kern_time.c revision 1.183
1/*	$NetBSD: kern_time.c,v 1.183 2016/02/26 17:08:58 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61 */
62
63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.183 2016/02/26 17:08:58 christos Exp $");
65
66#include <sys/param.h>
67#include <sys/resourcevar.h>
68#include <sys/kernel.h>
69#include <sys/systm.h>
70#include <sys/proc.h>
71#include <sys/vnode.h>
72#include <sys/signalvar.h>
73#include <sys/syslog.h>
74#include <sys/timetc.h>
75#include <sys/timex.h>
76#include <sys/kauth.h>
77#include <sys/mount.h>
78#include <sys/syscallargs.h>
79#include <sys/cpu.h>
80
81static void	timer_intr(void *);
82static void	itimerfire(struct ptimer *);
83static void	itimerfree(struct ptimers *, int);
84
85kmutex_t	timer_lock;
86
87static void	*timer_sih;
88static TAILQ_HEAD(, ptimer) timer_queue;
89
90struct pool ptimer_pool, ptimers_pool;
91
92#define	CLOCK_VIRTUAL_P(clockid)	\
93	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97CTASSERT(ITIMER_PROF == CLOCK_PROF);
98CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100/*
101 * Initialize timekeeping.
102 */
103void
104time_init(void)
105{
106
107	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108	    &pool_allocator_nointr, IPL_NONE);
109	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110	    &pool_allocator_nointr, IPL_NONE);
111}
112
113void
114time_init2(void)
115{
116
117	TAILQ_INIT(&timer_queue);
118	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120	    timer_intr, NULL);
121}
122
123/* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers.  Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132/* This function is used by clock_settime and settimeofday */
133static int
134settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135{
136	struct timespec delta, now;
137	int s;
138
139	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140	s = splclock();
141	nanotime(&now);
142	timespecsub(ts, &now, &delta);
143
144	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147		splx(s);
148		return (EPERM);
149	}
150
151#ifdef notyet
152	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153		splx(s);
154		return (EPERM);
155	}
156#endif
157
158	tc_setclock(ts);
159
160	timespecadd(&boottime, &delta, &boottime);
161
162	resettodr();
163	splx(s);
164
165	return (0);
166}
167
168int
169settime(struct proc *p, struct timespec *ts)
170{
171	return (settime1(p, ts, true));
172}
173
174/* ARGSUSED */
175int
176sys___clock_gettime50(struct lwp *l,
177    const struct sys___clock_gettime50_args *uap, register_t *retval)
178{
179	/* {
180		syscallarg(clockid_t) clock_id;
181		syscallarg(struct timespec *) tp;
182	} */
183	int error;
184	struct timespec ats;
185
186	error = clock_gettime1(SCARG(uap, clock_id), &ats);
187	if (error != 0)
188		return error;
189
190	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191}
192
193/* ARGSUSED */
194int
195sys___clock_settime50(struct lwp *l,
196    const struct sys___clock_settime50_args *uap, register_t *retval)
197{
198	/* {
199		syscallarg(clockid_t) clock_id;
200		syscallarg(const struct timespec *) tp;
201	} */
202	int error;
203	struct timespec ats;
204
205	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
206		return error;
207
208	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
209}
210
211
212int
213clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
214    bool check_kauth)
215{
216	int error;
217
218	switch (clock_id) {
219	case CLOCK_REALTIME:
220		if ((error = settime1(p, tp, check_kauth)) != 0)
221			return (error);
222		break;
223	case CLOCK_MONOTONIC:
224		return (EINVAL);	/* read-only clock */
225	default:
226		return (EINVAL);
227	}
228
229	return 0;
230}
231
232int
233sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
234    register_t *retval)
235{
236	/* {
237		syscallarg(clockid_t) clock_id;
238		syscallarg(struct timespec *) tp;
239	} */
240	struct timespec ts;
241	int error;
242
243	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
244		return error;
245
246	if (SCARG(uap, tp))
247		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248
249	return error;
250}
251
252int
253clock_getres1(clockid_t clock_id, struct timespec *ts)
254{
255
256	switch (clock_id) {
257	case CLOCK_REALTIME:
258	case CLOCK_MONOTONIC:
259		ts->tv_sec = 0;
260		if (tc_getfrequency() > 1000000000)
261			ts->tv_nsec = 1;
262		else
263			ts->tv_nsec = 1000000000 / tc_getfrequency();
264		break;
265	default:
266		return EINVAL;
267	}
268
269	return 0;
270}
271
272/* ARGSUSED */
273int
274sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275    register_t *retval)
276{
277	/* {
278		syscallarg(struct timespec *) rqtp;
279		syscallarg(struct timespec *) rmtp;
280	} */
281	struct timespec rmt, rqt;
282	int error, error1;
283
284	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285	if (error)
286		return (error);
287
288	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
289	    SCARG(uap, rmtp) ? &rmt : NULL);
290	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291		return error;
292
293	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294	return error1 ? error1 : error;
295}
296
297/* ARGSUSED */
298int
299sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
300    register_t *retval)
301{
302	/* {
303		syscallarg(clockid_t) clock_id;
304		syscallarg(int) flags;
305		syscallarg(struct timespec *) rqtp;
306		syscallarg(struct timespec *) rmtp;
307	} */
308	struct timespec rmt, rqt;
309	int error, error1;
310
311	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
312	if (error)
313		goto out;
314
315	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
316	    SCARG(uap, rmtp) ? &rmt : NULL);
317	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
318		goto out;
319
320	if ((error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
321		error = error1;
322out:
323	*retval = error;
324	return 0;
325}
326
327int
328nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
329    struct timespec *rmt)
330{
331	struct timespec rmtstart;
332	int error, timo;
333
334	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0)
335		return error == ETIMEDOUT ? 0 : error;
336
337	/*
338	 * Avoid inadvertently sleeping forever
339	 */
340	if (timo == 0)
341		timo = 1;
342again:
343	error = kpause("nanoslp", true, timo, NULL);
344	if (rmt != NULL || error == 0) {
345		struct timespec rmtend;
346		struct timespec t0;
347		struct timespec *t;
348
349		(void)clock_gettime1(clock_id, &rmtend);
350		t = (rmt != NULL) ? rmt : &t0;
351		if (flags & TIMER_ABSTIME) {
352			timespecsub(rqt, &rmtend, t);
353		} else {
354			timespecsub(&rmtend, &rmtstart, t);
355			timespecsub(rqt, t, t);
356		}
357		if (t->tv_sec < 0)
358			timespecclear(t);
359		if (error == 0) {
360			timo = tstohz(t);
361			if (timo > 0)
362				goto again;
363		}
364	}
365
366	if (error == ERESTART)
367		error = EINTR;
368	if (error == EWOULDBLOCK)
369		error = 0;
370
371	return error;
372}
373
374/* ARGSUSED */
375int
376sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
377    register_t *retval)
378{
379	/* {
380		syscallarg(struct timeval *) tp;
381		syscallarg(void *) tzp;		really "struct timezone *";
382	} */
383	struct timeval atv;
384	int error = 0;
385	struct timezone tzfake;
386
387	if (SCARG(uap, tp)) {
388		microtime(&atv);
389		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
390		if (error)
391			return (error);
392	}
393	if (SCARG(uap, tzp)) {
394		/*
395		 * NetBSD has no kernel notion of time zone, so we just
396		 * fake up a timezone struct and return it if demanded.
397		 */
398		tzfake.tz_minuteswest = 0;
399		tzfake.tz_dsttime = 0;
400		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
401	}
402	return (error);
403}
404
405/* ARGSUSED */
406int
407sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
408    register_t *retval)
409{
410	/* {
411		syscallarg(const struct timeval *) tv;
412		syscallarg(const void *) tzp; really "const struct timezone *";
413	} */
414
415	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
416}
417
418int
419settimeofday1(const struct timeval *utv, bool userspace,
420    const void *utzp, struct lwp *l, bool check_kauth)
421{
422	struct timeval atv;
423	struct timespec ts;
424	int error;
425
426	/* Verify all parameters before changing time. */
427
428	/*
429	 * NetBSD has no kernel notion of time zone, and only an
430	 * obsolete program would try to set it, so we log a warning.
431	 */
432	if (utzp)
433		log(LOG_WARNING, "pid %d attempted to set the "
434		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
435
436	if (utv == NULL)
437		return 0;
438
439	if (userspace) {
440		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
441			return error;
442		utv = &atv;
443	}
444
445	TIMEVAL_TO_TIMESPEC(utv, &ts);
446	return settime1(l->l_proc, &ts, check_kauth);
447}
448
449int	time_adjusted;			/* set if an adjustment is made */
450
451/* ARGSUSED */
452int
453sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
454    register_t *retval)
455{
456	/* {
457		syscallarg(const struct timeval *) delta;
458		syscallarg(struct timeval *) olddelta;
459	} */
460	int error;
461	struct timeval atv, oldatv;
462
463	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
464	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
465		return error;
466
467	if (SCARG(uap, delta)) {
468		error = copyin(SCARG(uap, delta), &atv,
469		    sizeof(*SCARG(uap, delta)));
470		if (error)
471			return (error);
472	}
473	adjtime1(SCARG(uap, delta) ? &atv : NULL,
474	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
475	if (SCARG(uap, olddelta))
476		error = copyout(&oldatv, SCARG(uap, olddelta),
477		    sizeof(*SCARG(uap, olddelta)));
478	return error;
479}
480
481void
482adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
483{
484	extern int64_t time_adjtime;  /* in kern_ntptime.c */
485
486	if (olddelta) {
487		mutex_spin_enter(&timecounter_lock);
488		olddelta->tv_sec = time_adjtime / 1000000;
489		olddelta->tv_usec = time_adjtime % 1000000;
490		if (olddelta->tv_usec < 0) {
491			olddelta->tv_usec += 1000000;
492			olddelta->tv_sec--;
493		}
494		mutex_spin_exit(&timecounter_lock);
495	}
496
497	if (delta) {
498		mutex_spin_enter(&timecounter_lock);
499		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
500
501		if (time_adjtime) {
502			/* We need to save the system time during shutdown */
503			time_adjusted |= 1;
504		}
505		mutex_spin_exit(&timecounter_lock);
506	}
507}
508
509/*
510 * Interval timer support. Both the BSD getitimer() family and the POSIX
511 * timer_*() family of routines are supported.
512 *
513 * All timers are kept in an array pointed to by p_timers, which is
514 * allocated on demand - many processes don't use timers at all. The
515 * first four elements in this array are reserved for the BSD timers:
516 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
517 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
518 * allocated by the timer_create() syscall.
519 *
520 * Realtime timers are kept in the ptimer structure as an absolute
521 * time; virtual time timers are kept as a linked list of deltas.
522 * Virtual time timers are processed in the hardclock() routine of
523 * kern_clock.c.  The real time timer is processed by a callout
524 * routine, called from the softclock() routine.  Since a callout may
525 * be delayed in real time due to interrupt processing in the system,
526 * it is possible for the real time timeout routine (realtimeexpire,
527 * given below), to be delayed in real time past when it is supposed
528 * to occur.  It does not suffice, therefore, to reload the real timer
529 * .it_value from the real time timers .it_interval.  Rather, we
530 * compute the next time in absolute time the timer should go off.  */
531
532/* Allocate a POSIX realtime timer. */
533int
534sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
535    register_t *retval)
536{
537	/* {
538		syscallarg(clockid_t) clock_id;
539		syscallarg(struct sigevent *) evp;
540		syscallarg(timer_t *) timerid;
541	} */
542
543	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
544	    SCARG(uap, evp), copyin, l);
545}
546
547int
548timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
549    copyin_t fetch_event, struct lwp *l)
550{
551	int error;
552	timer_t timerid;
553	struct ptimers *pts;
554	struct ptimer *pt;
555	struct proc *p;
556
557	p = l->l_proc;
558
559	if ((u_int)id > CLOCK_MONOTONIC)
560		return (EINVAL);
561
562	if ((pts = p->p_timers) == NULL)
563		pts = timers_alloc(p);
564
565	pt = pool_get(&ptimer_pool, PR_WAITOK);
566	if (evp != NULL) {
567		if (((error =
568		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
569		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
570			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
571			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
572			 (pt->pt_ev.sigev_signo <= 0 ||
573			  pt->pt_ev.sigev_signo >= NSIG))) {
574			pool_put(&ptimer_pool, pt);
575			return (error ? error : EINVAL);
576		}
577	}
578
579	/* Find a free timer slot, skipping those reserved for setitimer(). */
580	mutex_spin_enter(&timer_lock);
581	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
582		if (pts->pts_timers[timerid] == NULL)
583			break;
584	if (timerid == TIMER_MAX) {
585		mutex_spin_exit(&timer_lock);
586		pool_put(&ptimer_pool, pt);
587		return EAGAIN;
588	}
589	if (evp == NULL) {
590		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
591		switch (id) {
592		case CLOCK_REALTIME:
593		case CLOCK_MONOTONIC:
594			pt->pt_ev.sigev_signo = SIGALRM;
595			break;
596		case CLOCK_VIRTUAL:
597			pt->pt_ev.sigev_signo = SIGVTALRM;
598			break;
599		case CLOCK_PROF:
600			pt->pt_ev.sigev_signo = SIGPROF;
601			break;
602		}
603		pt->pt_ev.sigev_value.sival_int = timerid;
604	}
605	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
606	pt->pt_info.ksi_errno = 0;
607	pt->pt_info.ksi_code = 0;
608	pt->pt_info.ksi_pid = p->p_pid;
609	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
610	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
611	pt->pt_type = id;
612	pt->pt_proc = p;
613	pt->pt_overruns = 0;
614	pt->pt_poverruns = 0;
615	pt->pt_entry = timerid;
616	pt->pt_queued = false;
617	timespecclear(&pt->pt_time.it_value);
618	if (!CLOCK_VIRTUAL_P(id))
619		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
620	else
621		pt->pt_active = 0;
622
623	pts->pts_timers[timerid] = pt;
624	mutex_spin_exit(&timer_lock);
625
626	return copyout(&timerid, tid, sizeof(timerid));
627}
628
629/* Delete a POSIX realtime timer */
630int
631sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
632    register_t *retval)
633{
634	/* {
635		syscallarg(timer_t) timerid;
636	} */
637	struct proc *p = l->l_proc;
638	timer_t timerid;
639	struct ptimers *pts;
640	struct ptimer *pt, *ptn;
641
642	timerid = SCARG(uap, timerid);
643	pts = p->p_timers;
644
645	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
646		return (EINVAL);
647
648	mutex_spin_enter(&timer_lock);
649	if ((pt = pts->pts_timers[timerid]) == NULL) {
650		mutex_spin_exit(&timer_lock);
651		return (EINVAL);
652	}
653	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
654		if (pt->pt_active) {
655			ptn = LIST_NEXT(pt, pt_list);
656			LIST_REMOVE(pt, pt_list);
657			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
658				timespecadd(&pt->pt_time.it_value,
659				    &ptn->pt_time.it_value,
660				    &ptn->pt_time.it_value);
661			pt->pt_active = 0;
662		}
663	}
664	itimerfree(pts, timerid);
665
666	return (0);
667}
668
669/*
670 * Set up the given timer. The value in pt->pt_time.it_value is taken
671 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
672 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
673 */
674void
675timer_settime(struct ptimer *pt)
676{
677	struct ptimer *ptn, *pptn;
678	struct ptlist *ptl;
679
680	KASSERT(mutex_owned(&timer_lock));
681
682	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
683		callout_halt(&pt->pt_ch, &timer_lock);
684		if (timespecisset(&pt->pt_time.it_value)) {
685			/*
686			 * Don't need to check tshzto() return value, here.
687			 * callout_reset() does it for us.
688			 */
689			callout_reset(&pt->pt_ch,
690			    pt->pt_type == CLOCK_MONOTONIC ?
691			    tshztoup(&pt->pt_time.it_value) :
692			    tshzto(&pt->pt_time.it_value),
693			    realtimerexpire, pt);
694		}
695	} else {
696		if (pt->pt_active) {
697			ptn = LIST_NEXT(pt, pt_list);
698			LIST_REMOVE(pt, pt_list);
699			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
700				timespecadd(&pt->pt_time.it_value,
701				    &ptn->pt_time.it_value,
702				    &ptn->pt_time.it_value);
703		}
704		if (timespecisset(&pt->pt_time.it_value)) {
705			if (pt->pt_type == CLOCK_VIRTUAL)
706				ptl = &pt->pt_proc->p_timers->pts_virtual;
707			else
708				ptl = &pt->pt_proc->p_timers->pts_prof;
709
710			for (ptn = LIST_FIRST(ptl), pptn = NULL;
711			     ptn && timespeccmp(&pt->pt_time.it_value,
712				 &ptn->pt_time.it_value, >);
713			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
714				timespecsub(&pt->pt_time.it_value,
715				    &ptn->pt_time.it_value,
716				    &pt->pt_time.it_value);
717
718			if (pptn)
719				LIST_INSERT_AFTER(pptn, pt, pt_list);
720			else
721				LIST_INSERT_HEAD(ptl, pt, pt_list);
722
723			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
724				timespecsub(&ptn->pt_time.it_value,
725				    &pt->pt_time.it_value,
726				    &ptn->pt_time.it_value);
727
728			pt->pt_active = 1;
729		} else
730			pt->pt_active = 0;
731	}
732}
733
734void
735timer_gettime(struct ptimer *pt, struct itimerspec *aits)
736{
737	struct timespec now;
738	struct ptimer *ptn;
739
740	KASSERT(mutex_owned(&timer_lock));
741
742	*aits = pt->pt_time;
743	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
744		/*
745		 * Convert from absolute to relative time in .it_value
746		 * part of real time timer.  If time for real time
747		 * timer has passed return 0, else return difference
748		 * between current time and time for the timer to go
749		 * off.
750		 */
751		if (timespecisset(&aits->it_value)) {
752			if (pt->pt_type == CLOCK_REALTIME) {
753				getnanotime(&now);
754			} else { /* CLOCK_MONOTONIC */
755				getnanouptime(&now);
756			}
757			if (timespeccmp(&aits->it_value, &now, <))
758				timespecclear(&aits->it_value);
759			else
760				timespecsub(&aits->it_value, &now,
761				    &aits->it_value);
762		}
763	} else if (pt->pt_active) {
764		if (pt->pt_type == CLOCK_VIRTUAL)
765			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
766		else
767			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
768		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
769			timespecadd(&aits->it_value,
770			    &ptn->pt_time.it_value, &aits->it_value);
771		KASSERT(ptn != NULL); /* pt should be findable on the list */
772	} else
773		timespecclear(&aits->it_value);
774}
775
776
777
778/* Set and arm a POSIX realtime timer */
779int
780sys___timer_settime50(struct lwp *l,
781    const struct sys___timer_settime50_args *uap,
782    register_t *retval)
783{
784	/* {
785		syscallarg(timer_t) timerid;
786		syscallarg(int) flags;
787		syscallarg(const struct itimerspec *) value;
788		syscallarg(struct itimerspec *) ovalue;
789	} */
790	int error;
791	struct itimerspec value, ovalue, *ovp = NULL;
792
793	if ((error = copyin(SCARG(uap, value), &value,
794	    sizeof(struct itimerspec))) != 0)
795		return (error);
796
797	if (SCARG(uap, ovalue))
798		ovp = &ovalue;
799
800	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
801	    SCARG(uap, flags), l->l_proc)) != 0)
802		return error;
803
804	if (ovp)
805		return copyout(&ovalue, SCARG(uap, ovalue),
806		    sizeof(struct itimerspec));
807	return 0;
808}
809
810int
811dotimer_settime(int timerid, struct itimerspec *value,
812    struct itimerspec *ovalue, int flags, struct proc *p)
813{
814	struct timespec now;
815	struct itimerspec val, oval;
816	struct ptimers *pts;
817	struct ptimer *pt;
818	int error;
819
820	pts = p->p_timers;
821
822	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
823		return EINVAL;
824	val = *value;
825	if ((error = itimespecfix(&val.it_value)) != 0 ||
826	    (error = itimespecfix(&val.it_interval)) != 0)
827		return error;
828
829	mutex_spin_enter(&timer_lock);
830	if ((pt = pts->pts_timers[timerid]) == NULL) {
831		mutex_spin_exit(&timer_lock);
832		return EINVAL;
833	}
834
835	oval = pt->pt_time;
836	pt->pt_time = val;
837
838	/*
839	 * If we've been passed a relative time for a realtime timer,
840	 * convert it to absolute; if an absolute time for a virtual
841	 * timer, convert it to relative and make sure we don't set it
842	 * to zero, which would cancel the timer, or let it go
843	 * negative, which would confuse the comparison tests.
844	 */
845	if (timespecisset(&pt->pt_time.it_value)) {
846		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
847			if ((flags & TIMER_ABSTIME) == 0) {
848				if (pt->pt_type == CLOCK_REALTIME) {
849					getnanotime(&now);
850				} else { /* CLOCK_MONOTONIC */
851					getnanouptime(&now);
852				}
853				timespecadd(&pt->pt_time.it_value, &now,
854				    &pt->pt_time.it_value);
855			}
856		} else {
857			if ((flags & TIMER_ABSTIME) != 0) {
858				getnanotime(&now);
859				timespecsub(&pt->pt_time.it_value, &now,
860				    &pt->pt_time.it_value);
861				if (!timespecisset(&pt->pt_time.it_value) ||
862				    pt->pt_time.it_value.tv_sec < 0) {
863					pt->pt_time.it_value.tv_sec = 0;
864					pt->pt_time.it_value.tv_nsec = 1;
865				}
866			}
867		}
868	}
869
870	timer_settime(pt);
871	mutex_spin_exit(&timer_lock);
872
873	if (ovalue)
874		*ovalue = oval;
875
876	return (0);
877}
878
879/* Return the time remaining until a POSIX timer fires. */
880int
881sys___timer_gettime50(struct lwp *l,
882    const struct sys___timer_gettime50_args *uap, register_t *retval)
883{
884	/* {
885		syscallarg(timer_t) timerid;
886		syscallarg(struct itimerspec *) value;
887	} */
888	struct itimerspec its;
889	int error;
890
891	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
892	    &its)) != 0)
893		return error;
894
895	return copyout(&its, SCARG(uap, value), sizeof(its));
896}
897
898int
899dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
900{
901	struct ptimer *pt;
902	struct ptimers *pts;
903
904	pts = p->p_timers;
905	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
906		return (EINVAL);
907	mutex_spin_enter(&timer_lock);
908	if ((pt = pts->pts_timers[timerid]) == NULL) {
909		mutex_spin_exit(&timer_lock);
910		return (EINVAL);
911	}
912	timer_gettime(pt, its);
913	mutex_spin_exit(&timer_lock);
914
915	return 0;
916}
917
918/*
919 * Return the count of the number of times a periodic timer expired
920 * while a notification was already pending. The counter is reset when
921 * a timer expires and a notification can be posted.
922 */
923int
924sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
925    register_t *retval)
926{
927	/* {
928		syscallarg(timer_t) timerid;
929	} */
930	struct proc *p = l->l_proc;
931	struct ptimers *pts;
932	int timerid;
933	struct ptimer *pt;
934
935	timerid = SCARG(uap, timerid);
936
937	pts = p->p_timers;
938	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
939		return (EINVAL);
940	mutex_spin_enter(&timer_lock);
941	if ((pt = pts->pts_timers[timerid]) == NULL) {
942		mutex_spin_exit(&timer_lock);
943		return (EINVAL);
944	}
945	*retval = pt->pt_poverruns;
946	mutex_spin_exit(&timer_lock);
947
948	return (0);
949}
950
951/*
952 * Real interval timer expired:
953 * send process whose timer expired an alarm signal.
954 * If time is not set up to reload, then just return.
955 * Else compute next time timer should go off which is > current time.
956 * This is where delay in processing this timeout causes multiple
957 * SIGALRM calls to be compressed into one.
958 */
959void
960realtimerexpire(void *arg)
961{
962	uint64_t last_val, next_val, interval, now_ns;
963	struct timespec now, next;
964	struct ptimer *pt;
965	int backwards;
966
967	pt = arg;
968
969	mutex_spin_enter(&timer_lock);
970	itimerfire(pt);
971
972	if (!timespecisset(&pt->pt_time.it_interval)) {
973		timespecclear(&pt->pt_time.it_value);
974		mutex_spin_exit(&timer_lock);
975		return;
976	}
977
978	if (pt->pt_type == CLOCK_MONOTONIC) {
979		getnanouptime(&now);
980	} else {
981		getnanotime(&now);
982	}
983	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
984	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
985	/* Handle the easy case of non-overflown timers first. */
986	if (!backwards && timespeccmp(&next, &now, >)) {
987		pt->pt_time.it_value = next;
988	} else {
989		now_ns = timespec2ns(&now);
990		last_val = timespec2ns(&pt->pt_time.it_value);
991		interval = timespec2ns(&pt->pt_time.it_interval);
992
993		next_val = now_ns +
994		    (now_ns - last_val + interval - 1) % interval;
995
996		if (backwards)
997			next_val += interval;
998		else
999			pt->pt_overruns += (now_ns - last_val) / interval;
1000
1001		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1002		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1003	}
1004
1005	/*
1006	 * Don't need to check tshzto() return value, here.
1007	 * callout_reset() does it for us.
1008	 */
1009	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1010	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1011	    realtimerexpire, pt);
1012	mutex_spin_exit(&timer_lock);
1013}
1014
1015/* BSD routine to get the value of an interval timer. */
1016/* ARGSUSED */
1017int
1018sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1019    register_t *retval)
1020{
1021	/* {
1022		syscallarg(int) which;
1023		syscallarg(struct itimerval *) itv;
1024	} */
1025	struct proc *p = l->l_proc;
1026	struct itimerval aitv;
1027	int error;
1028
1029	error = dogetitimer(p, SCARG(uap, which), &aitv);
1030	if (error)
1031		return error;
1032	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1033}
1034
1035int
1036dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1037{
1038	struct ptimers *pts;
1039	struct ptimer *pt;
1040	struct itimerspec its;
1041
1042	if ((u_int)which > ITIMER_MONOTONIC)
1043		return (EINVAL);
1044
1045	mutex_spin_enter(&timer_lock);
1046	pts = p->p_timers;
1047	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1048		timerclear(&itvp->it_value);
1049		timerclear(&itvp->it_interval);
1050	} else {
1051		timer_gettime(pt, &its);
1052		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1053		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1054	}
1055	mutex_spin_exit(&timer_lock);
1056
1057	return 0;
1058}
1059
1060/* BSD routine to set/arm an interval timer. */
1061/* ARGSUSED */
1062int
1063sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1064    register_t *retval)
1065{
1066	/* {
1067		syscallarg(int) which;
1068		syscallarg(const struct itimerval *) itv;
1069		syscallarg(struct itimerval *) oitv;
1070	} */
1071	struct proc *p = l->l_proc;
1072	int which = SCARG(uap, which);
1073	struct sys___getitimer50_args getargs;
1074	const struct itimerval *itvp;
1075	struct itimerval aitv;
1076	int error;
1077
1078	if ((u_int)which > ITIMER_MONOTONIC)
1079		return (EINVAL);
1080	itvp = SCARG(uap, itv);
1081	if (itvp &&
1082	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1083		return (error);
1084	if (SCARG(uap, oitv) != NULL) {
1085		SCARG(&getargs, which) = which;
1086		SCARG(&getargs, itv) = SCARG(uap, oitv);
1087		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1088			return (error);
1089	}
1090	if (itvp == 0)
1091		return (0);
1092
1093	return dosetitimer(p, which, &aitv);
1094}
1095
1096int
1097dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1098{
1099	struct timespec now;
1100	struct ptimers *pts;
1101	struct ptimer *pt, *spare;
1102
1103	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1104	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1105		return (EINVAL);
1106
1107	/*
1108	 * Don't bother allocating data structures if the process just
1109	 * wants to clear the timer.
1110	 */
1111	spare = NULL;
1112	pts = p->p_timers;
1113 retry:
1114	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1115	    pts->pts_timers[which] == NULL))
1116		return (0);
1117	if (pts == NULL)
1118		pts = timers_alloc(p);
1119	mutex_spin_enter(&timer_lock);
1120	pt = pts->pts_timers[which];
1121	if (pt == NULL) {
1122		if (spare == NULL) {
1123			mutex_spin_exit(&timer_lock);
1124			spare = pool_get(&ptimer_pool, PR_WAITOK);
1125			goto retry;
1126		}
1127		pt = spare;
1128		spare = NULL;
1129		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1130		pt->pt_ev.sigev_value.sival_int = which;
1131		pt->pt_overruns = 0;
1132		pt->pt_proc = p;
1133		pt->pt_type = which;
1134		pt->pt_entry = which;
1135		pt->pt_queued = false;
1136		if (pt->pt_type == CLOCK_REALTIME)
1137			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1138		else
1139			pt->pt_active = 0;
1140
1141		switch (which) {
1142		case ITIMER_REAL:
1143		case ITIMER_MONOTONIC:
1144			pt->pt_ev.sigev_signo = SIGALRM;
1145			break;
1146		case ITIMER_VIRTUAL:
1147			pt->pt_ev.sigev_signo = SIGVTALRM;
1148			break;
1149		case ITIMER_PROF:
1150			pt->pt_ev.sigev_signo = SIGPROF;
1151			break;
1152		}
1153		pts->pts_timers[which] = pt;
1154	}
1155
1156	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1157	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1158
1159	if (timespecisset(&pt->pt_time.it_value)) {
1160		/* Convert to absolute time */
1161		/* XXX need to wrap in splclock for timecounters case? */
1162		switch (which) {
1163		case ITIMER_REAL:
1164			getnanotime(&now);
1165			timespecadd(&pt->pt_time.it_value, &now,
1166			    &pt->pt_time.it_value);
1167			break;
1168		case ITIMER_MONOTONIC:
1169			getnanouptime(&now);
1170			timespecadd(&pt->pt_time.it_value, &now,
1171			    &pt->pt_time.it_value);
1172			break;
1173		default:
1174			break;
1175		}
1176	}
1177	timer_settime(pt);
1178	mutex_spin_exit(&timer_lock);
1179	if (spare != NULL)
1180		pool_put(&ptimer_pool, spare);
1181
1182	return (0);
1183}
1184
1185/* Utility routines to manage the array of pointers to timers. */
1186struct ptimers *
1187timers_alloc(struct proc *p)
1188{
1189	struct ptimers *pts;
1190	int i;
1191
1192	pts = pool_get(&ptimers_pool, PR_WAITOK);
1193	LIST_INIT(&pts->pts_virtual);
1194	LIST_INIT(&pts->pts_prof);
1195	for (i = 0; i < TIMER_MAX; i++)
1196		pts->pts_timers[i] = NULL;
1197	pts->pts_fired = 0;
1198	mutex_spin_enter(&timer_lock);
1199	if (p->p_timers == NULL) {
1200		p->p_timers = pts;
1201		mutex_spin_exit(&timer_lock);
1202		return pts;
1203	}
1204	mutex_spin_exit(&timer_lock);
1205	pool_put(&ptimers_pool, pts);
1206	return p->p_timers;
1207}
1208
1209/*
1210 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1211 * then clean up all timers and free all the data structures. If
1212 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1213 * by timer_create(), not the BSD setitimer() timers, and only free the
1214 * structure if none of those remain.
1215 */
1216void
1217timers_free(struct proc *p, int which)
1218{
1219	struct ptimers *pts;
1220	struct ptimer *ptn;
1221	struct timespec ts;
1222	int i;
1223
1224	if (p->p_timers == NULL)
1225		return;
1226
1227	pts = p->p_timers;
1228	mutex_spin_enter(&timer_lock);
1229	if (which == TIMERS_ALL) {
1230		p->p_timers = NULL;
1231		i = 0;
1232	} else {
1233		timespecclear(&ts);
1234		for (ptn = LIST_FIRST(&pts->pts_virtual);
1235		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1236		     ptn = LIST_NEXT(ptn, pt_list)) {
1237			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1238			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1239		}
1240		LIST_FIRST(&pts->pts_virtual) = NULL;
1241		if (ptn) {
1242			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1243			timespecadd(&ts, &ptn->pt_time.it_value,
1244			    &ptn->pt_time.it_value);
1245			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1246		}
1247		timespecclear(&ts);
1248		for (ptn = LIST_FIRST(&pts->pts_prof);
1249		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1250		     ptn = LIST_NEXT(ptn, pt_list)) {
1251			KASSERT(ptn->pt_type == CLOCK_PROF);
1252			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1253		}
1254		LIST_FIRST(&pts->pts_prof) = NULL;
1255		if (ptn) {
1256			KASSERT(ptn->pt_type == CLOCK_PROF);
1257			timespecadd(&ts, &ptn->pt_time.it_value,
1258			    &ptn->pt_time.it_value);
1259			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1260		}
1261		i = TIMER_MIN;
1262	}
1263	for ( ; i < TIMER_MAX; i++) {
1264		if (pts->pts_timers[i] != NULL) {
1265			itimerfree(pts, i);
1266			mutex_spin_enter(&timer_lock);
1267		}
1268	}
1269	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1270	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1271		p->p_timers = NULL;
1272		mutex_spin_exit(&timer_lock);
1273		pool_put(&ptimers_pool, pts);
1274	} else
1275		mutex_spin_exit(&timer_lock);
1276}
1277
1278static void
1279itimerfree(struct ptimers *pts, int index)
1280{
1281	struct ptimer *pt;
1282
1283	KASSERT(mutex_owned(&timer_lock));
1284
1285	pt = pts->pts_timers[index];
1286	pts->pts_timers[index] = NULL;
1287	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1288		callout_halt(&pt->pt_ch, &timer_lock);
1289	if (pt->pt_queued)
1290		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1291	mutex_spin_exit(&timer_lock);
1292	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1293		callout_destroy(&pt->pt_ch);
1294	pool_put(&ptimer_pool, pt);
1295}
1296
1297/*
1298 * Decrement an interval timer by a specified number
1299 * of nanoseconds, which must be less than a second,
1300 * i.e. < 1000000000.  If the timer expires, then reload
1301 * it.  In this case, carry over (nsec - old value) to
1302 * reduce the value reloaded into the timer so that
1303 * the timer does not drift.  This routine assumes
1304 * that it is called in a context where the timers
1305 * on which it is operating cannot change in value.
1306 */
1307static int
1308itimerdecr(struct ptimer *pt, int nsec)
1309{
1310	struct itimerspec *itp;
1311
1312	KASSERT(mutex_owned(&timer_lock));
1313	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1314
1315	itp = &pt->pt_time;
1316	if (itp->it_value.tv_nsec < nsec) {
1317		if (itp->it_value.tv_sec == 0) {
1318			/* expired, and already in next interval */
1319			nsec -= itp->it_value.tv_nsec;
1320			goto expire;
1321		}
1322		itp->it_value.tv_nsec += 1000000000;
1323		itp->it_value.tv_sec--;
1324	}
1325	itp->it_value.tv_nsec -= nsec;
1326	nsec = 0;
1327	if (timespecisset(&itp->it_value))
1328		return (1);
1329	/* expired, exactly at end of interval */
1330expire:
1331	if (timespecisset(&itp->it_interval)) {
1332		itp->it_value = itp->it_interval;
1333		itp->it_value.tv_nsec -= nsec;
1334		if (itp->it_value.tv_nsec < 0) {
1335			itp->it_value.tv_nsec += 1000000000;
1336			itp->it_value.tv_sec--;
1337		}
1338		timer_settime(pt);
1339	} else
1340		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
1341	return (0);
1342}
1343
1344static void
1345itimerfire(struct ptimer *pt)
1346{
1347
1348	KASSERT(mutex_owned(&timer_lock));
1349
1350	/*
1351	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1352	 * XXX Relying on the clock interrupt is stupid.
1353	 */
1354	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1355		return;
1356	}
1357	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1358	pt->pt_queued = true;
1359	softint_schedule(timer_sih);
1360}
1361
1362void
1363timer_tick(lwp_t *l, bool user)
1364{
1365	struct ptimers *pts;
1366	struct ptimer *pt;
1367	proc_t *p;
1368
1369	p = l->l_proc;
1370	if (p->p_timers == NULL)
1371		return;
1372
1373	mutex_spin_enter(&timer_lock);
1374	if ((pts = l->l_proc->p_timers) != NULL) {
1375		/*
1376		 * Run current process's virtual and profile time, as needed.
1377		 */
1378		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1379			if (itimerdecr(pt, tick * 1000) == 0)
1380				itimerfire(pt);
1381		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1382			if (itimerdecr(pt, tick * 1000) == 0)
1383				itimerfire(pt);
1384	}
1385	mutex_spin_exit(&timer_lock);
1386}
1387
1388static void
1389timer_intr(void *cookie)
1390{
1391	ksiginfo_t ksi;
1392	struct ptimer *pt;
1393	proc_t *p;
1394
1395	mutex_enter(proc_lock);
1396	mutex_spin_enter(&timer_lock);
1397	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1398		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1399		KASSERT(pt->pt_queued);
1400		pt->pt_queued = false;
1401
1402		if (pt->pt_proc->p_timers == NULL) {
1403			/* Process is dying. */
1404			continue;
1405		}
1406		p = pt->pt_proc;
1407		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1408			continue;
1409		}
1410		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1411			pt->pt_overruns++;
1412			continue;
1413		}
1414
1415		KSI_INIT(&ksi);
1416		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1417		ksi.ksi_code = SI_TIMER;
1418		ksi.ksi_value = pt->pt_ev.sigev_value;
1419		pt->pt_poverruns = pt->pt_overruns;
1420		pt->pt_overruns = 0;
1421		mutex_spin_exit(&timer_lock);
1422		kpsignal(p, &ksi, NULL);
1423		mutex_spin_enter(&timer_lock);
1424	}
1425	mutex_spin_exit(&timer_lock);
1426	mutex_exit(proc_lock);
1427}
1428
1429/*
1430 * Check if the time will wrap if set to ts.
1431 *
1432 * ts - timespec describing the new time
1433 * delta - the delta between the current time and ts
1434 */
1435bool
1436time_wraps(struct timespec *ts, struct timespec *delta)
1437{
1438
1439	/*
1440	 * Don't allow the time to be set forward so far it
1441	 * will wrap and become negative, thus allowing an
1442	 * attacker to bypass the next check below.  The
1443	 * cutoff is 1 year before rollover occurs, so even
1444	 * if the attacker uses adjtime(2) to move the time
1445	 * past the cutoff, it will take a very long time
1446	 * to get to the wrap point.
1447	 */
1448	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1449	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
1450		return true;
1451
1452	return false;
1453}
1454