kern_time.c revision 1.181
1/*	$NetBSD: kern_time.c,v 1.181 2015/10/02 19:47:08 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61 */
62
63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.181 2015/10/02 19:47:08 christos Exp $");
65
66#include <sys/param.h>
67#include <sys/resourcevar.h>
68#include <sys/kernel.h>
69#include <sys/systm.h>
70#include <sys/proc.h>
71#include <sys/vnode.h>
72#include <sys/signalvar.h>
73#include <sys/syslog.h>
74#include <sys/timetc.h>
75#include <sys/timex.h>
76#include <sys/kauth.h>
77#include <sys/mount.h>
78#include <sys/syscallargs.h>
79#include <sys/cpu.h>
80
81static void	timer_intr(void *);
82static void	itimerfire(struct ptimer *);
83static void	itimerfree(struct ptimers *, int);
84
85kmutex_t	timer_lock;
86
87static void	*timer_sih;
88static TAILQ_HEAD(, ptimer) timer_queue;
89
90struct pool ptimer_pool, ptimers_pool;
91
92#define	CLOCK_VIRTUAL_P(clockid)	\
93	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97CTASSERT(ITIMER_PROF == CLOCK_PROF);
98CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100/*
101 * Initialize timekeeping.
102 */
103void
104time_init(void)
105{
106
107	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108	    &pool_allocator_nointr, IPL_NONE);
109	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110	    &pool_allocator_nointr, IPL_NONE);
111}
112
113void
114time_init2(void)
115{
116
117	TAILQ_INIT(&timer_queue);
118	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120	    timer_intr, NULL);
121}
122
123/* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers.  Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132/* This function is used by clock_settime and settimeofday */
133static int
134settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135{
136	struct timespec delta, now;
137	int s;
138
139	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140	s = splclock();
141	nanotime(&now);
142	timespecsub(ts, &now, &delta);
143
144	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147		splx(s);
148		return (EPERM);
149	}
150
151#ifdef notyet
152	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153		splx(s);
154		return (EPERM);
155	}
156#endif
157
158	tc_setclock(ts);
159
160	timespecadd(&boottime, &delta, &boottime);
161
162	resettodr();
163	splx(s);
164
165	return (0);
166}
167
168int
169settime(struct proc *p, struct timespec *ts)
170{
171	return (settime1(p, ts, true));
172}
173
174/* ARGSUSED */
175int
176sys___clock_gettime50(struct lwp *l,
177    const struct sys___clock_gettime50_args *uap, register_t *retval)
178{
179	/* {
180		syscallarg(clockid_t) clock_id;
181		syscallarg(struct timespec *) tp;
182	} */
183	int error;
184	struct timespec ats;
185
186	error = clock_gettime1(SCARG(uap, clock_id), &ats);
187	if (error != 0)
188		return error;
189
190	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191}
192
193/* ARGSUSED */
194int
195sys___clock_settime50(struct lwp *l,
196    const struct sys___clock_settime50_args *uap, register_t *retval)
197{
198	/* {
199		syscallarg(clockid_t) clock_id;
200		syscallarg(const struct timespec *) tp;
201	} */
202	int error;
203	struct timespec ats;
204
205	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
206		return error;
207
208	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
209}
210
211
212int
213clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
214    bool check_kauth)
215{
216	int error;
217
218	switch (clock_id) {
219	case CLOCK_REALTIME:
220		if ((error = settime1(p, tp, check_kauth)) != 0)
221			return (error);
222		break;
223	case CLOCK_MONOTONIC:
224		return (EINVAL);	/* read-only clock */
225	default:
226		return (EINVAL);
227	}
228
229	return 0;
230}
231
232int
233sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
234    register_t *retval)
235{
236	/* {
237		syscallarg(clockid_t) clock_id;
238		syscallarg(struct timespec *) tp;
239	} */
240	struct timespec ts;
241	int error;
242
243	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
244		return error;
245
246	if (SCARG(uap, tp))
247		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248
249	return error;
250}
251
252int
253clock_getres1(clockid_t clock_id, struct timespec *ts)
254{
255
256	switch (clock_id) {
257	case CLOCK_REALTIME:
258	case CLOCK_MONOTONIC:
259		ts->tv_sec = 0;
260		if (tc_getfrequency() > 1000000000)
261			ts->tv_nsec = 1;
262		else
263			ts->tv_nsec = 1000000000 / tc_getfrequency();
264		break;
265	default:
266		return EINVAL;
267	}
268
269	return 0;
270}
271
272/* ARGSUSED */
273int
274sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275    register_t *retval)
276{
277	/* {
278		syscallarg(struct timespec *) rqtp;
279		syscallarg(struct timespec *) rmtp;
280	} */
281	struct timespec rmt, rqt;
282	int error, error1;
283
284	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285	if (error)
286		return (error);
287
288	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
289	    SCARG(uap, rmtp) ? &rmt : NULL);
290	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291		return error;
292
293	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294	return error1 ? error1 : error;
295}
296
297/* ARGSUSED */
298int
299sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
300    register_t *retval)
301{
302	/* {
303		syscallarg(clockid_t) clock_id;
304		syscallarg(int) flags;
305		syscallarg(struct timespec *) rqtp;
306		syscallarg(struct timespec *) rmtp;
307	} */
308	struct timespec rmt, rqt;
309	int error, error1;
310
311	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
312	if (error)
313		goto out;
314
315	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
316	    SCARG(uap, rmtp) ? &rmt : NULL);
317	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
318		goto out;
319		return error;
320
321	if ((error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
322		error = error1;
323out:
324	*retval = error;
325	return 0;
326}
327
328int
329nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
330    struct timespec *rmt)
331{
332	struct timespec rmtstart;
333	int error, timo;
334
335	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0)
336		return error == ETIMEDOUT ? 0 : error;
337
338	/*
339	 * Avoid inadvertently sleeping forever
340	 */
341	if (timo == 0)
342		timo = 1;
343again:
344	error = kpause("nanoslp", true, timo, NULL);
345	if (rmt != NULL || error == 0) {
346		struct timespec rmtend;
347		struct timespec t0;
348		struct timespec *t;
349
350		(void)clock_gettime1(clock_id, &rmtend);
351		t = (rmt != NULL) ? rmt : &t0;
352		if (flags & TIMER_ABSTIME) {
353			timespecsub(rqt, &rmtend, t);
354		} else {
355			timespecsub(&rmtend, &rmtstart, t);
356			timespecsub(rqt, t, t);
357		}
358		if (t->tv_sec < 0)
359			timespecclear(t);
360		if (error == 0) {
361			timo = tstohz(t);
362			if (timo > 0)
363				goto again;
364		}
365	}
366
367	if (error == ERESTART)
368		error = EINTR;
369	if (error == EWOULDBLOCK)
370		error = 0;
371
372	return error;
373}
374
375/* ARGSUSED */
376int
377sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
378    register_t *retval)
379{
380	/* {
381		syscallarg(struct timeval *) tp;
382		syscallarg(void *) tzp;		really "struct timezone *";
383	} */
384	struct timeval atv;
385	int error = 0;
386	struct timezone tzfake;
387
388	if (SCARG(uap, tp)) {
389		microtime(&atv);
390		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
391		if (error)
392			return (error);
393	}
394	if (SCARG(uap, tzp)) {
395		/*
396		 * NetBSD has no kernel notion of time zone, so we just
397		 * fake up a timezone struct and return it if demanded.
398		 */
399		tzfake.tz_minuteswest = 0;
400		tzfake.tz_dsttime = 0;
401		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
402	}
403	return (error);
404}
405
406/* ARGSUSED */
407int
408sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
409    register_t *retval)
410{
411	/* {
412		syscallarg(const struct timeval *) tv;
413		syscallarg(const void *) tzp; really "const struct timezone *";
414	} */
415
416	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
417}
418
419int
420settimeofday1(const struct timeval *utv, bool userspace,
421    const void *utzp, struct lwp *l, bool check_kauth)
422{
423	struct timeval atv;
424	struct timespec ts;
425	int error;
426
427	/* Verify all parameters before changing time. */
428
429	/*
430	 * NetBSD has no kernel notion of time zone, and only an
431	 * obsolete program would try to set it, so we log a warning.
432	 */
433	if (utzp)
434		log(LOG_WARNING, "pid %d attempted to set the "
435		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
436
437	if (utv == NULL)
438		return 0;
439
440	if (userspace) {
441		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
442			return error;
443		utv = &atv;
444	}
445
446	TIMEVAL_TO_TIMESPEC(utv, &ts);
447	return settime1(l->l_proc, &ts, check_kauth);
448}
449
450int	time_adjusted;			/* set if an adjustment is made */
451
452/* ARGSUSED */
453int
454sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
455    register_t *retval)
456{
457	/* {
458		syscallarg(const struct timeval *) delta;
459		syscallarg(struct timeval *) olddelta;
460	} */
461	int error;
462	struct timeval atv, oldatv;
463
464	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
465	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
466		return error;
467
468	if (SCARG(uap, delta)) {
469		error = copyin(SCARG(uap, delta), &atv,
470		    sizeof(*SCARG(uap, delta)));
471		if (error)
472			return (error);
473	}
474	adjtime1(SCARG(uap, delta) ? &atv : NULL,
475	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
476	if (SCARG(uap, olddelta))
477		error = copyout(&oldatv, SCARG(uap, olddelta),
478		    sizeof(*SCARG(uap, olddelta)));
479	return error;
480}
481
482void
483adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
484{
485	extern int64_t time_adjtime;  /* in kern_ntptime.c */
486
487	if (olddelta) {
488		mutex_spin_enter(&timecounter_lock);
489		olddelta->tv_sec = time_adjtime / 1000000;
490		olddelta->tv_usec = time_adjtime % 1000000;
491		if (olddelta->tv_usec < 0) {
492			olddelta->tv_usec += 1000000;
493			olddelta->tv_sec--;
494		}
495		mutex_spin_exit(&timecounter_lock);
496	}
497
498	if (delta) {
499		mutex_spin_enter(&timecounter_lock);
500		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
501
502		if (time_adjtime) {
503			/* We need to save the system time during shutdown */
504			time_adjusted |= 1;
505		}
506		mutex_spin_exit(&timecounter_lock);
507	}
508}
509
510/*
511 * Interval timer support. Both the BSD getitimer() family and the POSIX
512 * timer_*() family of routines are supported.
513 *
514 * All timers are kept in an array pointed to by p_timers, which is
515 * allocated on demand - many processes don't use timers at all. The
516 * first three elements in this array are reserved for the BSD timers:
517 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
518 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
519 * allocated by the timer_create() syscall.
520 *
521 * Realtime timers are kept in the ptimer structure as an absolute
522 * time; virtual time timers are kept as a linked list of deltas.
523 * Virtual time timers are processed in the hardclock() routine of
524 * kern_clock.c.  The real time timer is processed by a callout
525 * routine, called from the softclock() routine.  Since a callout may
526 * be delayed in real time due to interrupt processing in the system,
527 * it is possible for the real time timeout routine (realtimeexpire,
528 * given below), to be delayed in real time past when it is supposed
529 * to occur.  It does not suffice, therefore, to reload the real timer
530 * .it_value from the real time timers .it_interval.  Rather, we
531 * compute the next time in absolute time the timer should go off.  */
532
533/* Allocate a POSIX realtime timer. */
534int
535sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
536    register_t *retval)
537{
538	/* {
539		syscallarg(clockid_t) clock_id;
540		syscallarg(struct sigevent *) evp;
541		syscallarg(timer_t *) timerid;
542	} */
543
544	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
545	    SCARG(uap, evp), copyin, l);
546}
547
548int
549timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
550    copyin_t fetch_event, struct lwp *l)
551{
552	int error;
553	timer_t timerid;
554	struct ptimers *pts;
555	struct ptimer *pt;
556	struct proc *p;
557
558	p = l->l_proc;
559
560	if ((u_int)id > CLOCK_MONOTONIC)
561		return (EINVAL);
562
563	if ((pts = p->p_timers) == NULL)
564		pts = timers_alloc(p);
565
566	pt = pool_get(&ptimer_pool, PR_WAITOK);
567	if (evp != NULL) {
568		if (((error =
569		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
570		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
571			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
572			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
573			 (pt->pt_ev.sigev_signo <= 0 ||
574			  pt->pt_ev.sigev_signo >= NSIG))) {
575			pool_put(&ptimer_pool, pt);
576			return (error ? error : EINVAL);
577		}
578	}
579
580	/* Find a free timer slot, skipping those reserved for setitimer(). */
581	mutex_spin_enter(&timer_lock);
582	for (timerid = 3; timerid < TIMER_MAX; timerid++)
583		if (pts->pts_timers[timerid] == NULL)
584			break;
585	if (timerid == TIMER_MAX) {
586		mutex_spin_exit(&timer_lock);
587		pool_put(&ptimer_pool, pt);
588		return EAGAIN;
589	}
590	if (evp == NULL) {
591		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
592		switch (id) {
593		case CLOCK_REALTIME:
594		case CLOCK_MONOTONIC:
595			pt->pt_ev.sigev_signo = SIGALRM;
596			break;
597		case CLOCK_VIRTUAL:
598			pt->pt_ev.sigev_signo = SIGVTALRM;
599			break;
600		case CLOCK_PROF:
601			pt->pt_ev.sigev_signo = SIGPROF;
602			break;
603		}
604		pt->pt_ev.sigev_value.sival_int = timerid;
605	}
606	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
607	pt->pt_info.ksi_errno = 0;
608	pt->pt_info.ksi_code = 0;
609	pt->pt_info.ksi_pid = p->p_pid;
610	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
611	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
612	pt->pt_type = id;
613	pt->pt_proc = p;
614	pt->pt_overruns = 0;
615	pt->pt_poverruns = 0;
616	pt->pt_entry = timerid;
617	pt->pt_queued = false;
618	timespecclear(&pt->pt_time.it_value);
619	if (!CLOCK_VIRTUAL_P(id))
620		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
621	else
622		pt->pt_active = 0;
623
624	pts->pts_timers[timerid] = pt;
625	mutex_spin_exit(&timer_lock);
626
627	return copyout(&timerid, tid, sizeof(timerid));
628}
629
630/* Delete a POSIX realtime timer */
631int
632sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
633    register_t *retval)
634{
635	/* {
636		syscallarg(timer_t) timerid;
637	} */
638	struct proc *p = l->l_proc;
639	timer_t timerid;
640	struct ptimers *pts;
641	struct ptimer *pt, *ptn;
642
643	timerid = SCARG(uap, timerid);
644	pts = p->p_timers;
645
646	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
647		return (EINVAL);
648
649	mutex_spin_enter(&timer_lock);
650	if ((pt = pts->pts_timers[timerid]) == NULL) {
651		mutex_spin_exit(&timer_lock);
652		return (EINVAL);
653	}
654	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
655		if (pt->pt_active) {
656			ptn = LIST_NEXT(pt, pt_list);
657			LIST_REMOVE(pt, pt_list);
658			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
659				timespecadd(&pt->pt_time.it_value,
660				    &ptn->pt_time.it_value,
661				    &ptn->pt_time.it_value);
662			pt->pt_active = 0;
663		}
664	}
665	itimerfree(pts, timerid);
666
667	return (0);
668}
669
670/*
671 * Set up the given timer. The value in pt->pt_time.it_value is taken
672 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
673 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
674 */
675void
676timer_settime(struct ptimer *pt)
677{
678	struct ptimer *ptn, *pptn;
679	struct ptlist *ptl;
680
681	KASSERT(mutex_owned(&timer_lock));
682
683	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
684		callout_halt(&pt->pt_ch, &timer_lock);
685		if (timespecisset(&pt->pt_time.it_value)) {
686			/*
687			 * Don't need to check tshzto() return value, here.
688			 * callout_reset() does it for us.
689			 */
690			callout_reset(&pt->pt_ch,
691			    pt->pt_type == CLOCK_MONOTONIC ?
692			    tshztoup(&pt->pt_time.it_value) :
693			    tshzto(&pt->pt_time.it_value),
694			    realtimerexpire, pt);
695		}
696	} else {
697		if (pt->pt_active) {
698			ptn = LIST_NEXT(pt, pt_list);
699			LIST_REMOVE(pt, pt_list);
700			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
701				timespecadd(&pt->pt_time.it_value,
702				    &ptn->pt_time.it_value,
703				    &ptn->pt_time.it_value);
704		}
705		if (timespecisset(&pt->pt_time.it_value)) {
706			if (pt->pt_type == CLOCK_VIRTUAL)
707				ptl = &pt->pt_proc->p_timers->pts_virtual;
708			else
709				ptl = &pt->pt_proc->p_timers->pts_prof;
710
711			for (ptn = LIST_FIRST(ptl), pptn = NULL;
712			     ptn && timespeccmp(&pt->pt_time.it_value,
713				 &ptn->pt_time.it_value, >);
714			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
715				timespecsub(&pt->pt_time.it_value,
716				    &ptn->pt_time.it_value,
717				    &pt->pt_time.it_value);
718
719			if (pptn)
720				LIST_INSERT_AFTER(pptn, pt, pt_list);
721			else
722				LIST_INSERT_HEAD(ptl, pt, pt_list);
723
724			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
725				timespecsub(&ptn->pt_time.it_value,
726				    &pt->pt_time.it_value,
727				    &ptn->pt_time.it_value);
728
729			pt->pt_active = 1;
730		} else
731			pt->pt_active = 0;
732	}
733}
734
735void
736timer_gettime(struct ptimer *pt, struct itimerspec *aits)
737{
738	struct timespec now;
739	struct ptimer *ptn;
740
741	KASSERT(mutex_owned(&timer_lock));
742
743	*aits = pt->pt_time;
744	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
745		/*
746		 * Convert from absolute to relative time in .it_value
747		 * part of real time timer.  If time for real time
748		 * timer has passed return 0, else return difference
749		 * between current time and time for the timer to go
750		 * off.
751		 */
752		if (timespecisset(&aits->it_value)) {
753			if (pt->pt_type == CLOCK_REALTIME) {
754				getnanotime(&now);
755			} else { /* CLOCK_MONOTONIC */
756				getnanouptime(&now);
757			}
758			if (timespeccmp(&aits->it_value, &now, <))
759				timespecclear(&aits->it_value);
760			else
761				timespecsub(&aits->it_value, &now,
762				    &aits->it_value);
763		}
764	} else if (pt->pt_active) {
765		if (pt->pt_type == CLOCK_VIRTUAL)
766			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
767		else
768			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
769		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
770			timespecadd(&aits->it_value,
771			    &ptn->pt_time.it_value, &aits->it_value);
772		KASSERT(ptn != NULL); /* pt should be findable on the list */
773	} else
774		timespecclear(&aits->it_value);
775}
776
777
778
779/* Set and arm a POSIX realtime timer */
780int
781sys___timer_settime50(struct lwp *l,
782    const struct sys___timer_settime50_args *uap,
783    register_t *retval)
784{
785	/* {
786		syscallarg(timer_t) timerid;
787		syscallarg(int) flags;
788		syscallarg(const struct itimerspec *) value;
789		syscallarg(struct itimerspec *) ovalue;
790	} */
791	int error;
792	struct itimerspec value, ovalue, *ovp = NULL;
793
794	if ((error = copyin(SCARG(uap, value), &value,
795	    sizeof(struct itimerspec))) != 0)
796		return (error);
797
798	if (SCARG(uap, ovalue))
799		ovp = &ovalue;
800
801	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
802	    SCARG(uap, flags), l->l_proc)) != 0)
803		return error;
804
805	if (ovp)
806		return copyout(&ovalue, SCARG(uap, ovalue),
807		    sizeof(struct itimerspec));
808	return 0;
809}
810
811int
812dotimer_settime(int timerid, struct itimerspec *value,
813    struct itimerspec *ovalue, int flags, struct proc *p)
814{
815	struct timespec now;
816	struct itimerspec val, oval;
817	struct ptimers *pts;
818	struct ptimer *pt;
819	int error;
820
821	pts = p->p_timers;
822
823	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
824		return EINVAL;
825	val = *value;
826	if ((error = itimespecfix(&val.it_value)) != 0 ||
827	    (error = itimespecfix(&val.it_interval)) != 0)
828		return error;
829
830	mutex_spin_enter(&timer_lock);
831	if ((pt = pts->pts_timers[timerid]) == NULL) {
832		mutex_spin_exit(&timer_lock);
833		return EINVAL;
834	}
835
836	oval = pt->pt_time;
837	pt->pt_time = val;
838
839	/*
840	 * If we've been passed a relative time for a realtime timer,
841	 * convert it to absolute; if an absolute time for a virtual
842	 * timer, convert it to relative and make sure we don't set it
843	 * to zero, which would cancel the timer, or let it go
844	 * negative, which would confuse the comparison tests.
845	 */
846	if (timespecisset(&pt->pt_time.it_value)) {
847		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
848			if ((flags & TIMER_ABSTIME) == 0) {
849				if (pt->pt_type == CLOCK_REALTIME) {
850					getnanotime(&now);
851				} else { /* CLOCK_MONOTONIC */
852					getnanouptime(&now);
853				}
854				timespecadd(&pt->pt_time.it_value, &now,
855				    &pt->pt_time.it_value);
856			}
857		} else {
858			if ((flags & TIMER_ABSTIME) != 0) {
859				getnanotime(&now);
860				timespecsub(&pt->pt_time.it_value, &now,
861				    &pt->pt_time.it_value);
862				if (!timespecisset(&pt->pt_time.it_value) ||
863				    pt->pt_time.it_value.tv_sec < 0) {
864					pt->pt_time.it_value.tv_sec = 0;
865					pt->pt_time.it_value.tv_nsec = 1;
866				}
867			}
868		}
869	}
870
871	timer_settime(pt);
872	mutex_spin_exit(&timer_lock);
873
874	if (ovalue)
875		*ovalue = oval;
876
877	return (0);
878}
879
880/* Return the time remaining until a POSIX timer fires. */
881int
882sys___timer_gettime50(struct lwp *l,
883    const struct sys___timer_gettime50_args *uap, register_t *retval)
884{
885	/* {
886		syscallarg(timer_t) timerid;
887		syscallarg(struct itimerspec *) value;
888	} */
889	struct itimerspec its;
890	int error;
891
892	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
893	    &its)) != 0)
894		return error;
895
896	return copyout(&its, SCARG(uap, value), sizeof(its));
897}
898
899int
900dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
901{
902	struct ptimer *pt;
903	struct ptimers *pts;
904
905	pts = p->p_timers;
906	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
907		return (EINVAL);
908	mutex_spin_enter(&timer_lock);
909	if ((pt = pts->pts_timers[timerid]) == NULL) {
910		mutex_spin_exit(&timer_lock);
911		return (EINVAL);
912	}
913	timer_gettime(pt, its);
914	mutex_spin_exit(&timer_lock);
915
916	return 0;
917}
918
919/*
920 * Return the count of the number of times a periodic timer expired
921 * while a notification was already pending. The counter is reset when
922 * a timer expires and a notification can be posted.
923 */
924int
925sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
926    register_t *retval)
927{
928	/* {
929		syscallarg(timer_t) timerid;
930	} */
931	struct proc *p = l->l_proc;
932	struct ptimers *pts;
933	int timerid;
934	struct ptimer *pt;
935
936	timerid = SCARG(uap, timerid);
937
938	pts = p->p_timers;
939	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
940		return (EINVAL);
941	mutex_spin_enter(&timer_lock);
942	if ((pt = pts->pts_timers[timerid]) == NULL) {
943		mutex_spin_exit(&timer_lock);
944		return (EINVAL);
945	}
946	*retval = pt->pt_poverruns;
947	mutex_spin_exit(&timer_lock);
948
949	return (0);
950}
951
952/*
953 * Real interval timer expired:
954 * send process whose timer expired an alarm signal.
955 * If time is not set up to reload, then just return.
956 * Else compute next time timer should go off which is > current time.
957 * This is where delay in processing this timeout causes multiple
958 * SIGALRM calls to be compressed into one.
959 */
960void
961realtimerexpire(void *arg)
962{
963	uint64_t last_val, next_val, interval, now_ns;
964	struct timespec now, next;
965	struct ptimer *pt;
966	int backwards;
967
968	pt = arg;
969
970	mutex_spin_enter(&timer_lock);
971	itimerfire(pt);
972
973	if (!timespecisset(&pt->pt_time.it_interval)) {
974		timespecclear(&pt->pt_time.it_value);
975		mutex_spin_exit(&timer_lock);
976		return;
977	}
978
979	if (pt->pt_type == CLOCK_MONOTONIC) {
980		getnanouptime(&now);
981	} else {
982		getnanotime(&now);
983	}
984	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
985	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
986	/* Handle the easy case of non-overflown timers first. */
987	if (!backwards && timespeccmp(&next, &now, >)) {
988		pt->pt_time.it_value = next;
989	} else {
990		now_ns = timespec2ns(&now);
991		last_val = timespec2ns(&pt->pt_time.it_value);
992		interval = timespec2ns(&pt->pt_time.it_interval);
993
994		next_val = now_ns +
995		    (now_ns - last_val + interval - 1) % interval;
996
997		if (backwards)
998			next_val += interval;
999		else
1000			pt->pt_overruns += (now_ns - last_val) / interval;
1001
1002		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
1003		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1004	}
1005
1006	/*
1007	 * Don't need to check tshzto() return value, here.
1008	 * callout_reset() does it for us.
1009	 */
1010	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1011	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1012	    realtimerexpire, pt);
1013	mutex_spin_exit(&timer_lock);
1014}
1015
1016/* BSD routine to get the value of an interval timer. */
1017/* ARGSUSED */
1018int
1019sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1020    register_t *retval)
1021{
1022	/* {
1023		syscallarg(int) which;
1024		syscallarg(struct itimerval *) itv;
1025	} */
1026	struct proc *p = l->l_proc;
1027	struct itimerval aitv;
1028	int error;
1029
1030	error = dogetitimer(p, SCARG(uap, which), &aitv);
1031	if (error)
1032		return error;
1033	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1034}
1035
1036int
1037dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1038{
1039	struct ptimers *pts;
1040	struct ptimer *pt;
1041	struct itimerspec its;
1042
1043	if ((u_int)which > ITIMER_MONOTONIC)
1044		return (EINVAL);
1045
1046	mutex_spin_enter(&timer_lock);
1047	pts = p->p_timers;
1048	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1049		timerclear(&itvp->it_value);
1050		timerclear(&itvp->it_interval);
1051	} else {
1052		timer_gettime(pt, &its);
1053		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1054		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1055	}
1056	mutex_spin_exit(&timer_lock);
1057
1058	return 0;
1059}
1060
1061/* BSD routine to set/arm an interval timer. */
1062/* ARGSUSED */
1063int
1064sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1065    register_t *retval)
1066{
1067	/* {
1068		syscallarg(int) which;
1069		syscallarg(const struct itimerval *) itv;
1070		syscallarg(struct itimerval *) oitv;
1071	} */
1072	struct proc *p = l->l_proc;
1073	int which = SCARG(uap, which);
1074	struct sys___getitimer50_args getargs;
1075	const struct itimerval *itvp;
1076	struct itimerval aitv;
1077	int error;
1078
1079	if ((u_int)which > ITIMER_MONOTONIC)
1080		return (EINVAL);
1081	itvp = SCARG(uap, itv);
1082	if (itvp &&
1083	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1084		return (error);
1085	if (SCARG(uap, oitv) != NULL) {
1086		SCARG(&getargs, which) = which;
1087		SCARG(&getargs, itv) = SCARG(uap, oitv);
1088		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1089			return (error);
1090	}
1091	if (itvp == 0)
1092		return (0);
1093
1094	return dosetitimer(p, which, &aitv);
1095}
1096
1097int
1098dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1099{
1100	struct timespec now;
1101	struct ptimers *pts;
1102	struct ptimer *pt, *spare;
1103
1104	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1105	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1106		return (EINVAL);
1107
1108	/*
1109	 * Don't bother allocating data structures if the process just
1110	 * wants to clear the timer.
1111	 */
1112	spare = NULL;
1113	pts = p->p_timers;
1114 retry:
1115	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1116	    pts->pts_timers[which] == NULL))
1117		return (0);
1118	if (pts == NULL)
1119		pts = timers_alloc(p);
1120	mutex_spin_enter(&timer_lock);
1121	pt = pts->pts_timers[which];
1122	if (pt == NULL) {
1123		if (spare == NULL) {
1124			mutex_spin_exit(&timer_lock);
1125			spare = pool_get(&ptimer_pool, PR_WAITOK);
1126			goto retry;
1127		}
1128		pt = spare;
1129		spare = NULL;
1130		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1131		pt->pt_ev.sigev_value.sival_int = which;
1132		pt->pt_overruns = 0;
1133		pt->pt_proc = p;
1134		pt->pt_type = which;
1135		pt->pt_entry = which;
1136		pt->pt_queued = false;
1137		if (pt->pt_type == CLOCK_REALTIME)
1138			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1139		else
1140			pt->pt_active = 0;
1141
1142		switch (which) {
1143		case ITIMER_REAL:
1144		case ITIMER_MONOTONIC:
1145			pt->pt_ev.sigev_signo = SIGALRM;
1146			break;
1147		case ITIMER_VIRTUAL:
1148			pt->pt_ev.sigev_signo = SIGVTALRM;
1149			break;
1150		case ITIMER_PROF:
1151			pt->pt_ev.sigev_signo = SIGPROF;
1152			break;
1153		}
1154		pts->pts_timers[which] = pt;
1155	}
1156
1157	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1158	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1159
1160	if (timespecisset(&pt->pt_time.it_value)) {
1161		/* Convert to absolute time */
1162		/* XXX need to wrap in splclock for timecounters case? */
1163		switch (which) {
1164		case ITIMER_REAL:
1165			getnanotime(&now);
1166			timespecadd(&pt->pt_time.it_value, &now,
1167			    &pt->pt_time.it_value);
1168			break;
1169		case ITIMER_MONOTONIC:
1170			getnanouptime(&now);
1171			timespecadd(&pt->pt_time.it_value, &now,
1172			    &pt->pt_time.it_value);
1173			break;
1174		default:
1175			break;
1176		}
1177	}
1178	timer_settime(pt);
1179	mutex_spin_exit(&timer_lock);
1180	if (spare != NULL)
1181		pool_put(&ptimer_pool, spare);
1182
1183	return (0);
1184}
1185
1186/* Utility routines to manage the array of pointers to timers. */
1187struct ptimers *
1188timers_alloc(struct proc *p)
1189{
1190	struct ptimers *pts;
1191	int i;
1192
1193	pts = pool_get(&ptimers_pool, PR_WAITOK);
1194	LIST_INIT(&pts->pts_virtual);
1195	LIST_INIT(&pts->pts_prof);
1196	for (i = 0; i < TIMER_MAX; i++)
1197		pts->pts_timers[i] = NULL;
1198	pts->pts_fired = 0;
1199	mutex_spin_enter(&timer_lock);
1200	if (p->p_timers == NULL) {
1201		p->p_timers = pts;
1202		mutex_spin_exit(&timer_lock);
1203		return pts;
1204	}
1205	mutex_spin_exit(&timer_lock);
1206	pool_put(&ptimers_pool, pts);
1207	return p->p_timers;
1208}
1209
1210/*
1211 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1212 * then clean up all timers and free all the data structures. If
1213 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1214 * by timer_create(), not the BSD setitimer() timers, and only free the
1215 * structure if none of those remain.
1216 */
1217void
1218timers_free(struct proc *p, int which)
1219{
1220	struct ptimers *pts;
1221	struct ptimer *ptn;
1222	struct timespec ts;
1223	int i;
1224
1225	if (p->p_timers == NULL)
1226		return;
1227
1228	pts = p->p_timers;
1229	mutex_spin_enter(&timer_lock);
1230	if (which == TIMERS_ALL) {
1231		p->p_timers = NULL;
1232		i = 0;
1233	} else {
1234		timespecclear(&ts);
1235		for (ptn = LIST_FIRST(&pts->pts_virtual);
1236		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1237		     ptn = LIST_NEXT(ptn, pt_list)) {
1238			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1239			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1240		}
1241		LIST_FIRST(&pts->pts_virtual) = NULL;
1242		if (ptn) {
1243			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1244			timespecadd(&ts, &ptn->pt_time.it_value,
1245			    &ptn->pt_time.it_value);
1246			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1247		}
1248		timespecclear(&ts);
1249		for (ptn = LIST_FIRST(&pts->pts_prof);
1250		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1251		     ptn = LIST_NEXT(ptn, pt_list)) {
1252			KASSERT(ptn->pt_type == CLOCK_PROF);
1253			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1254		}
1255		LIST_FIRST(&pts->pts_prof) = NULL;
1256		if (ptn) {
1257			KASSERT(ptn->pt_type == CLOCK_PROF);
1258			timespecadd(&ts, &ptn->pt_time.it_value,
1259			    &ptn->pt_time.it_value);
1260			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1261		}
1262		i = 3;
1263	}
1264	for ( ; i < TIMER_MAX; i++) {
1265		if (pts->pts_timers[i] != NULL) {
1266			itimerfree(pts, i);
1267			mutex_spin_enter(&timer_lock);
1268		}
1269	}
1270	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1271	    pts->pts_timers[2] == NULL) {
1272		p->p_timers = NULL;
1273		mutex_spin_exit(&timer_lock);
1274		pool_put(&ptimers_pool, pts);
1275	} else
1276		mutex_spin_exit(&timer_lock);
1277}
1278
1279static void
1280itimerfree(struct ptimers *pts, int index)
1281{
1282	struct ptimer *pt;
1283
1284	KASSERT(mutex_owned(&timer_lock));
1285
1286	pt = pts->pts_timers[index];
1287	pts->pts_timers[index] = NULL;
1288	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1289		callout_halt(&pt->pt_ch, &timer_lock);
1290	if (pt->pt_queued)
1291		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1292	mutex_spin_exit(&timer_lock);
1293	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1294		callout_destroy(&pt->pt_ch);
1295	pool_put(&ptimer_pool, pt);
1296}
1297
1298/*
1299 * Decrement an interval timer by a specified number
1300 * of nanoseconds, which must be less than a second,
1301 * i.e. < 1000000000.  If the timer expires, then reload
1302 * it.  In this case, carry over (nsec - old value) to
1303 * reduce the value reloaded into the timer so that
1304 * the timer does not drift.  This routine assumes
1305 * that it is called in a context where the timers
1306 * on which it is operating cannot change in value.
1307 */
1308static int
1309itimerdecr(struct ptimer *pt, int nsec)
1310{
1311	struct itimerspec *itp;
1312
1313	KASSERT(mutex_owned(&timer_lock));
1314	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1315
1316	itp = &pt->pt_time;
1317	if (itp->it_value.tv_nsec < nsec) {
1318		if (itp->it_value.tv_sec == 0) {
1319			/* expired, and already in next interval */
1320			nsec -= itp->it_value.tv_nsec;
1321			goto expire;
1322		}
1323		itp->it_value.tv_nsec += 1000000000;
1324		itp->it_value.tv_sec--;
1325	}
1326	itp->it_value.tv_nsec -= nsec;
1327	nsec = 0;
1328	if (timespecisset(&itp->it_value))
1329		return (1);
1330	/* expired, exactly at end of interval */
1331expire:
1332	if (timespecisset(&itp->it_interval)) {
1333		itp->it_value = itp->it_interval;
1334		itp->it_value.tv_nsec -= nsec;
1335		if (itp->it_value.tv_nsec < 0) {
1336			itp->it_value.tv_nsec += 1000000000;
1337			itp->it_value.tv_sec--;
1338		}
1339		timer_settime(pt);
1340	} else
1341		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
1342	return (0);
1343}
1344
1345static void
1346itimerfire(struct ptimer *pt)
1347{
1348
1349	KASSERT(mutex_owned(&timer_lock));
1350
1351	/*
1352	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1353	 * XXX Relying on the clock interrupt is stupid.
1354	 */
1355	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1356		return;
1357	}
1358	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1359	pt->pt_queued = true;
1360	softint_schedule(timer_sih);
1361}
1362
1363void
1364timer_tick(lwp_t *l, bool user)
1365{
1366	struct ptimers *pts;
1367	struct ptimer *pt;
1368	proc_t *p;
1369
1370	p = l->l_proc;
1371	if (p->p_timers == NULL)
1372		return;
1373
1374	mutex_spin_enter(&timer_lock);
1375	if ((pts = l->l_proc->p_timers) != NULL) {
1376		/*
1377		 * Run current process's virtual and profile time, as needed.
1378		 */
1379		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1380			if (itimerdecr(pt, tick * 1000) == 0)
1381				itimerfire(pt);
1382		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1383			if (itimerdecr(pt, tick * 1000) == 0)
1384				itimerfire(pt);
1385	}
1386	mutex_spin_exit(&timer_lock);
1387}
1388
1389static void
1390timer_intr(void *cookie)
1391{
1392	ksiginfo_t ksi;
1393	struct ptimer *pt;
1394	proc_t *p;
1395
1396	mutex_enter(proc_lock);
1397	mutex_spin_enter(&timer_lock);
1398	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1399		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1400		KASSERT(pt->pt_queued);
1401		pt->pt_queued = false;
1402
1403		if (pt->pt_proc->p_timers == NULL) {
1404			/* Process is dying. */
1405			continue;
1406		}
1407		p = pt->pt_proc;
1408		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1409			continue;
1410		}
1411		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1412			pt->pt_overruns++;
1413			continue;
1414		}
1415
1416		KSI_INIT(&ksi);
1417		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1418		ksi.ksi_code = SI_TIMER;
1419		ksi.ksi_value = pt->pt_ev.sigev_value;
1420		pt->pt_poverruns = pt->pt_overruns;
1421		pt->pt_overruns = 0;
1422		mutex_spin_exit(&timer_lock);
1423		kpsignal(p, &ksi, NULL);
1424		mutex_spin_enter(&timer_lock);
1425	}
1426	mutex_spin_exit(&timer_lock);
1427	mutex_exit(proc_lock);
1428}
1429
1430/*
1431 * Check if the time will wrap if set to ts.
1432 *
1433 * ts - timespec describing the new time
1434 * delta - the delta between the current time and ts
1435 */
1436bool
1437time_wraps(struct timespec *ts, struct timespec *delta)
1438{
1439
1440	/*
1441	 * Don't allow the time to be set forward so far it
1442	 * will wrap and become negative, thus allowing an
1443	 * attacker to bypass the next check below.  The
1444	 * cutoff is 1 year before rollover occurs, so even
1445	 * if the attacker uses adjtime(2) to move the time
1446	 * past the cutoff, it will take a very long time
1447	 * to get to the wrap point.
1448	 */
1449	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1450	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
1451		return true;
1452
1453	return false;
1454}
1455