kern_time.c revision 1.184
1/*	$NetBSD: kern_time.c,v 1.184 2016/03/03 01:39:17 uwe Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61 */
62
63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.184 2016/03/03 01:39:17 uwe Exp $");
65
66#include <sys/param.h>
67#include <sys/resourcevar.h>
68#include <sys/kernel.h>
69#include <sys/systm.h>
70#include <sys/proc.h>
71#include <sys/vnode.h>
72#include <sys/signalvar.h>
73#include <sys/syslog.h>
74#include <sys/timetc.h>
75#include <sys/timex.h>
76#include <sys/kauth.h>
77#include <sys/mount.h>
78#include <sys/syscallargs.h>
79#include <sys/cpu.h>
80
81static void	timer_intr(void *);
82static void	itimerfire(struct ptimer *);
83static void	itimerfree(struct ptimers *, int);
84
85kmutex_t	timer_lock;
86
87static void	*timer_sih;
88static TAILQ_HEAD(, ptimer) timer_queue;
89
90struct pool ptimer_pool, ptimers_pool;
91
92#define	CLOCK_VIRTUAL_P(clockid)	\
93	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97CTASSERT(ITIMER_PROF == CLOCK_PROF);
98CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100/*
101 * Initialize timekeeping.
102 */
103void
104time_init(void)
105{
106
107	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108	    &pool_allocator_nointr, IPL_NONE);
109	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110	    &pool_allocator_nointr, IPL_NONE);
111}
112
113void
114time_init2(void)
115{
116
117	TAILQ_INIT(&timer_queue);
118	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120	    timer_intr, NULL);
121}
122
123/* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers.  Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132/* This function is used by clock_settime and settimeofday */
133static int
134settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135{
136	struct timespec delta, now;
137	int s;
138
139	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140	s = splclock();
141	nanotime(&now);
142	timespecsub(ts, &now, &delta);
143
144	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147		splx(s);
148		return (EPERM);
149	}
150
151#ifdef notyet
152	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153		splx(s);
154		return (EPERM);
155	}
156#endif
157
158	tc_setclock(ts);
159
160	timespecadd(&boottime, &delta, &boottime);
161
162	resettodr();
163	splx(s);
164
165	return (0);
166}
167
168int
169settime(struct proc *p, struct timespec *ts)
170{
171	return (settime1(p, ts, true));
172}
173
174/* ARGSUSED */
175int
176sys___clock_gettime50(struct lwp *l,
177    const struct sys___clock_gettime50_args *uap, register_t *retval)
178{
179	/* {
180		syscallarg(clockid_t) clock_id;
181		syscallarg(struct timespec *) tp;
182	} */
183	int error;
184	struct timespec ats;
185
186	error = clock_gettime1(SCARG(uap, clock_id), &ats);
187	if (error != 0)
188		return error;
189
190	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191}
192
193/* ARGSUSED */
194int
195sys___clock_settime50(struct lwp *l,
196    const struct sys___clock_settime50_args *uap, register_t *retval)
197{
198	/* {
199		syscallarg(clockid_t) clock_id;
200		syscallarg(const struct timespec *) tp;
201	} */
202	int error;
203	struct timespec ats;
204
205	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
206		return error;
207
208	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
209}
210
211
212int
213clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
214    bool check_kauth)
215{
216	int error;
217
218	switch (clock_id) {
219	case CLOCK_REALTIME:
220		if ((error = settime1(p, tp, check_kauth)) != 0)
221			return (error);
222		break;
223	case CLOCK_MONOTONIC:
224		return (EINVAL);	/* read-only clock */
225	default:
226		return (EINVAL);
227	}
228
229	return 0;
230}
231
232int
233sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
234    register_t *retval)
235{
236	/* {
237		syscallarg(clockid_t) clock_id;
238		syscallarg(struct timespec *) tp;
239	} */
240	struct timespec ts;
241	int error;
242
243	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
244		return error;
245
246	if (SCARG(uap, tp))
247		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248
249	return error;
250}
251
252int
253clock_getres1(clockid_t clock_id, struct timespec *ts)
254{
255
256	switch (clock_id) {
257	case CLOCK_REALTIME:
258	case CLOCK_MONOTONIC:
259		ts->tv_sec = 0;
260		if (tc_getfrequency() > 1000000000)
261			ts->tv_nsec = 1;
262		else
263			ts->tv_nsec = 1000000000 / tc_getfrequency();
264		break;
265	default:
266		return EINVAL;
267	}
268
269	return 0;
270}
271
272/* ARGSUSED */
273int
274sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275    register_t *retval)
276{
277	/* {
278		syscallarg(struct timespec *) rqtp;
279		syscallarg(struct timespec *) rmtp;
280	} */
281	struct timespec rmt, rqt;
282	int error, error1;
283
284	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285	if (error)
286		return (error);
287
288	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
289	    SCARG(uap, rmtp) ? &rmt : NULL);
290	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291		return error;
292
293	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294	return error1 ? error1 : error;
295}
296
297/* ARGSUSED */
298int
299sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
300    register_t *retval)
301{
302	/* {
303		syscallarg(clockid_t) clock_id;
304		syscallarg(int) flags;
305		syscallarg(struct timespec *) rqtp;
306		syscallarg(struct timespec *) rmtp;
307	} */
308	struct timespec rmt, rqt;
309	int error, error1;
310
311	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
312	if (error)
313		goto out;
314
315	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
316	    SCARG(uap, rmtp) ? &rmt : NULL);
317	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
318		goto out;
319
320	if ((error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
321		error = error1;
322out:
323	*retval = error;
324	return 0;
325}
326
327int
328nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
329    struct timespec *rmt)
330{
331	struct timespec rmtstart;
332	int error, timo;
333
334	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
335		if (error == ETIMEDOUT) {
336			error = 0;
337			if (rmt != NULL)
338				rmt->tv_sec = rmt->tv_nsec = 0;
339		}
340		return error;
341	}
342
343	/*
344	 * Avoid inadvertently sleeping forever
345	 */
346	if (timo == 0)
347		timo = 1;
348again:
349	error = kpause("nanoslp", true, timo, NULL);
350	if (rmt != NULL || error == 0) {
351		struct timespec rmtend;
352		struct timespec t0;
353		struct timespec *t;
354
355		(void)clock_gettime1(clock_id, &rmtend);
356		t = (rmt != NULL) ? rmt : &t0;
357		if (flags & TIMER_ABSTIME) {
358			timespecsub(rqt, &rmtend, t);
359		} else {
360			timespecsub(&rmtend, &rmtstart, t);
361			timespecsub(rqt, t, t);
362		}
363		if (t->tv_sec < 0)
364			timespecclear(t);
365		if (error == 0) {
366			timo = tstohz(t);
367			if (timo > 0)
368				goto again;
369		}
370	}
371
372	if (error == ERESTART)
373		error = EINTR;
374	if (error == EWOULDBLOCK)
375		error = 0;
376
377	return error;
378}
379
380/* ARGSUSED */
381int
382sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
383    register_t *retval)
384{
385	/* {
386		syscallarg(struct timeval *) tp;
387		syscallarg(void *) tzp;		really "struct timezone *";
388	} */
389	struct timeval atv;
390	int error = 0;
391	struct timezone tzfake;
392
393	if (SCARG(uap, tp)) {
394		microtime(&atv);
395		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
396		if (error)
397			return (error);
398	}
399	if (SCARG(uap, tzp)) {
400		/*
401		 * NetBSD has no kernel notion of time zone, so we just
402		 * fake up a timezone struct and return it if demanded.
403		 */
404		tzfake.tz_minuteswest = 0;
405		tzfake.tz_dsttime = 0;
406		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
407	}
408	return (error);
409}
410
411/* ARGSUSED */
412int
413sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
414    register_t *retval)
415{
416	/* {
417		syscallarg(const struct timeval *) tv;
418		syscallarg(const void *) tzp; really "const struct timezone *";
419	} */
420
421	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
422}
423
424int
425settimeofday1(const struct timeval *utv, bool userspace,
426    const void *utzp, struct lwp *l, bool check_kauth)
427{
428	struct timeval atv;
429	struct timespec ts;
430	int error;
431
432	/* Verify all parameters before changing time. */
433
434	/*
435	 * NetBSD has no kernel notion of time zone, and only an
436	 * obsolete program would try to set it, so we log a warning.
437	 */
438	if (utzp)
439		log(LOG_WARNING, "pid %d attempted to set the "
440		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
441
442	if (utv == NULL)
443		return 0;
444
445	if (userspace) {
446		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
447			return error;
448		utv = &atv;
449	}
450
451	TIMEVAL_TO_TIMESPEC(utv, &ts);
452	return settime1(l->l_proc, &ts, check_kauth);
453}
454
455int	time_adjusted;			/* set if an adjustment is made */
456
457/* ARGSUSED */
458int
459sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
460    register_t *retval)
461{
462	/* {
463		syscallarg(const struct timeval *) delta;
464		syscallarg(struct timeval *) olddelta;
465	} */
466	int error;
467	struct timeval atv, oldatv;
468
469	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
470	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
471		return error;
472
473	if (SCARG(uap, delta)) {
474		error = copyin(SCARG(uap, delta), &atv,
475		    sizeof(*SCARG(uap, delta)));
476		if (error)
477			return (error);
478	}
479	adjtime1(SCARG(uap, delta) ? &atv : NULL,
480	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
481	if (SCARG(uap, olddelta))
482		error = copyout(&oldatv, SCARG(uap, olddelta),
483		    sizeof(*SCARG(uap, olddelta)));
484	return error;
485}
486
487void
488adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
489{
490	extern int64_t time_adjtime;  /* in kern_ntptime.c */
491
492	if (olddelta) {
493		mutex_spin_enter(&timecounter_lock);
494		olddelta->tv_sec = time_adjtime / 1000000;
495		olddelta->tv_usec = time_adjtime % 1000000;
496		if (olddelta->tv_usec < 0) {
497			olddelta->tv_usec += 1000000;
498			olddelta->tv_sec--;
499		}
500		mutex_spin_exit(&timecounter_lock);
501	}
502
503	if (delta) {
504		mutex_spin_enter(&timecounter_lock);
505		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
506
507		if (time_adjtime) {
508			/* We need to save the system time during shutdown */
509			time_adjusted |= 1;
510		}
511		mutex_spin_exit(&timecounter_lock);
512	}
513}
514
515/*
516 * Interval timer support. Both the BSD getitimer() family and the POSIX
517 * timer_*() family of routines are supported.
518 *
519 * All timers are kept in an array pointed to by p_timers, which is
520 * allocated on demand - many processes don't use timers at all. The
521 * first four elements in this array are reserved for the BSD timers:
522 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
523 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
524 * allocated by the timer_create() syscall.
525 *
526 * Realtime timers are kept in the ptimer structure as an absolute
527 * time; virtual time timers are kept as a linked list of deltas.
528 * Virtual time timers are processed in the hardclock() routine of
529 * kern_clock.c.  The real time timer is processed by a callout
530 * routine, called from the softclock() routine.  Since a callout may
531 * be delayed in real time due to interrupt processing in the system,
532 * it is possible for the real time timeout routine (realtimeexpire,
533 * given below), to be delayed in real time past when it is supposed
534 * to occur.  It does not suffice, therefore, to reload the real timer
535 * .it_value from the real time timers .it_interval.  Rather, we
536 * compute the next time in absolute time the timer should go off.  */
537
538/* Allocate a POSIX realtime timer. */
539int
540sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
541    register_t *retval)
542{
543	/* {
544		syscallarg(clockid_t) clock_id;
545		syscallarg(struct sigevent *) evp;
546		syscallarg(timer_t *) timerid;
547	} */
548
549	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
550	    SCARG(uap, evp), copyin, l);
551}
552
553int
554timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
555    copyin_t fetch_event, struct lwp *l)
556{
557	int error;
558	timer_t timerid;
559	struct ptimers *pts;
560	struct ptimer *pt;
561	struct proc *p;
562
563	p = l->l_proc;
564
565	if ((u_int)id > CLOCK_MONOTONIC)
566		return (EINVAL);
567
568	if ((pts = p->p_timers) == NULL)
569		pts = timers_alloc(p);
570
571	pt = pool_get(&ptimer_pool, PR_WAITOK);
572	if (evp != NULL) {
573		if (((error =
574		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
575		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
576			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
577			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
578			 (pt->pt_ev.sigev_signo <= 0 ||
579			  pt->pt_ev.sigev_signo >= NSIG))) {
580			pool_put(&ptimer_pool, pt);
581			return (error ? error : EINVAL);
582		}
583	}
584
585	/* Find a free timer slot, skipping those reserved for setitimer(). */
586	mutex_spin_enter(&timer_lock);
587	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
588		if (pts->pts_timers[timerid] == NULL)
589			break;
590	if (timerid == TIMER_MAX) {
591		mutex_spin_exit(&timer_lock);
592		pool_put(&ptimer_pool, pt);
593		return EAGAIN;
594	}
595	if (evp == NULL) {
596		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
597		switch (id) {
598		case CLOCK_REALTIME:
599		case CLOCK_MONOTONIC:
600			pt->pt_ev.sigev_signo = SIGALRM;
601			break;
602		case CLOCK_VIRTUAL:
603			pt->pt_ev.sigev_signo = SIGVTALRM;
604			break;
605		case CLOCK_PROF:
606			pt->pt_ev.sigev_signo = SIGPROF;
607			break;
608		}
609		pt->pt_ev.sigev_value.sival_int = timerid;
610	}
611	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
612	pt->pt_info.ksi_errno = 0;
613	pt->pt_info.ksi_code = 0;
614	pt->pt_info.ksi_pid = p->p_pid;
615	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
616	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
617	pt->pt_type = id;
618	pt->pt_proc = p;
619	pt->pt_overruns = 0;
620	pt->pt_poverruns = 0;
621	pt->pt_entry = timerid;
622	pt->pt_queued = false;
623	timespecclear(&pt->pt_time.it_value);
624	if (!CLOCK_VIRTUAL_P(id))
625		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
626	else
627		pt->pt_active = 0;
628
629	pts->pts_timers[timerid] = pt;
630	mutex_spin_exit(&timer_lock);
631
632	return copyout(&timerid, tid, sizeof(timerid));
633}
634
635/* Delete a POSIX realtime timer */
636int
637sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
638    register_t *retval)
639{
640	/* {
641		syscallarg(timer_t) timerid;
642	} */
643	struct proc *p = l->l_proc;
644	timer_t timerid;
645	struct ptimers *pts;
646	struct ptimer *pt, *ptn;
647
648	timerid = SCARG(uap, timerid);
649	pts = p->p_timers;
650
651	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
652		return (EINVAL);
653
654	mutex_spin_enter(&timer_lock);
655	if ((pt = pts->pts_timers[timerid]) == NULL) {
656		mutex_spin_exit(&timer_lock);
657		return (EINVAL);
658	}
659	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
660		if (pt->pt_active) {
661			ptn = LIST_NEXT(pt, pt_list);
662			LIST_REMOVE(pt, pt_list);
663			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
664				timespecadd(&pt->pt_time.it_value,
665				    &ptn->pt_time.it_value,
666				    &ptn->pt_time.it_value);
667			pt->pt_active = 0;
668		}
669	}
670	itimerfree(pts, timerid);
671
672	return (0);
673}
674
675/*
676 * Set up the given timer. The value in pt->pt_time.it_value is taken
677 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
678 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
679 */
680void
681timer_settime(struct ptimer *pt)
682{
683	struct ptimer *ptn, *pptn;
684	struct ptlist *ptl;
685
686	KASSERT(mutex_owned(&timer_lock));
687
688	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
689		callout_halt(&pt->pt_ch, &timer_lock);
690		if (timespecisset(&pt->pt_time.it_value)) {
691			/*
692			 * Don't need to check tshzto() return value, here.
693			 * callout_reset() does it for us.
694			 */
695			callout_reset(&pt->pt_ch,
696			    pt->pt_type == CLOCK_MONOTONIC ?
697			    tshztoup(&pt->pt_time.it_value) :
698			    tshzto(&pt->pt_time.it_value),
699			    realtimerexpire, pt);
700		}
701	} else {
702		if (pt->pt_active) {
703			ptn = LIST_NEXT(pt, pt_list);
704			LIST_REMOVE(pt, pt_list);
705			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
706				timespecadd(&pt->pt_time.it_value,
707				    &ptn->pt_time.it_value,
708				    &ptn->pt_time.it_value);
709		}
710		if (timespecisset(&pt->pt_time.it_value)) {
711			if (pt->pt_type == CLOCK_VIRTUAL)
712				ptl = &pt->pt_proc->p_timers->pts_virtual;
713			else
714				ptl = &pt->pt_proc->p_timers->pts_prof;
715
716			for (ptn = LIST_FIRST(ptl), pptn = NULL;
717			     ptn && timespeccmp(&pt->pt_time.it_value,
718				 &ptn->pt_time.it_value, >);
719			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
720				timespecsub(&pt->pt_time.it_value,
721				    &ptn->pt_time.it_value,
722				    &pt->pt_time.it_value);
723
724			if (pptn)
725				LIST_INSERT_AFTER(pptn, pt, pt_list);
726			else
727				LIST_INSERT_HEAD(ptl, pt, pt_list);
728
729			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
730				timespecsub(&ptn->pt_time.it_value,
731				    &pt->pt_time.it_value,
732				    &ptn->pt_time.it_value);
733
734			pt->pt_active = 1;
735		} else
736			pt->pt_active = 0;
737	}
738}
739
740void
741timer_gettime(struct ptimer *pt, struct itimerspec *aits)
742{
743	struct timespec now;
744	struct ptimer *ptn;
745
746	KASSERT(mutex_owned(&timer_lock));
747
748	*aits = pt->pt_time;
749	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
750		/*
751		 * Convert from absolute to relative time in .it_value
752		 * part of real time timer.  If time for real time
753		 * timer has passed return 0, else return difference
754		 * between current time and time for the timer to go
755		 * off.
756		 */
757		if (timespecisset(&aits->it_value)) {
758			if (pt->pt_type == CLOCK_REALTIME) {
759				getnanotime(&now);
760			} else { /* CLOCK_MONOTONIC */
761				getnanouptime(&now);
762			}
763			if (timespeccmp(&aits->it_value, &now, <))
764				timespecclear(&aits->it_value);
765			else
766				timespecsub(&aits->it_value, &now,
767				    &aits->it_value);
768		}
769	} else if (pt->pt_active) {
770		if (pt->pt_type == CLOCK_VIRTUAL)
771			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
772		else
773			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
774		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
775			timespecadd(&aits->it_value,
776			    &ptn->pt_time.it_value, &aits->it_value);
777		KASSERT(ptn != NULL); /* pt should be findable on the list */
778	} else
779		timespecclear(&aits->it_value);
780}
781
782
783
784/* Set and arm a POSIX realtime timer */
785int
786sys___timer_settime50(struct lwp *l,
787    const struct sys___timer_settime50_args *uap,
788    register_t *retval)
789{
790	/* {
791		syscallarg(timer_t) timerid;
792		syscallarg(int) flags;
793		syscallarg(const struct itimerspec *) value;
794		syscallarg(struct itimerspec *) ovalue;
795	} */
796	int error;
797	struct itimerspec value, ovalue, *ovp = NULL;
798
799	if ((error = copyin(SCARG(uap, value), &value,
800	    sizeof(struct itimerspec))) != 0)
801		return (error);
802
803	if (SCARG(uap, ovalue))
804		ovp = &ovalue;
805
806	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
807	    SCARG(uap, flags), l->l_proc)) != 0)
808		return error;
809
810	if (ovp)
811		return copyout(&ovalue, SCARG(uap, ovalue),
812		    sizeof(struct itimerspec));
813	return 0;
814}
815
816int
817dotimer_settime(int timerid, struct itimerspec *value,
818    struct itimerspec *ovalue, int flags, struct proc *p)
819{
820	struct timespec now;
821	struct itimerspec val, oval;
822	struct ptimers *pts;
823	struct ptimer *pt;
824	int error;
825
826	pts = p->p_timers;
827
828	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
829		return EINVAL;
830	val = *value;
831	if ((error = itimespecfix(&val.it_value)) != 0 ||
832	    (error = itimespecfix(&val.it_interval)) != 0)
833		return error;
834
835	mutex_spin_enter(&timer_lock);
836	if ((pt = pts->pts_timers[timerid]) == NULL) {
837		mutex_spin_exit(&timer_lock);
838		return EINVAL;
839	}
840
841	oval = pt->pt_time;
842	pt->pt_time = val;
843
844	/*
845	 * If we've been passed a relative time for a realtime timer,
846	 * convert it to absolute; if an absolute time for a virtual
847	 * timer, convert it to relative and make sure we don't set it
848	 * to zero, which would cancel the timer, or let it go
849	 * negative, which would confuse the comparison tests.
850	 */
851	if (timespecisset(&pt->pt_time.it_value)) {
852		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
853			if ((flags & TIMER_ABSTIME) == 0) {
854				if (pt->pt_type == CLOCK_REALTIME) {
855					getnanotime(&now);
856				} else { /* CLOCK_MONOTONIC */
857					getnanouptime(&now);
858				}
859				timespecadd(&pt->pt_time.it_value, &now,
860				    &pt->pt_time.it_value);
861			}
862		} else {
863			if ((flags & TIMER_ABSTIME) != 0) {
864				getnanotime(&now);
865				timespecsub(&pt->pt_time.it_value, &now,
866				    &pt->pt_time.it_value);
867				if (!timespecisset(&pt->pt_time.it_value) ||
868				    pt->pt_time.it_value.tv_sec < 0) {
869					pt->pt_time.it_value.tv_sec = 0;
870					pt->pt_time.it_value.tv_nsec = 1;
871				}
872			}
873		}
874	}
875
876	timer_settime(pt);
877	mutex_spin_exit(&timer_lock);
878
879	if (ovalue)
880		*ovalue = oval;
881
882	return (0);
883}
884
885/* Return the time remaining until a POSIX timer fires. */
886int
887sys___timer_gettime50(struct lwp *l,
888    const struct sys___timer_gettime50_args *uap, register_t *retval)
889{
890	/* {
891		syscallarg(timer_t) timerid;
892		syscallarg(struct itimerspec *) value;
893	} */
894	struct itimerspec its;
895	int error;
896
897	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
898	    &its)) != 0)
899		return error;
900
901	return copyout(&its, SCARG(uap, value), sizeof(its));
902}
903
904int
905dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
906{
907	struct ptimer *pt;
908	struct ptimers *pts;
909
910	pts = p->p_timers;
911	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
912		return (EINVAL);
913	mutex_spin_enter(&timer_lock);
914	if ((pt = pts->pts_timers[timerid]) == NULL) {
915		mutex_spin_exit(&timer_lock);
916		return (EINVAL);
917	}
918	timer_gettime(pt, its);
919	mutex_spin_exit(&timer_lock);
920
921	return 0;
922}
923
924/*
925 * Return the count of the number of times a periodic timer expired
926 * while a notification was already pending. The counter is reset when
927 * a timer expires and a notification can be posted.
928 */
929int
930sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
931    register_t *retval)
932{
933	/* {
934		syscallarg(timer_t) timerid;
935	} */
936	struct proc *p = l->l_proc;
937	struct ptimers *pts;
938	int timerid;
939	struct ptimer *pt;
940
941	timerid = SCARG(uap, timerid);
942
943	pts = p->p_timers;
944	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
945		return (EINVAL);
946	mutex_spin_enter(&timer_lock);
947	if ((pt = pts->pts_timers[timerid]) == NULL) {
948		mutex_spin_exit(&timer_lock);
949		return (EINVAL);
950	}
951	*retval = pt->pt_poverruns;
952	mutex_spin_exit(&timer_lock);
953
954	return (0);
955}
956
957/*
958 * Real interval timer expired:
959 * send process whose timer expired an alarm signal.
960 * If time is not set up to reload, then just return.
961 * Else compute next time timer should go off which is > current time.
962 * This is where delay in processing this timeout causes multiple
963 * SIGALRM calls to be compressed into one.
964 */
965void
966realtimerexpire(void *arg)
967{
968	uint64_t last_val, next_val, interval, now_ns;
969	struct timespec now, next;
970	struct ptimer *pt;
971	int backwards;
972
973	pt = arg;
974
975	mutex_spin_enter(&timer_lock);
976	itimerfire(pt);
977
978	if (!timespecisset(&pt->pt_time.it_interval)) {
979		timespecclear(&pt->pt_time.it_value);
980		mutex_spin_exit(&timer_lock);
981		return;
982	}
983
984	if (pt->pt_type == CLOCK_MONOTONIC) {
985		getnanouptime(&now);
986	} else {
987		getnanotime(&now);
988	}
989	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
990	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
991	/* Handle the easy case of non-overflown timers first. */
992	if (!backwards && timespeccmp(&next, &now, >)) {
993		pt->pt_time.it_value = next;
994	} else {
995		now_ns = timespec2ns(&now);
996		last_val = timespec2ns(&pt->pt_time.it_value);
997		interval = timespec2ns(&pt->pt_time.it_interval);
998
999		next_val = now_ns +
1000		    (now_ns - last_val + interval - 1) % interval;
1001
1002		if (backwards)
1003			next_val += interval;
1004		else
1005			pt->pt_overruns += (now_ns - last_val) / interval;
1006
1007		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1008		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1009	}
1010
1011	/*
1012	 * Don't need to check tshzto() return value, here.
1013	 * callout_reset() does it for us.
1014	 */
1015	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1016	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1017	    realtimerexpire, pt);
1018	mutex_spin_exit(&timer_lock);
1019}
1020
1021/* BSD routine to get the value of an interval timer. */
1022/* ARGSUSED */
1023int
1024sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1025    register_t *retval)
1026{
1027	/* {
1028		syscallarg(int) which;
1029		syscallarg(struct itimerval *) itv;
1030	} */
1031	struct proc *p = l->l_proc;
1032	struct itimerval aitv;
1033	int error;
1034
1035	error = dogetitimer(p, SCARG(uap, which), &aitv);
1036	if (error)
1037		return error;
1038	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1039}
1040
1041int
1042dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1043{
1044	struct ptimers *pts;
1045	struct ptimer *pt;
1046	struct itimerspec its;
1047
1048	if ((u_int)which > ITIMER_MONOTONIC)
1049		return (EINVAL);
1050
1051	mutex_spin_enter(&timer_lock);
1052	pts = p->p_timers;
1053	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1054		timerclear(&itvp->it_value);
1055		timerclear(&itvp->it_interval);
1056	} else {
1057		timer_gettime(pt, &its);
1058		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1059		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1060	}
1061	mutex_spin_exit(&timer_lock);
1062
1063	return 0;
1064}
1065
1066/* BSD routine to set/arm an interval timer. */
1067/* ARGSUSED */
1068int
1069sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1070    register_t *retval)
1071{
1072	/* {
1073		syscallarg(int) which;
1074		syscallarg(const struct itimerval *) itv;
1075		syscallarg(struct itimerval *) oitv;
1076	} */
1077	struct proc *p = l->l_proc;
1078	int which = SCARG(uap, which);
1079	struct sys___getitimer50_args getargs;
1080	const struct itimerval *itvp;
1081	struct itimerval aitv;
1082	int error;
1083
1084	if ((u_int)which > ITIMER_MONOTONIC)
1085		return (EINVAL);
1086	itvp = SCARG(uap, itv);
1087	if (itvp &&
1088	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1089		return (error);
1090	if (SCARG(uap, oitv) != NULL) {
1091		SCARG(&getargs, which) = which;
1092		SCARG(&getargs, itv) = SCARG(uap, oitv);
1093		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1094			return (error);
1095	}
1096	if (itvp == 0)
1097		return (0);
1098
1099	return dosetitimer(p, which, &aitv);
1100}
1101
1102int
1103dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1104{
1105	struct timespec now;
1106	struct ptimers *pts;
1107	struct ptimer *pt, *spare;
1108
1109	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1110	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1111		return (EINVAL);
1112
1113	/*
1114	 * Don't bother allocating data structures if the process just
1115	 * wants to clear the timer.
1116	 */
1117	spare = NULL;
1118	pts = p->p_timers;
1119 retry:
1120	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1121	    pts->pts_timers[which] == NULL))
1122		return (0);
1123	if (pts == NULL)
1124		pts = timers_alloc(p);
1125	mutex_spin_enter(&timer_lock);
1126	pt = pts->pts_timers[which];
1127	if (pt == NULL) {
1128		if (spare == NULL) {
1129			mutex_spin_exit(&timer_lock);
1130			spare = pool_get(&ptimer_pool, PR_WAITOK);
1131			goto retry;
1132		}
1133		pt = spare;
1134		spare = NULL;
1135		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1136		pt->pt_ev.sigev_value.sival_int = which;
1137		pt->pt_overruns = 0;
1138		pt->pt_proc = p;
1139		pt->pt_type = which;
1140		pt->pt_entry = which;
1141		pt->pt_queued = false;
1142		if (pt->pt_type == CLOCK_REALTIME)
1143			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1144		else
1145			pt->pt_active = 0;
1146
1147		switch (which) {
1148		case ITIMER_REAL:
1149		case ITIMER_MONOTONIC:
1150			pt->pt_ev.sigev_signo = SIGALRM;
1151			break;
1152		case ITIMER_VIRTUAL:
1153			pt->pt_ev.sigev_signo = SIGVTALRM;
1154			break;
1155		case ITIMER_PROF:
1156			pt->pt_ev.sigev_signo = SIGPROF;
1157			break;
1158		}
1159		pts->pts_timers[which] = pt;
1160	}
1161
1162	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1163	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1164
1165	if (timespecisset(&pt->pt_time.it_value)) {
1166		/* Convert to absolute time */
1167		/* XXX need to wrap in splclock for timecounters case? */
1168		switch (which) {
1169		case ITIMER_REAL:
1170			getnanotime(&now);
1171			timespecadd(&pt->pt_time.it_value, &now,
1172			    &pt->pt_time.it_value);
1173			break;
1174		case ITIMER_MONOTONIC:
1175			getnanouptime(&now);
1176			timespecadd(&pt->pt_time.it_value, &now,
1177			    &pt->pt_time.it_value);
1178			break;
1179		default:
1180			break;
1181		}
1182	}
1183	timer_settime(pt);
1184	mutex_spin_exit(&timer_lock);
1185	if (spare != NULL)
1186		pool_put(&ptimer_pool, spare);
1187
1188	return (0);
1189}
1190
1191/* Utility routines to manage the array of pointers to timers. */
1192struct ptimers *
1193timers_alloc(struct proc *p)
1194{
1195	struct ptimers *pts;
1196	int i;
1197
1198	pts = pool_get(&ptimers_pool, PR_WAITOK);
1199	LIST_INIT(&pts->pts_virtual);
1200	LIST_INIT(&pts->pts_prof);
1201	for (i = 0; i < TIMER_MAX; i++)
1202		pts->pts_timers[i] = NULL;
1203	pts->pts_fired = 0;
1204	mutex_spin_enter(&timer_lock);
1205	if (p->p_timers == NULL) {
1206		p->p_timers = pts;
1207		mutex_spin_exit(&timer_lock);
1208		return pts;
1209	}
1210	mutex_spin_exit(&timer_lock);
1211	pool_put(&ptimers_pool, pts);
1212	return p->p_timers;
1213}
1214
1215/*
1216 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1217 * then clean up all timers and free all the data structures. If
1218 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1219 * by timer_create(), not the BSD setitimer() timers, and only free the
1220 * structure if none of those remain.
1221 */
1222void
1223timers_free(struct proc *p, int which)
1224{
1225	struct ptimers *pts;
1226	struct ptimer *ptn;
1227	struct timespec ts;
1228	int i;
1229
1230	if (p->p_timers == NULL)
1231		return;
1232
1233	pts = p->p_timers;
1234	mutex_spin_enter(&timer_lock);
1235	if (which == TIMERS_ALL) {
1236		p->p_timers = NULL;
1237		i = 0;
1238	} else {
1239		timespecclear(&ts);
1240		for (ptn = LIST_FIRST(&pts->pts_virtual);
1241		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1242		     ptn = LIST_NEXT(ptn, pt_list)) {
1243			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1244			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1245		}
1246		LIST_FIRST(&pts->pts_virtual) = NULL;
1247		if (ptn) {
1248			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1249			timespecadd(&ts, &ptn->pt_time.it_value,
1250			    &ptn->pt_time.it_value);
1251			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1252		}
1253		timespecclear(&ts);
1254		for (ptn = LIST_FIRST(&pts->pts_prof);
1255		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1256		     ptn = LIST_NEXT(ptn, pt_list)) {
1257			KASSERT(ptn->pt_type == CLOCK_PROF);
1258			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1259		}
1260		LIST_FIRST(&pts->pts_prof) = NULL;
1261		if (ptn) {
1262			KASSERT(ptn->pt_type == CLOCK_PROF);
1263			timespecadd(&ts, &ptn->pt_time.it_value,
1264			    &ptn->pt_time.it_value);
1265			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1266		}
1267		i = TIMER_MIN;
1268	}
1269	for ( ; i < TIMER_MAX; i++) {
1270		if (pts->pts_timers[i] != NULL) {
1271			itimerfree(pts, i);
1272			mutex_spin_enter(&timer_lock);
1273		}
1274	}
1275	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1276	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1277		p->p_timers = NULL;
1278		mutex_spin_exit(&timer_lock);
1279		pool_put(&ptimers_pool, pts);
1280	} else
1281		mutex_spin_exit(&timer_lock);
1282}
1283
1284static void
1285itimerfree(struct ptimers *pts, int index)
1286{
1287	struct ptimer *pt;
1288
1289	KASSERT(mutex_owned(&timer_lock));
1290
1291	pt = pts->pts_timers[index];
1292	pts->pts_timers[index] = NULL;
1293	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1294		callout_halt(&pt->pt_ch, &timer_lock);
1295	if (pt->pt_queued)
1296		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1297	mutex_spin_exit(&timer_lock);
1298	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1299		callout_destroy(&pt->pt_ch);
1300	pool_put(&ptimer_pool, pt);
1301}
1302
1303/*
1304 * Decrement an interval timer by a specified number
1305 * of nanoseconds, which must be less than a second,
1306 * i.e. < 1000000000.  If the timer expires, then reload
1307 * it.  In this case, carry over (nsec - old value) to
1308 * reduce the value reloaded into the timer so that
1309 * the timer does not drift.  This routine assumes
1310 * that it is called in a context where the timers
1311 * on which it is operating cannot change in value.
1312 */
1313static int
1314itimerdecr(struct ptimer *pt, int nsec)
1315{
1316	struct itimerspec *itp;
1317
1318	KASSERT(mutex_owned(&timer_lock));
1319	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1320
1321	itp = &pt->pt_time;
1322	if (itp->it_value.tv_nsec < nsec) {
1323		if (itp->it_value.tv_sec == 0) {
1324			/* expired, and already in next interval */
1325			nsec -= itp->it_value.tv_nsec;
1326			goto expire;
1327		}
1328		itp->it_value.tv_nsec += 1000000000;
1329		itp->it_value.tv_sec--;
1330	}
1331	itp->it_value.tv_nsec -= nsec;
1332	nsec = 0;
1333	if (timespecisset(&itp->it_value))
1334		return (1);
1335	/* expired, exactly at end of interval */
1336expire:
1337	if (timespecisset(&itp->it_interval)) {
1338		itp->it_value = itp->it_interval;
1339		itp->it_value.tv_nsec -= nsec;
1340		if (itp->it_value.tv_nsec < 0) {
1341			itp->it_value.tv_nsec += 1000000000;
1342			itp->it_value.tv_sec--;
1343		}
1344		timer_settime(pt);
1345	} else
1346		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
1347	return (0);
1348}
1349
1350static void
1351itimerfire(struct ptimer *pt)
1352{
1353
1354	KASSERT(mutex_owned(&timer_lock));
1355
1356	/*
1357	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1358	 * XXX Relying on the clock interrupt is stupid.
1359	 */
1360	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1361		return;
1362	}
1363	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1364	pt->pt_queued = true;
1365	softint_schedule(timer_sih);
1366}
1367
1368void
1369timer_tick(lwp_t *l, bool user)
1370{
1371	struct ptimers *pts;
1372	struct ptimer *pt;
1373	proc_t *p;
1374
1375	p = l->l_proc;
1376	if (p->p_timers == NULL)
1377		return;
1378
1379	mutex_spin_enter(&timer_lock);
1380	if ((pts = l->l_proc->p_timers) != NULL) {
1381		/*
1382		 * Run current process's virtual and profile time, as needed.
1383		 */
1384		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1385			if (itimerdecr(pt, tick * 1000) == 0)
1386				itimerfire(pt);
1387		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1388			if (itimerdecr(pt, tick * 1000) == 0)
1389				itimerfire(pt);
1390	}
1391	mutex_spin_exit(&timer_lock);
1392}
1393
1394static void
1395timer_intr(void *cookie)
1396{
1397	ksiginfo_t ksi;
1398	struct ptimer *pt;
1399	proc_t *p;
1400
1401	mutex_enter(proc_lock);
1402	mutex_spin_enter(&timer_lock);
1403	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1404		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1405		KASSERT(pt->pt_queued);
1406		pt->pt_queued = false;
1407
1408		if (pt->pt_proc->p_timers == NULL) {
1409			/* Process is dying. */
1410			continue;
1411		}
1412		p = pt->pt_proc;
1413		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1414			continue;
1415		}
1416		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1417			pt->pt_overruns++;
1418			continue;
1419		}
1420
1421		KSI_INIT(&ksi);
1422		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1423		ksi.ksi_code = SI_TIMER;
1424		ksi.ksi_value = pt->pt_ev.sigev_value;
1425		pt->pt_poverruns = pt->pt_overruns;
1426		pt->pt_overruns = 0;
1427		mutex_spin_exit(&timer_lock);
1428		kpsignal(p, &ksi, NULL);
1429		mutex_spin_enter(&timer_lock);
1430	}
1431	mutex_spin_exit(&timer_lock);
1432	mutex_exit(proc_lock);
1433}
1434
1435/*
1436 * Check if the time will wrap if set to ts.
1437 *
1438 * ts - timespec describing the new time
1439 * delta - the delta between the current time and ts
1440 */
1441bool
1442time_wraps(struct timespec *ts, struct timespec *delta)
1443{
1444
1445	/*
1446	 * Don't allow the time to be set forward so far it
1447	 * will wrap and become negative, thus allowing an
1448	 * attacker to bypass the next check below.  The
1449	 * cutoff is 1 year before rollover occurs, so even
1450	 * if the attacker uses adjtime(2) to move the time
1451	 * past the cutoff, it will take a very long time
1452	 * to get to the wrap point.
1453	 */
1454	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1455	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
1456		return true;
1457
1458	return false;
1459}
1460