts_timers[which] = pt;
1198	}
1199
1200	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1201	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1202
1203	if (timespecisset(&pt->pt_time.it_value)) {
1204		/* Convert to absolute time */
1205		/* XXX need to wrap in splclock for timecounters case? */
1206		switch (which) {
1207		case ITIMER_REAL:
1208			getnanotime(&now);
1209			timespecadd(&pt->pt_time.it_value, &now,
1210			    &pt->pt_time.it_value);
1211			break;
1212		case ITIMER_MONOTONIC:
1213			getnanouptime(&now);
1214			timespecadd(&pt->pt_time.it_value, &now,
1215			    &pt->pt_time.it_value);
1216			break;
1217		default:
1218			break;
1219		}
1220	}
1221	timer_settime(pt);
1222	mutex_spin_exit(&timer_lock);
1223	if (spare != NULL)
1224		pool_put(&ptimer_pool, spare);
1225
1226	return (0);
1227}
1228
1229/* Utility routines to manage the array of pointers to timers. */
1230struct ptimers *
1231timers_alloc(struct proc *p)
1232{
1233	struct ptimers *pts;
1234	int i;
1235
1236	pts = pool_get(&ptimers_pool, PR_WAITOK);
1237	LIST_INIT(&pts->pts_virtual);
1238	LIST_INIT(&pts->pts_prof);
1239	for (i = 0; i < TIMER_MAX; i++)
1240		pts->pts_timers[i] = NULL;
1241	mutex_spin_enter(&timer_lock);
1242	if (p->p_timers == NULL) {
1243		p->p_timers = pts;
1244		mutex_spin_exit(&timer_lock);
1245		return pts;
1246	}
1247	mutex_spin_exit(&timer_lock);
1248	pool_put(&ptimers_pool, pts);
1249	return p->p_timers;
1250}
1251
1252/*
1253 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1254 * then clean up all timers and free all the data structures. If
1255 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1256 * by timer_create(), not the BSD setitimer() timers, and only free the
1257 * structure if none of those remain.
1258 */
1259void
1260timers_free(struct proc *p, int which)
1261{
1262	struct ptimers *pts;
1263	struct ptimer *ptn;
1264	struct timespec ts;
1265	int i;
1266
1267	if (p->p_timers == NULL)
1268		return;
1269
1270	pts = p->p_timers;
1271	mutex_spin_enter(&timer_lock);
1272	if (which == TIMERS_ALL) {
1273		p->p_timers = NULL;
1274		i = 0;
1275	} else {
1276		timespecclear(&ts);
1277		for (ptn = LIST_FIRST(&pts->pts_virtual);
1278		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1279		     ptn = LIST_NEXT(ptn, pt_list)) {
1280			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1281			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1282		}
1283		LIST_FIRST(&pts->pts_virtual) = NULL;
1284		if (ptn) {
1285			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1286			timespecadd(&ts, &ptn->pt_time.it_value,
1287			    &ptn->pt_time.it_value);
1288			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1289		}
1290		timespecclear(&ts);
1291		for (ptn = LIST_FIRST(&pts->pts_prof);
1292		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1293		     ptn = LIST_NEXT(ptn, pt_list)) {
1294			KASSERT(ptn->pt_type == CLOCK_PROF);
1295			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1296		}
1297		LIST_FIRST(&pts->pts_prof) = NULL;
1298		if (ptn) {
1299			KASSERT(ptn->pt_type == CLOCK_PROF);
1300			timespecadd(&ts, &ptn->pt_time.it_value,
1301			    &ptn->pt_time.it_value);
1302			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1303		}
1304		i = TIMER_MIN;
1305	}
1306	for ( ; i < TIMER_MAX; i++) {
1307		if (pts->pts_timers[i] != NULL) {
1308			itimerfree(pts, i);
1309			mutex_spin_enter(&timer_lock);
1310		}
1311	}
1312	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1313	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1314		p->p_timers = NULL;
1315		mutex_spin_exit(&timer_lock);
1316		pool_put(&ptimers_pool, pts);
1317	} else
1318		mutex_spin_exit(&timer_lock);
1319}
1320
1321static void
1322itimerfree(struct ptimers *pts, int index)
1323{
1324	struct ptimer *pt;
1325
1326	KASSERT(mutex_owned(&timer_lock));
1327
1328	pt = pts->pts_timers[index];
1329	pts->pts_timers[index] = NULL;
1330	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1331		callout_halt(&pt->pt_ch, &timer_lock);
1332	if (pt->pt_queued)
1333		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1334	mutex_spin_exit(&timer_lock);
1335	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1336		callout_destroy(&pt->pt_ch);
1337	pool_put(&ptimer_pool, pt);
1338}
1339
1340/*
1341 * Decrement an interval timer by a specified number
1342 * of nanoseconds, which must be less than a second,
1343 * i.e. < 1000000000.  If the timer expires, then reload
1344 * it.  In this case, carry over (nsec - old value) to
1345 * reduce the value reloaded into the timer so that
1346 * the timer does not drift.  This routine assumes
1347 * that it is called in a context where the timers
1348 * on which it is operating cannot change in value.
1349 */
1350static int
1351itimerdecr(struct ptimer *pt, int nsec)
1352{
1353	struct itimerspec *itp;
1354
1355	KASSERT(mutex_owned(&timer_lock));
1356	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1357
1358	itp = &pt->pt_time;
1359	if (itp->it_value.tv_nsec < nsec) {
1360		if (itp->it_value.tv_sec == 0) {
1361			/* expired, and already in next interval */
1362			nsec -= itp->it_value.tv_nsec;
1363			goto expire;
1364		}
1365		itp->it_value.tv_nsec += 1000000000;
1366		itp->it_value.tv_sec--;
1367	}
1368	itp->it_value.tv_nsec -= nsec;
1369	nsec = 0;
1370	if (timespecisset(&itp->it_value))
1371		return (1);
1372	/* expired, exactly at end of interval */
1373expire:
1374	if (timespecisset(&itp->it_interval)) {
1375		itp->it_value = itp->it_interval;
1376		itp->it_value.tv_nsec -= nsec;
1377		if (itp->it_value.tv_nsec < 0) {
1378			itp->it_value.tv_nsec += 1000000000;
1379			itp->it_value.tv_sec--;
1380		}
1381		timer_settime(pt);
1382	} else
1383		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
1384	return (0);
1385}
1386
1387static void
1388itimerfire(struct ptimer *pt)
1389{
1390
1391	KASSERT(mutex_owned(&timer_lock));
1392
1393	/*
1394	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1395	 * XXX Relying on the clock interrupt is stupid.
1396	 */
1397	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1398		return;
1399	}
1400	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1401	pt->pt_queued = true;
1402	softint_schedule(timer_sih);
1403}
1404
1405void
1406timer_tick(lwp_t *l, bool user)
1407{
1408	struct ptimers *pts;
1409	struct ptimer *pt;
1410	proc_t *p;
1411
1412	p = l->l_proc;
1413	if (p->p_timers == NULL)
1414		return;
1415
1416	mutex_spin_enter(&timer_lock);
1417	if ((pts = l->l_proc->p_timers) != NULL) {
1418		/*
1419		 * Run current process's virtual and profile time, as needed.
1420		 */
1421		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1422			if (itimerdecr(pt, tick * 1000) == 0)
1423				itimerfire(pt);
1424		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1425			if (itimerdecr(pt, tick * 1000) == 0)
1426				itimerfire(pt);
1427	}
1428	mutex_spin_exit(&timer_lock);
1429}
1430
1431static void
1432timer_intr(void *cookie)
1433{
1434	ksiginfo_t ksi;
1435	struct ptimer *pt;
1436	proc_t *p;
1437
1438	mutex_enter(proc_lock);
1439	mutex_spin_enter(&timer_lock);
1440	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1441		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1442		KASSERT(pt->pt_queued);
1443		pt->pt_queued = false;
1444
1445		if (pt->pt_proc->p_timers == NULL) {
1446			/* Process is dying. */
1447			continue;
1448		}
1449		p = pt->pt_proc;
1450		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1451			continue;
1452		}
1453		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1454			pt->pt_overruns++;
1455			continue;
1456		}
1457
1458		KSI_INIT(&ksi);
1459		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1460		ksi.ksi_code = SI_TIMER;
1461		ksi.ksi_value = pt->pt_ev.sigev_value;
1462		pt->pt_poverruns = pt->pt_overruns;
1463		pt->pt_overruns = 0;
1464		mutex_spin_exit(&timer_lock);
1465		kpsignal(p, &ksi, NULL);
1466		mutex_spin_enter(&timer_lock);
1467	}
1468	mutex_spin_exit(&timer_lock);
1469	mutex_exit(proc_lock);
1470}
1471
1472/*
1473 * Check if the time will wrap if set to ts.
1474 *
1475 * ts - timespec describing the new time
1476 * delta - the delta between the current time and ts
1477 */
1478bool
1479time_wraps(struct timespec *ts, struct timespec *delta)
1480{
1481
1482	/*
1483	 * Don't allow the time to be set forward so far it
1484	 * will wrap and become negative, thus allowing an
1485	 * attacker to bypass the next check below.  The
1486	 * cutoff is 1 year before rollover occurs, so even
1487	 * if the attacker uses adjtime(2) to move the time
1488	 * past the cutoff, it will take a very long time
1489	 * to get to the wrap point.
1490	 */
1491	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1492	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
1493		return true;
1494
1495	return false;
1496}
1497