kern_time.c revision 1.190
1/*	$NetBSD: kern_time.c,v 1.190 2018/11/11 11:17:49 maxv Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61 */
62
63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.190 2018/11/11 11:17:49 maxv Exp $");
65
66#include <sys/param.h>
67#include <sys/resourcevar.h>
68#include <sys/kernel.h>
69#include <sys/systm.h>
70#include <sys/proc.h>
71#include <sys/vnode.h>
72#include <sys/signalvar.h>
73#include <sys/syslog.h>
74#include <sys/timetc.h>
75#include <sys/timex.h>
76#include <sys/kauth.h>
77#include <sys/mount.h>
78#include <sys/syscallargs.h>
79#include <sys/cpu.h>
80
81static void	timer_intr(void *);
82static void	itimerfire(struct ptimer *);
83static void	itimerfree(struct ptimers *, int);
84
85kmutex_t	timer_lock;
86
87static void	*timer_sih;
88static TAILQ_HEAD(, ptimer) timer_queue;
89
90struct pool ptimer_pool, ptimers_pool;
91
92#define	CLOCK_VIRTUAL_P(clockid)	\
93	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97CTASSERT(ITIMER_PROF == CLOCK_PROF);
98CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100#define	DELAYTIMER_MAX	32
101
102/*
103 * Initialize timekeeping.
104 */
105void
106time_init(void)
107{
108
109	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
110	    &pool_allocator_nointr, IPL_NONE);
111	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
112	    &pool_allocator_nointr, IPL_NONE);
113}
114
115void
116time_init2(void)
117{
118
119	TAILQ_INIT(&timer_queue);
120	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122	    timer_intr, NULL);
123}
124
125/* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers.  Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134/* This function is used by clock_settime and settimeofday */
135static int
136settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
137{
138	struct timespec delta, now;
139	int s;
140
141	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
142	s = splclock();
143	nanotime(&now);
144	timespecsub(ts, &now, &delta);
145
146	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
147	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
148	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
149		splx(s);
150		return (EPERM);
151	}
152
153#ifdef notyet
154	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
155		splx(s);
156		return (EPERM);
157	}
158#endif
159
160	tc_setclock(ts);
161
162	timespecadd(&boottime, &delta, &boottime);
163
164	resettodr();
165	splx(s);
166
167	return (0);
168}
169
170int
171settime(struct proc *p, struct timespec *ts)
172{
173	return (settime1(p, ts, true));
174}
175
176/* ARGSUSED */
177int
178sys___clock_gettime50(struct lwp *l,
179    const struct sys___clock_gettime50_args *uap, register_t *retval)
180{
181	/* {
182		syscallarg(clockid_t) clock_id;
183		syscallarg(struct timespec *) tp;
184	} */
185	int error;
186	struct timespec ats;
187
188	error = clock_gettime1(SCARG(uap, clock_id), &ats);
189	if (error != 0)
190		return error;
191
192	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
193}
194
195/* ARGSUSED */
196int
197sys___clock_settime50(struct lwp *l,
198    const struct sys___clock_settime50_args *uap, register_t *retval)
199{
200	/* {
201		syscallarg(clockid_t) clock_id;
202		syscallarg(const struct timespec *) tp;
203	} */
204	int error;
205	struct timespec ats;
206
207	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
208		return error;
209
210	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
211}
212
213
214int
215clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
216    bool check_kauth)
217{
218	int error;
219
220	switch (clock_id) {
221	case CLOCK_REALTIME:
222		if ((error = settime1(p, tp, check_kauth)) != 0)
223			return (error);
224		break;
225	case CLOCK_MONOTONIC:
226		return (EINVAL);	/* read-only clock */
227	default:
228		return (EINVAL);
229	}
230
231	return 0;
232}
233
234int
235sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
236    register_t *retval)
237{
238	/* {
239		syscallarg(clockid_t) clock_id;
240		syscallarg(struct timespec *) tp;
241	} */
242	struct timespec ts;
243	int error;
244
245	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
246		return error;
247
248	if (SCARG(uap, tp))
249		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
250
251	return error;
252}
253
254int
255clock_getres1(clockid_t clock_id, struct timespec *ts)
256{
257
258	switch (clock_id) {
259	case CLOCK_REALTIME:
260	case CLOCK_MONOTONIC:
261		ts->tv_sec = 0;
262		if (tc_getfrequency() > 1000000000)
263			ts->tv_nsec = 1;
264		else
265			ts->tv_nsec = 1000000000 / tc_getfrequency();
266		break;
267	default:
268		return EINVAL;
269	}
270
271	return 0;
272}
273
274/* ARGSUSED */
275int
276sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
277    register_t *retval)
278{
279	/* {
280		syscallarg(struct timespec *) rqtp;
281		syscallarg(struct timespec *) rmtp;
282	} */
283	struct timespec rmt, rqt;
284	int error, error1;
285
286	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
287	if (error)
288		return (error);
289
290	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
291	    SCARG(uap, rmtp) ? &rmt : NULL);
292	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
293		return error;
294
295	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
296	return error1 ? error1 : error;
297}
298
299/* ARGSUSED */
300int
301sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
302    register_t *retval)
303{
304	/* {
305		syscallarg(clockid_t) clock_id;
306		syscallarg(int) flags;
307		syscallarg(struct timespec *) rqtp;
308		syscallarg(struct timespec *) rmtp;
309	} */
310	struct timespec rmt, rqt;
311	int error, error1;
312
313	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
314	if (error)
315		goto out;
316
317	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
318	    SCARG(uap, rmtp) ? &rmt : NULL);
319	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
320		goto out;
321
322	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
323	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
324		error = error1;
325out:
326	*retval = error;
327	return 0;
328}
329
330int
331nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
332    struct timespec *rmt)
333{
334	struct timespec rmtstart;
335	int error, timo;
336
337	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
338		if (error == ETIMEDOUT) {
339			error = 0;
340			if (rmt != NULL)
341				rmt->tv_sec = rmt->tv_nsec = 0;
342		}
343		return error;
344	}
345
346	/*
347	 * Avoid inadvertently sleeping forever
348	 */
349	if (timo == 0)
350		timo = 1;
351again:
352	error = kpause("nanoslp", true, timo, NULL);
353	if (rmt != NULL || error == 0) {
354		struct timespec rmtend;
355		struct timespec t0;
356		struct timespec *t;
357
358		(void)clock_gettime1(clock_id, &rmtend);
359		t = (rmt != NULL) ? rmt : &t0;
360		if (flags & TIMER_ABSTIME) {
361			timespecsub(rqt, &rmtend, t);
362		} else {
363			timespecsub(&rmtend, &rmtstart, t);
364			timespecsub(rqt, t, t);
365		}
366		if (t->tv_sec < 0)
367			timespecclear(t);
368		if (error == 0) {
369			timo = tstohz(t);
370			if (timo > 0)
371				goto again;
372		}
373	}
374
375	if (error == ERESTART)
376		error = EINTR;
377	if (error == EWOULDBLOCK)
378		error = 0;
379
380	return error;
381}
382
383int
384sys_clock_getcpuclockid2(struct lwp *l,
385    const struct sys_clock_getcpuclockid2_args *uap,
386    register_t *retval)
387{
388	/* {
389		syscallarg(idtype_t idtype;
390		syscallarg(id_t id);
391		syscallarg(clockid_t *)clock_id;
392	} */
393	pid_t pid;
394	lwpid_t lid;
395	clockid_t clock_id;
396	id_t id = SCARG(uap, id);
397
398	switch (SCARG(uap, idtype)) {
399	case P_PID:
400		pid = id == 0 ? l->l_proc->p_pid : id;
401		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
402		break;
403	case P_LWPID:
404		lid = id == 0 ? l->l_lid : id;
405		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
406		break;
407	default:
408		return EINVAL;
409	}
410	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
411}
412
413/* ARGSUSED */
414int
415sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
416    register_t *retval)
417{
418	/* {
419		syscallarg(struct timeval *) tp;
420		syscallarg(void *) tzp;		really "struct timezone *";
421	} */
422	struct timeval atv;
423	int error = 0;
424	struct timezone tzfake;
425
426	if (SCARG(uap, tp)) {
427		memset(&atv, 0, sizeof(atv));
428		microtime(&atv);
429		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
430		if (error)
431			return (error);
432	}
433	if (SCARG(uap, tzp)) {
434		/*
435		 * NetBSD has no kernel notion of time zone, so we just
436		 * fake up a timezone struct and return it if demanded.
437		 */
438		tzfake.tz_minuteswest = 0;
439		tzfake.tz_dsttime = 0;
440		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
441	}
442	return (error);
443}
444
445/* ARGSUSED */
446int
447sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
448    register_t *retval)
449{
450	/* {
451		syscallarg(const struct timeval *) tv;
452		syscallarg(const void *) tzp; really "const struct timezone *";
453	} */
454
455	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
456}
457
458int
459settimeofday1(const struct timeval *utv, bool userspace,
460    const void *utzp, struct lwp *l, bool check_kauth)
461{
462	struct timeval atv;
463	struct timespec ts;
464	int error;
465
466	/* Verify all parameters before changing time. */
467
468	/*
469	 * NetBSD has no kernel notion of time zone, and only an
470	 * obsolete program would try to set it, so we log a warning.
471	 */
472	if (utzp)
473		log(LOG_WARNING, "pid %d attempted to set the "
474		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
475
476	if (utv == NULL)
477		return 0;
478
479	if (userspace) {
480		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
481			return error;
482		utv = &atv;
483	}
484
485	TIMEVAL_TO_TIMESPEC(utv, &ts);
486	return settime1(l->l_proc, &ts, check_kauth);
487}
488
489int	time_adjusted;			/* set if an adjustment is made */
490
491/* ARGSUSED */
492int
493sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
494    register_t *retval)
495{
496	/* {
497		syscallarg(const struct timeval *) delta;
498		syscallarg(struct timeval *) olddelta;
499	} */
500	int error;
501	struct timeval atv, oldatv;
502
503	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
504	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
505		return error;
506
507	if (SCARG(uap, delta)) {
508		error = copyin(SCARG(uap, delta), &atv,
509		    sizeof(*SCARG(uap, delta)));
510		if (error)
511			return (error);
512	}
513	adjtime1(SCARG(uap, delta) ? &atv : NULL,
514	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
515	if (SCARG(uap, olddelta))
516		error = copyout(&oldatv, SCARG(uap, olddelta),
517		    sizeof(*SCARG(uap, olddelta)));
518	return error;
519}
520
521void
522adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
523{
524	extern int64_t time_adjtime;  /* in kern_ntptime.c */
525
526	if (olddelta) {
527		mutex_spin_enter(&timecounter_lock);
528		olddelta->tv_sec = time_adjtime / 1000000;
529		olddelta->tv_usec = time_adjtime % 1000000;
530		if (olddelta->tv_usec < 0) {
531			olddelta->tv_usec += 1000000;
532			olddelta->tv_sec--;
533		}
534		mutex_spin_exit(&timecounter_lock);
535	}
536
537	if (delta) {
538		mutex_spin_enter(&timecounter_lock);
539		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
540
541		if (time_adjtime) {
542			/* We need to save the system time during shutdown */
543			time_adjusted |= 1;
544		}
545		mutex_spin_exit(&timecounter_lock);
546	}
547}
548
549/*
550 * Interval timer support. Both the BSD getitimer() family and the POSIX
551 * timer_*() family of routines are supported.
552 *
553 * All timers are kept in an array pointed to by p_timers, which is
554 * allocated on demand - many processes don't use timers at all. The
555 * first four elements in this array are reserved for the BSD timers:
556 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
557 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
558 * allocated by the timer_create() syscall.
559 *
560 * Realtime timers are kept in the ptimer structure as an absolute
561 * time; virtual time timers are kept as a linked list of deltas.
562 * Virtual time timers are processed in the hardclock() routine of
563 * kern_clock.c.  The real time timer is processed by a callout
564 * routine, called from the softclock() routine.  Since a callout may
565 * be delayed in real time due to interrupt processing in the system,
566 * it is possible for the real time timeout routine (realtimeexpire,
567 * given below), to be delayed in real time past when it is supposed
568 * to occur.  It does not suffice, therefore, to reload the real timer
569 * .it_value from the real time timers .it_interval.  Rather, we
570 * compute the next time in absolute time the timer should go off.  */
571
572/* Allocate a POSIX realtime timer. */
573int
574sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
575    register_t *retval)
576{
577	/* {
578		syscallarg(clockid_t) clock_id;
579		syscallarg(struct sigevent *) evp;
580		syscallarg(timer_t *) timerid;
581	} */
582
583	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
584	    SCARG(uap, evp), copyin, l);
585}
586
587int
588timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
589    copyin_t fetch_event, struct lwp *l)
590{
591	int error;
592	timer_t timerid;
593	struct ptimers *pts;
594	struct ptimer *pt;
595	struct proc *p;
596
597	p = l->l_proc;
598
599	if ((u_int)id > CLOCK_MONOTONIC)
600		return (EINVAL);
601
602	if ((pts = p->p_timers) == NULL)
603		pts = timers_alloc(p);
604
605	pt = pool_get(&ptimer_pool, PR_WAITOK);
606	if (evp != NULL) {
607		if (((error =
608		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
609		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
610			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
611			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
612			 (pt->pt_ev.sigev_signo <= 0 ||
613			  pt->pt_ev.sigev_signo >= NSIG))) {
614			pool_put(&ptimer_pool, pt);
615			return (error ? error : EINVAL);
616		}
617	}
618
619	/* Find a free timer slot, skipping those reserved for setitimer(). */
620	mutex_spin_enter(&timer_lock);
621	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
622		if (pts->pts_timers[timerid] == NULL)
623			break;
624	if (timerid == TIMER_MAX) {
625		mutex_spin_exit(&timer_lock);
626		pool_put(&ptimer_pool, pt);
627		return EAGAIN;
628	}
629	if (evp == NULL) {
630		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
631		switch (id) {
632		case CLOCK_REALTIME:
633		case CLOCK_MONOTONIC:
634			pt->pt_ev.sigev_signo = SIGALRM;
635			break;
636		case CLOCK_VIRTUAL:
637			pt->pt_ev.sigev_signo = SIGVTALRM;
638			break;
639		case CLOCK_PROF:
640			pt->pt_ev.sigev_signo = SIGPROF;
641			break;
642		}
643		pt->pt_ev.sigev_value.sival_int = timerid;
644	}
645	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
646	pt->pt_info.ksi_errno = 0;
647	pt->pt_info.ksi_code = 0;
648	pt->pt_info.ksi_pid = p->p_pid;
649	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
650	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
651	pt->pt_type = id;
652	pt->pt_proc = p;
653	pt->pt_overruns = 0;
654	pt->pt_poverruns = 0;
655	pt->pt_entry = timerid;
656	pt->pt_queued = false;
657	timespecclear(&pt->pt_time.it_value);
658	if (!CLOCK_VIRTUAL_P(id))
659		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
660	else
661		pt->pt_active = 0;
662
663	pts->pts_timers[timerid] = pt;
664	mutex_spin_exit(&timer_lock);
665
666	return copyout(&timerid, tid, sizeof(timerid));
667}
668
669/* Delete a POSIX realtime timer */
670int
671sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
672    register_t *retval)
673{
674	/* {
675		syscallarg(timer_t) timerid;
676	} */
677	struct proc *p = l->l_proc;
678	timer_t timerid;
679	struct ptimers *pts;
680	struct ptimer *pt, *ptn;
681
682	timerid = SCARG(uap, timerid);
683	pts = p->p_timers;
684
685	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
686		return (EINVAL);
687
688	mutex_spin_enter(&timer_lock);
689	if ((pt = pts->pts_timers[timerid]) == NULL) {
690		mutex_spin_exit(&timer_lock);
691		return (EINVAL);
692	}
693	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
694		if (pt->pt_active) {
695			ptn = LIST_NEXT(pt, pt_list);
696			LIST_REMOVE(pt, pt_list);
697			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
698				timespecadd(&pt->pt_time.it_value,
699				    &ptn->pt_time.it_value,
700				    &ptn->pt_time.it_value);
701			pt->pt_active = 0;
702		}
703	}
704	itimerfree(pts, timerid);
705
706	return (0);
707}
708
709/*
710 * Set up the given timer. The value in pt->pt_time.it_value is taken
711 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
712 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
713 */
714void
715timer_settime(struct ptimer *pt)
716{
717	struct ptimer *ptn, *pptn;
718	struct ptlist *ptl;
719
720	KASSERT(mutex_owned(&timer_lock));
721
722	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
723		callout_halt(&pt->pt_ch, &timer_lock);
724		if (timespecisset(&pt->pt_time.it_value)) {
725			/*
726			 * Don't need to check tshzto() return value, here.
727			 * callout_reset() does it for us.
728			 */
729			callout_reset(&pt->pt_ch,
730			    pt->pt_type == CLOCK_MONOTONIC ?
731			    tshztoup(&pt->pt_time.it_value) :
732			    tshzto(&pt->pt_time.it_value),
733			    realtimerexpire, pt);
734		}
735	} else {
736		if (pt->pt_active) {
737			ptn = LIST_NEXT(pt, pt_list);
738			LIST_REMOVE(pt, pt_list);
739			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
740				timespecadd(&pt->pt_time.it_value,
741				    &ptn->pt_time.it_value,
742				    &ptn->pt_time.it_value);
743		}
744		if (timespecisset(&pt->pt_time.it_value)) {
745			if (pt->pt_type == CLOCK_VIRTUAL)
746				ptl = &pt->pt_proc->p_timers->pts_virtual;
747			else
748				ptl = &pt->pt_proc->p_timers->pts_prof;
749
750			for (ptn = LIST_FIRST(ptl), pptn = NULL;
751			     ptn && timespeccmp(&pt->pt_time.it_value,
752				 &ptn->pt_time.it_value, >);
753			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
754				timespecsub(&pt->pt_time.it_value,
755				    &ptn->pt_time.it_value,
756				    &pt->pt_time.it_value);
757
758			if (pptn)
759				LIST_INSERT_AFTER(pptn, pt, pt_list);
760			else
761				LIST_INSERT_HEAD(ptl, pt, pt_list);
762
763			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
764				timespecsub(&ptn->pt_time.it_value,
765				    &pt->pt_time.it_value,
766				    &ptn->pt_time.it_value);
767
768			pt->pt_active = 1;
769		} else
770			pt->pt_active = 0;
771	}
772}
773
774void
775timer_gettime(struct ptimer *pt, struct itimerspec *aits)
776{
777	struct timespec now;
778	struct ptimer *ptn;
779
780	KASSERT(mutex_owned(&timer_lock));
781
782	*aits = pt->pt_time;
783	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
784		/*
785		 * Convert from absolute to relative time in .it_value
786		 * part of real time timer.  If time for real time
787		 * timer has passed return 0, else return difference
788		 * between current time and time for the timer to go
789		 * off.
790		 */
791		if (timespecisset(&aits->it_value)) {
792			if (pt->pt_type == CLOCK_REALTIME) {
793				getnanotime(&now);
794			} else { /* CLOCK_MONOTONIC */
795				getnanouptime(&now);
796			}
797			if (timespeccmp(&aits->it_value, &now, <))
798				timespecclear(&aits->it_value);
799			else
800				timespecsub(&aits->it_value, &now,
801				    &aits->it_value);
802		}
803	} else if (pt->pt_active) {
804		if (pt->pt_type == CLOCK_VIRTUAL)
805			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
806		else
807			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
808		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
809			timespecadd(&aits->it_value,
810			    &ptn->pt_time.it_value, &aits->it_value);
811		KASSERT(ptn != NULL); /* pt should be findable on the list */
812	} else
813		timespecclear(&aits->it_value);
814}
815
816
817
818/* Set and arm a POSIX realtime timer */
819int
820sys___timer_settime50(struct lwp *l,
821    const struct sys___timer_settime50_args *uap,
822    register_t *retval)
823{
824	/* {
825		syscallarg(timer_t) timerid;
826		syscallarg(int) flags;
827		syscallarg(const struct itimerspec *) value;
828		syscallarg(struct itimerspec *) ovalue;
829	} */
830	int error;
831	struct itimerspec value, ovalue, *ovp = NULL;
832
833	if ((error = copyin(SCARG(uap, value), &value,
834	    sizeof(struct itimerspec))) != 0)
835		return (error);
836
837	if (SCARG(uap, ovalue))
838		ovp = &ovalue;
839
840	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
841	    SCARG(uap, flags), l->l_proc)) != 0)
842		return error;
843
844	if (ovp)
845		return copyout(&ovalue, SCARG(uap, ovalue),
846		    sizeof(struct itimerspec));
847	return 0;
848}
849
850int
851dotimer_settime(int timerid, struct itimerspec *value,
852    struct itimerspec *ovalue, int flags, struct proc *p)
853{
854	struct timespec now;
855	struct itimerspec val, oval;
856	struct ptimers *pts;
857	struct ptimer *pt;
858	int error;
859
860	pts = p->p_timers;
861
862	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
863		return EINVAL;
864	val = *value;
865	if ((error = itimespecfix(&val.it_value)) != 0 ||
866	    (error = itimespecfix(&val.it_interval)) != 0)
867		return error;
868
869	mutex_spin_enter(&timer_lock);
870	if ((pt = pts->pts_timers[timerid]) == NULL) {
871		mutex_spin_exit(&timer_lock);
872		return EINVAL;
873	}
874
875	oval = pt->pt_time;
876	pt->pt_time = val;
877
878	/*
879	 * If we've been passed a relative time for a realtime timer,
880	 * convert it to absolute; if an absolute time for a virtual
881	 * timer, convert it to relative and make sure we don't set it
882	 * to zero, which would cancel the timer, or let it go
883	 * negative, which would confuse the comparison tests.
884	 */
885	if (timespecisset(&pt->pt_time.it_value)) {
886		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
887			if ((flags & TIMER_ABSTIME) == 0) {
888				if (pt->pt_type == CLOCK_REALTIME) {
889					getnanotime(&now);
890				} else { /* CLOCK_MONOTONIC */
891					getnanouptime(&now);
892				}
893				timespecadd(&pt->pt_time.it_value, &now,
894				    &pt->pt_time.it_value);
895			}
896		} else {
897			if ((flags & TIMER_ABSTIME) != 0) {
898				getnanotime(&now);
899				timespecsub(&pt->pt_time.it_value, &now,
900				    &pt->pt_time.it_value);
901				if (!timespecisset(&pt->pt_time.it_value) ||
902				    pt->pt_time.it_value.tv_sec < 0) {
903					pt->pt_time.it_value.tv_sec = 0;
904					pt->pt_time.it_value.tv_nsec = 1;
905				}
906			}
907		}
908	}
909
910	timer_settime(pt);
911	mutex_spin_exit(&timer_lock);
912
913	if (ovalue)
914		*ovalue = oval;
915
916	return (0);
917}
918
919/* Return the time remaining until a POSIX timer fires. */
920int
921sys___timer_gettime50(struct lwp *l,
922    const struct sys___timer_gettime50_args *uap, register_t *retval)
923{
924	/* {
925		syscallarg(timer_t) timerid;
926		syscallarg(struct itimerspec *) value;
927	} */
928	struct itimerspec its;
929	int error;
930
931	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
932	    &its)) != 0)
933		return error;
934
935	return copyout(&its, SCARG(uap, value), sizeof(its));
936}
937
938int
939dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
940{
941	struct ptimer *pt;
942	struct ptimers *pts;
943
944	pts = p->p_timers;
945	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
946		return (EINVAL);
947	mutex_spin_enter(&timer_lock);
948	if ((pt = pts->pts_timers[timerid]) == NULL) {
949		mutex_spin_exit(&timer_lock);
950		return (EINVAL);
951	}
952	timer_gettime(pt, its);
953	mutex_spin_exit(&timer_lock);
954
955	return 0;
956}
957
958/*
959 * Return the count of the number of times a periodic timer expired
960 * while a notification was already pending. The counter is reset when
961 * a timer expires and a notification can be posted.
962 */
963int
964sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
965    register_t *retval)
966{
967	/* {
968		syscallarg(timer_t) timerid;
969	} */
970	struct proc *p = l->l_proc;
971	struct ptimers *pts;
972	int timerid;
973	struct ptimer *pt;
974
975	timerid = SCARG(uap, timerid);
976
977	pts = p->p_timers;
978	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
979		return (EINVAL);
980	mutex_spin_enter(&timer_lock);
981	if ((pt = pts->pts_timers[timerid]) == NULL) {
982		mutex_spin_exit(&timer_lock);
983		return (EINVAL);
984	}
985	*retval = pt->pt_poverruns;
986	if (*retval >= DELAYTIMER_MAX)
987		*retval = DELAYTIMER_MAX;
988	mutex_spin_exit(&timer_lock);
989
990	return (0);
991}
992
993/*
994 * Real interval timer expired:
995 * send process whose timer expired an alarm signal.
996 * If time is not set up to reload, then just return.
997 * Else compute next time timer should go off which is > current time.
998 * This is where delay in processing this timeout causes multiple
999 * SIGALRM calls to be compressed into one.
1000 */
1001void
1002realtimerexpire(void *arg)
1003{
1004	uint64_t last_val, next_val, interval, now_ns;
1005	struct timespec now, next;
1006	struct ptimer *pt;
1007	int backwards;
1008
1009	pt = arg;
1010
1011	mutex_spin_enter(&timer_lock);
1012	itimerfire(pt);
1013
1014	if (!timespecisset(&pt->pt_time.it_interval)) {
1015		timespecclear(&pt->pt_time.it_value);
1016		mutex_spin_exit(&timer_lock);
1017		return;
1018	}
1019
1020	if (pt->pt_type == CLOCK_MONOTONIC) {
1021		getnanouptime(&now);
1022	} else {
1023		getnanotime(&now);
1024	}
1025	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
1026	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
1027	/* Handle the easy case of non-overflown timers first. */
1028	if (!backwards && timespeccmp(&next, &now, >)) {
1029		pt->pt_time.it_value = next;
1030	} else {
1031		now_ns = timespec2ns(&now);
1032		last_val = timespec2ns(&pt->pt_time.it_value);
1033		interval = timespec2ns(&pt->pt_time.it_interval);
1034
1035		next_val = now_ns +
1036		    (now_ns - last_val + interval - 1) % interval;
1037
1038		if (backwards)
1039			next_val += interval;
1040		else
1041			pt->pt_overruns += (now_ns - last_val) / interval;
1042
1043		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1044		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1045	}
1046
1047	/*
1048	 * Don't need to check tshzto() return value, here.
1049	 * callout_reset() does it for us.
1050	 */
1051	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1052	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1053	    realtimerexpire, pt);
1054	mutex_spin_exit(&timer_lock);
1055}
1056
1057/* BSD routine to get the value of an interval timer. */
1058/* ARGSUSED */
1059int
1060sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1061    register_t *retval)
1062{
1063	/* {
1064		syscallarg(int) which;
1065		syscallarg(struct itimerval *) itv;
1066	} */
1067	struct proc *p = l->l_proc;
1068	struct itimerval aitv;
1069	int error;
1070
1071	error = dogetitimer(p, SCARG(uap, which), &aitv);
1072	if (error)
1073		return error;
1074	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1075}
1076
1077int
1078dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1079{
1080	struct ptimers *pts;
1081	struct ptimer *pt;
1082	struct itimerspec its;
1083
1084	if ((u_int)which > ITIMER_MONOTONIC)
1085		return (EINVAL);
1086
1087	mutex_spin_enter(&timer_lock);
1088	pts = p->p_timers;
1089	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1090		timerclear(&itvp->it_value);
1091		timerclear(&itvp->it_interval);
1092	} else {
1093		timer_gettime(pt, &its);
1094		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1095		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1096	}
1097	mutex_spin_exit(&timer_lock);
1098
1099	return 0;
1100}
1101
1102/* BSD routine to set/arm an interval timer. */
1103/* ARGSUSED */
1104int
1105sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1106    register_t *retval)
1107{
1108	/* {
1109		syscallarg(int) which;
1110		syscallarg(const struct itimerval *) itv;
1111		syscallarg(struct itimerval *) oitv;
1112	} */
1113	struct proc *p = l->l_proc;
1114	int which = SCARG(uap, which);
1115	struct sys___getitimer50_args getargs;
1116	const struct itimerval *itvp;
1117	struct itimerval aitv;
1118	int error;
1119
1120	if ((u_int)which > ITIMER_MONOTONIC)
1121		return (EINVAL);
1122	itvp = SCARG(uap, itv);
1123	if (itvp &&
1124	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1125		return (error);
1126	if (SCARG(uap, oitv) != NULL) {
1127		SCARG(&getargs, which) = which;
1128		SCARG(&getargs, itv) = SCARG(uap, oitv);
1129		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1130			return (error);
1131	}
1132	if (itvp == 0)
1133		return (0);
1134
1135	return dosetitimer(p, which, &aitv);
1136}
1137
1138int
1139dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1140{
1141	struct timespec now;
1142	struct ptimers *pts;
1143	struct ptimer *pt, *spare;
1144
1145	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1146	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1147		return (EINVAL);
1148
1149	/*
1150	 * Don't bother allocating data structures if the process just
1151	 * wants to clear the timer.
1152	 */
1153	spare = NULL;
1154	pts = p->p_timers;
1155 retry:
1156	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1157	    pts->pts_timers[which] == NULL))
1158		return (0);
1159	if (pts == NULL)
1160		pts = timers_alloc(p);
1161	mutex_spin_enter(&timer_lock);
1162	pt = pts->pts_timers[which];
1163	if (pt == NULL) {
1164		if (spare == NULL) {
1165			mutex_spin_exit(&timer_lock);
1166			spare = pool_get(&ptimer_pool, PR_WAITOK);
1167			goto retry;
1168		}
1169		pt = spare;
1170		spare = NULL;
1171		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1172		pt->pt_ev.sigev_value.sival_int = which;
1173		pt->pt_overruns = 0;
1174		pt->pt_proc = p;
1175		pt->pt_type = which;
1176		pt->pt_entry = which;
1177		pt->pt_queued = false;
1178		if (pt->pt_type == CLOCK_REALTIME)
1179			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1180		else
1181			pt->pt_active = 0;
1182
1183		switch (which) {
1184		case ITIMER_REAL:
1185		case ITIMER_MONOTONIC:
1186			pt->pt_ev.sigev_signo = SIGALRM;
1187			break;
1188		case ITIMER_VIRTUAL:
1189			pt->pt_ev.sigev_signo = SIGVTALRM;
1190			break;
1191		case ITIMER_PROF:
1192			pt->pt_ev.sigev_signo = SIGPROF;
1193			break;
1194		}
1195		pts->pts_timers[which] = pt;
1196	}
1197
1198	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1199	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1200
1201	if (timespecisset(&pt->pt_time.it_value)) {
1202		/* Convert to absolute time */
1203		/* XXX need to wrap in splclock for timecounters case? */
1204		switch (which) {
1205		case ITIMER_REAL:
1206			getnanotime(&now);
1207			timespecadd(&pt->pt_time.it_value, &now,
1208			    &pt->pt_time.it_value);
1209			break;
1210		case ITIMER_MONOTONIC:
1211			getnanouptime(&now);
1212			timespecadd(&pt->pt_time.it_value, &now,
1213			    &pt->pt_time.it_value);
1214			break;
1215		default:
1216			break;
1217		}
1218	}
1219	timer_settime(pt);
1220	mutex_spin_exit(&timer_lock);
1221	if (spare != NULL)
1222		pool_put(&ptimer_pool, spare);
1223
1224	return (0);
1225}
1226
1227/* Utility routines to manage the array of pointers to timers. */
1228struct ptimers *
1229timers_alloc(struct proc *p)
1230{
1231	struct ptimers *pts;
1232	int i;
1233
1234	pts = pool_get(&ptimers_pool, PR_WAITOK);
1235	LIST_INIT(&pts->pts_virtual);
1236	LIST_INIT(&pts->pts_prof);
1237	for (i = 0; i < TIMER_MAX; i++)
1238		pts->pts_timers[i] = NULL;
1239	mutex_spin_enter(&timer_lock);
1240	if (p->p_timers == NULL) {
1241		p->p_timers = pts;
1242		mutex_spin_exit(&timer_lock);
1243		return pts;
1244	}
1245	mutex_spin_exit(&timer_lock);
1246	pool_put(&ptimers_pool, pts);
1247	return p->p_timers;
1248}
1249
1250/*
1251 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1252 * then clean up all timers and free all the data structures. If
1253 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1254 * by timer_create(), not the BSD setitimer() timers, and only free the
1255 * structure if none of those remain.
1256 */
1257void
1258timers_free(struct proc *p, int which)
1259{
1260	struct ptimers *pts;
1261	struct ptimer *ptn;
1262	struct timespec ts;
1263	int i;
1264
1265	if (p->p_timers == NULL)
1266		return;
1267
1268	pts = p->p_timers;
1269	mutex_spin_enter(&timer_lock);
1270	if (which == TIMERS_ALL) {
1271		p->p_timers = NULL;
1272		i = 0;
1273	} else {
1274		timespecclear(&ts);
1275		for (ptn = LIST_FIRST(&pts->pts_virtual);
1276		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1277		     ptn = LIST_NEXT(ptn, pt_list)) {
1278			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1279			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1280		}
1281		LIST_FIRST(&pts->pts_virtual) = NULL;
1282		if (ptn) {
1283			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1284			timespecadd(&ts, &ptn->pt_time.it_value,
1285			    &ptn->pt_time.it_value);
1286			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1287		}
1288		timespecclear(&ts);
1289		for (ptn = LIST_FIRST(&pts->pts_prof);
1290		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1291		     ptn = LIST_NEXT(ptn, pt_list)) {
1292			KASSERT(ptn->pt_type == CLOCK_PROF);
1293			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1294		}
1295		LIST_FIRST(&pts->pts_prof) = NULL;
1296		if (ptn) {
1297			KASSERT(ptn->pt_type == CLOCK_PROF);
1298			timespecadd(&ts, &ptn->pt_time.it_value,
1299			    &ptn->pt_time.it_value);
1300			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1301		}
1302		i = TIMER_MIN;
1303	}
1304	for ( ; i < TIMER_MAX; i++) {
1305		if (pts->pts_timers[i] != NULL) {
1306			itimerfree(pts, i);
1307			mutex_spin_enter(&timer_lock);
1308		}
1309	}
1310	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1311	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1312		p->p_timers = NULL;
1313		mutex_spin_exit(&timer_lock);
1314		pool_put(&ptimers_pool, pts);
1315	} else
1316		mutex_spin_exit(&timer_lock);
1317}
1318
1319static void
1320itimerfree(struct ptimers *pts, int index)
1321{
1322	struct ptimer *pt;
1323
1324	KASSERT(mutex_owned(&timer_lock));
1325
1326	pt = pts->pts_timers[index];
1327	pts->pts_timers[index] = NULL;
1328	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1329		callout_halt(&pt->pt_ch, &timer_lock);
1330	if (pt->pt_queued)
1331		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1332	mutex_spin_exit(&timer_lock);
1333	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1334		callout_destroy(&pt->pt_ch);
1335	pool_put(&ptimer_pool, pt);
1336}
1337
1338/*
1339 * Decrement an interval timer by a specified number
1340 * of nanoseconds, which must be less than a second,
1341 * i.e. < 1000000000.  If the timer expires, then reload
1342 * it.  In this case, carry over (nsec - old value) to
1343 * reduce the value reloaded into the timer so that
1344 * the timer does not drift.  This routine assumes
1345 * that it is called in a context where the timers
1346 * on which it is operating cannot change in value.
1347 */
1348static int
1349itimerdecr(struct ptimer *pt, int nsec)
1350{
1351	struct itimerspec *itp;
1352
1353	KASSERT(mutex_owned(&timer_lock));
1354	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1355
1356	itp = &pt->pt_time;
1357	if (itp->it_value.tv_nsec < nsec) {
1358		if (itp->it_value.tv_sec == 0) {
1359			/* expired, and already in next interval */
1360			nsec -= itp->it_value.tv_nsec;
1361			goto expire;
1362		}
1363		itp->it_value.tv_nsec += 1000000000;
1364		itp->it_value.tv_sec--;
1365	}
1366	itp->it_value.tv_nsec -= nsec;
1367	nsec = 0;
1368	if (timespecisset(&itp->it_value))
1369		return (1);
1370	/* expired, exactly at end of interval */
1371expire:
1372	if (timespecisset(&itp->it_interval)) {
1373		itp->it_value = itp->it_interval;
1374		itp->it_value.tv_nsec -= nsec;
1375		if (itp->it_value.tv_nsec < 0) {
1376			itp->it_value.tv_nsec += 1000000000;
1377			itp->it_value.tv_sec--;
1378		}
1379		timer_settime(pt);
1380	} else
1381		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
1382	return (0);
1383}
1384
1385static void
1386itimerfire(struct ptimer *pt)
1387{
1388
1389	KASSERT(mutex_owned(&timer_lock));
1390
1391	/*
1392	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1393	 * XXX Relying on the clock interrupt is stupid.
1394	 */
1395	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1396		return;
1397	}
1398	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1399	pt->pt_queued = true;
1400	softint_schedule(timer_sih);
1401}
1402
1403void
1404timer_tick(lwp_t *l, bool user)
1405{
1406	struct ptimers *pts;
1407	struct ptimer *pt;
1408	proc_t *p;
1409
1410	p = l->l_proc;
1411	if (p->p_timers == NULL)
1412		return;
1413
1414	mutex_spin_enter(&timer_lock);
1415	if ((pts = l->l_proc->p_timers) != NULL) {
1416		/*
1417		 * Run current process's virtual and profile time, as needed.
1418		 */
1419		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1420			if (itimerdecr(pt, tick * 1000) == 0)
1421				itimerfire(pt);
1422		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1423			if (itimerdecr(pt, tick * 1000) == 0)
1424				itimerfire(pt);
1425	}
1426	mutex_spin_exit(&timer_lock);
1427}
1428
1429static void
1430timer_intr(void *cookie)
1431{
1432	ksiginfo_t ksi;
1433	struct ptimer *pt;
1434	proc_t *p;
1435
1436	mutex_enter(proc_lock);
1437	mutex_spin_enter(&timer_lock);
1438	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1439		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1440		KASSERT(pt->pt_queued);
1441		pt->pt_queued = false;
1442
1443		if (pt->pt_proc->p_timers == NULL) {
1444			/* Process is dying. */
1445			continue;
1446		}
1447		p = pt->pt_proc;
1448		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1449			continue;
1450		}
1451		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1452			pt->pt_overruns++;
1453			continue;
1454		}
1455
1456		KSI_INIT(&ksi);
1457		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1458		ksi.ksi_code = SI_TIMER;
1459		ksi.ksi_value = pt->pt_ev.sigev_value;
1460		pt->pt_poverruns = pt->pt_overruns;
1461		pt->pt_overruns = 0;
1462		mutex_spin_exit(&timer_lock);
1463		kpsignal(p, &ksi, NULL);
1464		mutex_spin_enter(&timer_lock);
1465	}
1466	mutex_spin_exit(&timer_lock);
1467	mutex_exit(proc_lock);
1468}
1469
1470/*
1471 * Check if the time will wrap if set to ts.
1472 *
1473 * ts - timespec describing the new time
1474 * delta - the delta between the current time and ts
1475 */
1476bool
1477time_wraps(struct timespec *ts, struct timespec *delta)
1478{
1479
1480	/*
1481	 * Don't allow the time to be set forward so far it
1482	 * will wrap and become negative, thus allowing an
1483	 * attacker to bypass the next check below.  The
1484	 * cutoff is 1 year before rollover occurs, so even
1485	 * if the attacker uses adjtime(2) to move the time
1486	 * past the cutoff, it will take a very long time
1487	 * to get to the wrap point.
1488	 */
1489	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1490	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
1491		return true;
1492
1493	return false;
1494}
1495