kern_time.c revision 1.179
1/*	$NetBSD: kern_time.c,v 1.179 2013/05/22 16:00:52 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61 */
62
63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.179 2013/05/22 16:00:52 christos Exp $");
65
66#include <sys/param.h>
67#include <sys/resourcevar.h>
68#include <sys/kernel.h>
69#include <sys/systm.h>
70#include <sys/proc.h>
71#include <sys/vnode.h>
72#include <sys/signalvar.h>
73#include <sys/syslog.h>
74#include <sys/timetc.h>
75#include <sys/timex.h>
76#include <sys/kauth.h>
77#include <sys/mount.h>
78#include <sys/syscallargs.h>
79#include <sys/cpu.h>
80
81static void	timer_intr(void *);
82static void	itimerfire(struct ptimer *);
83static void	itimerfree(struct ptimers *, int);
84
85kmutex_t	timer_lock;
86
87static void	*timer_sih;
88static TAILQ_HEAD(, ptimer) timer_queue;
89
90struct pool ptimer_pool, ptimers_pool;
91
92#define	CLOCK_VIRTUAL_P(clockid)	\
93	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97CTASSERT(ITIMER_PROF == CLOCK_PROF);
98CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100/*
101 * Initialize timekeeping.
102 */
103void
104time_init(void)
105{
106
107	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108	    &pool_allocator_nointr, IPL_NONE);
109	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110	    &pool_allocator_nointr, IPL_NONE);
111}
112
113void
114time_init2(void)
115{
116
117	TAILQ_INIT(&timer_queue);
118	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120	    timer_intr, NULL);
121}
122
123/* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers.  Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132/* This function is used by clock_settime and settimeofday */
133static int
134settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135{
136	struct timespec delta, now;
137	int s;
138
139	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140	s = splclock();
141	nanotime(&now);
142	timespecsub(ts, &now, &delta);
143
144	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147		splx(s);
148		return (EPERM);
149	}
150
151#ifdef notyet
152	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153		splx(s);
154		return (EPERM);
155	}
156#endif
157
158	tc_setclock(ts);
159
160	timespecadd(&boottime, &delta, &boottime);
161
162	resettodr();
163	splx(s);
164
165	return (0);
166}
167
168int
169settime(struct proc *p, struct timespec *ts)
170{
171	return (settime1(p, ts, true));
172}
173
174/* ARGSUSED */
175int
176sys___clock_gettime50(struct lwp *l,
177    const struct sys___clock_gettime50_args *uap, register_t *retval)
178{
179	/* {
180		syscallarg(clockid_t) clock_id;
181		syscallarg(struct timespec *) tp;
182	} */
183	int error;
184	struct timespec ats;
185
186	error = clock_gettime1(SCARG(uap, clock_id), &ats);
187	if (error != 0)
188		return error;
189
190	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191}
192
193/* ARGSUSED */
194int
195sys___clock_settime50(struct lwp *l,
196    const struct sys___clock_settime50_args *uap, register_t *retval)
197{
198	/* {
199		syscallarg(clockid_t) clock_id;
200		syscallarg(const struct timespec *) tp;
201	} */
202	int error;
203	struct timespec ats;
204
205	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
206		return error;
207
208	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
209}
210
211
212int
213clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
214    bool check_kauth)
215{
216	int error;
217
218	switch (clock_id) {
219	case CLOCK_REALTIME:
220		if ((error = settime1(p, tp, check_kauth)) != 0)
221			return (error);
222		break;
223	case CLOCK_MONOTONIC:
224		return (EINVAL);	/* read-only clock */
225	default:
226		return (EINVAL);
227	}
228
229	return 0;
230}
231
232int
233sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
234    register_t *retval)
235{
236	/* {
237		syscallarg(clockid_t) clock_id;
238		syscallarg(struct timespec *) tp;
239	} */
240	struct timespec ts;
241	int error = 0;
242
243	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
244		return error;
245
246	if (SCARG(uap, tp))
247		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
248
249	return error;
250}
251
252int
253clock_getres1(clockid_t clock_id, struct timespec *ts)
254{
255
256	switch (clock_id) {
257	case CLOCK_REALTIME:
258	case CLOCK_MONOTONIC:
259		ts->tv_sec = 0;
260		if (tc_getfrequency() > 1000000000)
261			ts->tv_nsec = 1;
262		else
263			ts->tv_nsec = 1000000000 / tc_getfrequency();
264		break;
265	default:
266		return EINVAL;
267	}
268
269	return 0;
270}
271
272/* ARGSUSED */
273int
274sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
275    register_t *retval)
276{
277	/* {
278		syscallarg(struct timespec *) rqtp;
279		syscallarg(struct timespec *) rmtp;
280	} */
281	struct timespec rmt, rqt;
282	int error, error1;
283
284	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
285	if (error)
286		return (error);
287
288	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
289	    SCARG(uap, rmtp) ? &rmt : NULL);
290	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
291		return error;
292
293	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
294	return error1 ? error1 : error;
295}
296
297/* ARGSUSED */
298int
299sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
300    register_t *retval)
301{
302	/* {
303		syscallarg(clockid_t) clock_id;
304		syscallarg(int) flags;
305		syscallarg(struct timespec *) rqtp;
306		syscallarg(struct timespec *) rmtp;
307	} */
308	struct timespec rmt, rqt;
309	int error, error1;
310
311	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
312	if (error)
313		return (error);
314
315	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
316	    SCARG(uap, rmtp) ? &rmt : NULL);
317	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
318		return error;
319
320	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
321	return error1 ? error1 : error;
322}
323
324int
325nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
326    struct timespec *rmt)
327{
328	struct timespec rmtstart;
329	int error, timo;
330
331	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0)
332		return error == ETIMEDOUT ? 0 : error;
333
334	/*
335	 * Avoid inadvertently sleeping forever
336	 */
337	if (timo == 0)
338		timo = 1;
339again:
340	error = kpause("nanoslp", true, timo, NULL);
341	if (rmt != NULL || error == 0) {
342		struct timespec rmtend;
343		struct timespec t0;
344		struct timespec *t;
345
346		(void)clock_gettime1(clock_id, &rmtend);
347		t = (rmt != NULL) ? rmt : &t0;
348		if (flags & TIMER_ABSTIME) {
349			timespecsub(rqt, &rmtend, t);
350		} else {
351			timespecsub(&rmtend, &rmtstart, t);
352			timespecsub(rqt, t, t);
353		}
354		if (t->tv_sec < 0)
355			timespecclear(t);
356		if (error == 0) {
357			timo = tstohz(t);
358			if (timo > 0)
359				goto again;
360		}
361	}
362
363	if (error == ERESTART)
364		error = EINTR;
365	if (error == EWOULDBLOCK)
366		error = 0;
367
368	return error;
369}
370
371/* ARGSUSED */
372int
373sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
374    register_t *retval)
375{
376	/* {
377		syscallarg(struct timeval *) tp;
378		syscallarg(void *) tzp;		really "struct timezone *";
379	} */
380	struct timeval atv;
381	int error = 0;
382	struct timezone tzfake;
383
384	if (SCARG(uap, tp)) {
385		microtime(&atv);
386		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
387		if (error)
388			return (error);
389	}
390	if (SCARG(uap, tzp)) {
391		/*
392		 * NetBSD has no kernel notion of time zone, so we just
393		 * fake up a timezone struct and return it if demanded.
394		 */
395		tzfake.tz_minuteswest = 0;
396		tzfake.tz_dsttime = 0;
397		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
398	}
399	return (error);
400}
401
402/* ARGSUSED */
403int
404sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
405    register_t *retval)
406{
407	/* {
408		syscallarg(const struct timeval *) tv;
409		syscallarg(const void *) tzp; really "const struct timezone *";
410	} */
411
412	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
413}
414
415int
416settimeofday1(const struct timeval *utv, bool userspace,
417    const void *utzp, struct lwp *l, bool check_kauth)
418{
419	struct timeval atv;
420	struct timespec ts;
421	int error;
422
423	/* Verify all parameters before changing time. */
424
425	/*
426	 * NetBSD has no kernel notion of time zone, and only an
427	 * obsolete program would try to set it, so we log a warning.
428	 */
429	if (utzp)
430		log(LOG_WARNING, "pid %d attempted to set the "
431		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
432
433	if (utv == NULL)
434		return 0;
435
436	if (userspace) {
437		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
438			return error;
439		utv = &atv;
440	}
441
442	TIMEVAL_TO_TIMESPEC(utv, &ts);
443	return settime1(l->l_proc, &ts, check_kauth);
444}
445
446int	time_adjusted;			/* set if an adjustment is made */
447
448/* ARGSUSED */
449int
450sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
451    register_t *retval)
452{
453	/* {
454		syscallarg(const struct timeval *) delta;
455		syscallarg(struct timeval *) olddelta;
456	} */
457	int error = 0;
458	struct timeval atv, oldatv;
459
460	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
461	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
462		return error;
463
464	if (SCARG(uap, delta)) {
465		error = copyin(SCARG(uap, delta), &atv,
466		    sizeof(*SCARG(uap, delta)));
467		if (error)
468			return (error);
469	}
470	adjtime1(SCARG(uap, delta) ? &atv : NULL,
471	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
472	if (SCARG(uap, olddelta))
473		error = copyout(&oldatv, SCARG(uap, olddelta),
474		    sizeof(*SCARG(uap, olddelta)));
475	return error;
476}
477
478void
479adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
480{
481	extern int64_t time_adjtime;  /* in kern_ntptime.c */
482
483	if (olddelta) {
484		mutex_spin_enter(&timecounter_lock);
485		olddelta->tv_sec = time_adjtime / 1000000;
486		olddelta->tv_usec = time_adjtime % 1000000;
487		if (olddelta->tv_usec < 0) {
488			olddelta->tv_usec += 1000000;
489			olddelta->tv_sec--;
490		}
491		mutex_spin_exit(&timecounter_lock);
492	}
493
494	if (delta) {
495		mutex_spin_enter(&timecounter_lock);
496		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
497
498		if (time_adjtime) {
499			/* We need to save the system time during shutdown */
500			time_adjusted |= 1;
501		}
502		mutex_spin_exit(&timecounter_lock);
503	}
504}
505
506/*
507 * Interval timer support. Both the BSD getitimer() family and the POSIX
508 * timer_*() family of routines are supported.
509 *
510 * All timers are kept in an array pointed to by p_timers, which is
511 * allocated on demand - many processes don't use timers at all. The
512 * first three elements in this array are reserved for the BSD timers:
513 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
514 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
515 * allocated by the timer_create() syscall.
516 *
517 * Realtime timers are kept in the ptimer structure as an absolute
518 * time; virtual time timers are kept as a linked list of deltas.
519 * Virtual time timers are processed in the hardclock() routine of
520 * kern_clock.c.  The real time timer is processed by a callout
521 * routine, called from the softclock() routine.  Since a callout may
522 * be delayed in real time due to interrupt processing in the system,
523 * it is possible for the real time timeout routine (realtimeexpire,
524 * given below), to be delayed in real time past when it is supposed
525 * to occur.  It does not suffice, therefore, to reload the real timer
526 * .it_value from the real time timers .it_interval.  Rather, we
527 * compute the next time in absolute time the timer should go off.  */
528
529/* Allocate a POSIX realtime timer. */
530int
531sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
532    register_t *retval)
533{
534	/* {
535		syscallarg(clockid_t) clock_id;
536		syscallarg(struct sigevent *) evp;
537		syscallarg(timer_t *) timerid;
538	} */
539
540	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
541	    SCARG(uap, evp), copyin, l);
542}
543
544int
545timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
546    copyin_t fetch_event, struct lwp *l)
547{
548	int error;
549	timer_t timerid;
550	struct ptimers *pts;
551	struct ptimer *pt;
552	struct proc *p;
553
554	p = l->l_proc;
555
556	if ((u_int)id > CLOCK_MONOTONIC)
557		return (EINVAL);
558
559	if ((pts = p->p_timers) == NULL)
560		pts = timers_alloc(p);
561
562	pt = pool_get(&ptimer_pool, PR_WAITOK);
563	if (evp != NULL) {
564		if (((error =
565		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
566		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
567			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
568			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
569			 (pt->pt_ev.sigev_signo <= 0 ||
570			  pt->pt_ev.sigev_signo >= NSIG))) {
571			pool_put(&ptimer_pool, pt);
572			return (error ? error : EINVAL);
573		}
574	}
575
576	/* Find a free timer slot, skipping those reserved for setitimer(). */
577	mutex_spin_enter(&timer_lock);
578	for (timerid = 3; timerid < TIMER_MAX; timerid++)
579		if (pts->pts_timers[timerid] == NULL)
580			break;
581	if (timerid == TIMER_MAX) {
582		mutex_spin_exit(&timer_lock);
583		pool_put(&ptimer_pool, pt);
584		return EAGAIN;
585	}
586	if (evp == NULL) {
587		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
588		switch (id) {
589		case CLOCK_REALTIME:
590		case CLOCK_MONOTONIC:
591			pt->pt_ev.sigev_signo = SIGALRM;
592			break;
593		case CLOCK_VIRTUAL:
594			pt->pt_ev.sigev_signo = SIGVTALRM;
595			break;
596		case CLOCK_PROF:
597			pt->pt_ev.sigev_signo = SIGPROF;
598			break;
599		}
600		pt->pt_ev.sigev_value.sival_int = timerid;
601	}
602	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
603	pt->pt_info.ksi_errno = 0;
604	pt->pt_info.ksi_code = 0;
605	pt->pt_info.ksi_pid = p->p_pid;
606	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
607	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
608	pt->pt_type = id;
609	pt->pt_proc = p;
610	pt->pt_overruns = 0;
611	pt->pt_poverruns = 0;
612	pt->pt_entry = timerid;
613	pt->pt_queued = false;
614	timespecclear(&pt->pt_time.it_value);
615	if (!CLOCK_VIRTUAL_P(id))
616		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
617	else
618		pt->pt_active = 0;
619
620	pts->pts_timers[timerid] = pt;
621	mutex_spin_exit(&timer_lock);
622
623	return copyout(&timerid, tid, sizeof(timerid));
624}
625
626/* Delete a POSIX realtime timer */
627int
628sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
629    register_t *retval)
630{
631	/* {
632		syscallarg(timer_t) timerid;
633	} */
634	struct proc *p = l->l_proc;
635	timer_t timerid;
636	struct ptimers *pts;
637	struct ptimer *pt, *ptn;
638
639	timerid = SCARG(uap, timerid);
640	pts = p->p_timers;
641
642	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
643		return (EINVAL);
644
645	mutex_spin_enter(&timer_lock);
646	if ((pt = pts->pts_timers[timerid]) == NULL) {
647		mutex_spin_exit(&timer_lock);
648		return (EINVAL);
649	}
650	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
651		if (pt->pt_active) {
652			ptn = LIST_NEXT(pt, pt_list);
653			LIST_REMOVE(pt, pt_list);
654			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
655				timespecadd(&pt->pt_time.it_value,
656				    &ptn->pt_time.it_value,
657				    &ptn->pt_time.it_value);
658			pt->pt_active = 0;
659		}
660	}
661	itimerfree(pts, timerid);
662
663	return (0);
664}
665
666/*
667 * Set up the given timer. The value in pt->pt_time.it_value is taken
668 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
669 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
670 */
671void
672timer_settime(struct ptimer *pt)
673{
674	struct ptimer *ptn, *pptn;
675	struct ptlist *ptl;
676
677	KASSERT(mutex_owned(&timer_lock));
678
679	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
680		callout_halt(&pt->pt_ch, &timer_lock);
681		if (timespecisset(&pt->pt_time.it_value)) {
682			/*
683			 * Don't need to check tshzto() return value, here.
684			 * callout_reset() does it for us.
685			 */
686			callout_reset(&pt->pt_ch,
687			    pt->pt_type == CLOCK_MONOTONIC ?
688			    tshztoup(&pt->pt_time.it_value) :
689			    tshzto(&pt->pt_time.it_value),
690			    realtimerexpire, pt);
691		}
692	} else {
693		if (pt->pt_active) {
694			ptn = LIST_NEXT(pt, pt_list);
695			LIST_REMOVE(pt, pt_list);
696			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
697				timespecadd(&pt->pt_time.it_value,
698				    &ptn->pt_time.it_value,
699				    &ptn->pt_time.it_value);
700		}
701		if (timespecisset(&pt->pt_time.it_value)) {
702			if (pt->pt_type == CLOCK_VIRTUAL)
703				ptl = &pt->pt_proc->p_timers->pts_virtual;
704			else
705				ptl = &pt->pt_proc->p_timers->pts_prof;
706
707			for (ptn = LIST_FIRST(ptl), pptn = NULL;
708			     ptn && timespeccmp(&pt->pt_time.it_value,
709				 &ptn->pt_time.it_value, >);
710			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
711				timespecsub(&pt->pt_time.it_value,
712				    &ptn->pt_time.it_value,
713				    &pt->pt_time.it_value);
714
715			if (pptn)
716				LIST_INSERT_AFTER(pptn, pt, pt_list);
717			else
718				LIST_INSERT_HEAD(ptl, pt, pt_list);
719
720			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
721				timespecsub(&ptn->pt_time.it_value,
722				    &pt->pt_time.it_value,
723				    &ptn->pt_time.it_value);
724
725			pt->pt_active = 1;
726		} else
727			pt->pt_active = 0;
728	}
729}
730
731void
732timer_gettime(struct ptimer *pt, struct itimerspec *aits)
733{
734	struct timespec now;
735	struct ptimer *ptn;
736
737	KASSERT(mutex_owned(&timer_lock));
738
739	*aits = pt->pt_time;
740	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
741		/*
742		 * Convert from absolute to relative time in .it_value
743		 * part of real time timer.  If time for real time
744		 * timer has passed return 0, else return difference
745		 * between current time and time for the timer to go
746		 * off.
747		 */
748		if (timespecisset(&aits->it_value)) {
749			if (pt->pt_type == CLOCK_REALTIME) {
750				getnanotime(&now);
751			} else { /* CLOCK_MONOTONIC */
752				getnanouptime(&now);
753			}
754			if (timespeccmp(&aits->it_value, &now, <))
755				timespecclear(&aits->it_value);
756			else
757				timespecsub(&aits->it_value, &now,
758				    &aits->it_value);
759		}
760	} else if (pt->pt_active) {
761		if (pt->pt_type == CLOCK_VIRTUAL)
762			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
763		else
764			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
765		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
766			timespecadd(&aits->it_value,
767			    &ptn->pt_time.it_value, &aits->it_value);
768		KASSERT(ptn != NULL); /* pt should be findable on the list */
769	} else
770		timespecclear(&aits->it_value);
771}
772
773
774
775/* Set and arm a POSIX realtime timer */
776int
777sys___timer_settime50(struct lwp *l,
778    const struct sys___timer_settime50_args *uap,
779    register_t *retval)
780{
781	/* {
782		syscallarg(timer_t) timerid;
783		syscallarg(int) flags;
784		syscallarg(const struct itimerspec *) value;
785		syscallarg(struct itimerspec *) ovalue;
786	} */
787	int error;
788	struct itimerspec value, ovalue, *ovp = NULL;
789
790	if ((error = copyin(SCARG(uap, value), &value,
791	    sizeof(struct itimerspec))) != 0)
792		return (error);
793
794	if (SCARG(uap, ovalue))
795		ovp = &ovalue;
796
797	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
798	    SCARG(uap, flags), l->l_proc)) != 0)
799		return error;
800
801	if (ovp)
802		return copyout(&ovalue, SCARG(uap, ovalue),
803		    sizeof(struct itimerspec));
804	return 0;
805}
806
807int
808dotimer_settime(int timerid, struct itimerspec *value,
809    struct itimerspec *ovalue, int flags, struct proc *p)
810{
811	struct timespec now;
812	struct itimerspec val, oval;
813	struct ptimers *pts;
814	struct ptimer *pt;
815	int error;
816
817	pts = p->p_timers;
818
819	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
820		return EINVAL;
821	val = *value;
822	if ((error = itimespecfix(&val.it_value)) != 0 ||
823	    (error = itimespecfix(&val.it_interval)) != 0)
824		return error;
825
826	mutex_spin_enter(&timer_lock);
827	if ((pt = pts->pts_timers[timerid]) == NULL) {
828		mutex_spin_exit(&timer_lock);
829		return EINVAL;
830	}
831
832	oval = pt->pt_time;
833	pt->pt_time = val;
834
835	/*
836	 * If we've been passed a relative time for a realtime timer,
837	 * convert it to absolute; if an absolute time for a virtual
838	 * timer, convert it to relative and make sure we don't set it
839	 * to zero, which would cancel the timer, or let it go
840	 * negative, which would confuse the comparison tests.
841	 */
842	if (timespecisset(&pt->pt_time.it_value)) {
843		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
844			if ((flags & TIMER_ABSTIME) == 0) {
845				if (pt->pt_type == CLOCK_REALTIME) {
846					getnanotime(&now);
847				} else { /* CLOCK_MONOTONIC */
848					getnanouptime(&now);
849				}
850				timespecadd(&pt->pt_time.it_value, &now,
851				    &pt->pt_time.it_value);
852			}
853		} else {
854			if ((flags & TIMER_ABSTIME) != 0) {
855				getnanotime(&now);
856				timespecsub(&pt->pt_time.it_value, &now,
857				    &pt->pt_time.it_value);
858				if (!timespecisset(&pt->pt_time.it_value) ||
859				    pt->pt_time.it_value.tv_sec < 0) {
860					pt->pt_time.it_value.tv_sec = 0;
861					pt->pt_time.it_value.tv_nsec = 1;
862				}
863			}
864		}
865	}
866
867	timer_settime(pt);
868	mutex_spin_exit(&timer_lock);
869
870	if (ovalue)
871		*ovalue = oval;
872
873	return (0);
874}
875
876/* Return the time remaining until a POSIX timer fires. */
877int
878sys___timer_gettime50(struct lwp *l,
879    const struct sys___timer_gettime50_args *uap, register_t *retval)
880{
881	/* {
882		syscallarg(timer_t) timerid;
883		syscallarg(struct itimerspec *) value;
884	} */
885	struct itimerspec its;
886	int error;
887
888	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
889	    &its)) != 0)
890		return error;
891
892	return copyout(&its, SCARG(uap, value), sizeof(its));
893}
894
895int
896dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
897{
898	struct ptimer *pt;
899	struct ptimers *pts;
900
901	pts = p->p_timers;
902	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
903		return (EINVAL);
904	mutex_spin_enter(&timer_lock);
905	if ((pt = pts->pts_timers[timerid]) == NULL) {
906		mutex_spin_exit(&timer_lock);
907		return (EINVAL);
908	}
909	timer_gettime(pt, its);
910	mutex_spin_exit(&timer_lock);
911
912	return 0;
913}
914
915/*
916 * Return the count of the number of times a periodic timer expired
917 * while a notification was already pending. The counter is reset when
918 * a timer expires and a notification can be posted.
919 */
920int
921sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
922    register_t *retval)
923{
924	/* {
925		syscallarg(timer_t) timerid;
926	} */
927	struct proc *p = l->l_proc;
928	struct ptimers *pts;
929	int timerid;
930	struct ptimer *pt;
931
932	timerid = SCARG(uap, timerid);
933
934	pts = p->p_timers;
935	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
936		return (EINVAL);
937	mutex_spin_enter(&timer_lock);
938	if ((pt = pts->pts_timers[timerid]) == NULL) {
939		mutex_spin_exit(&timer_lock);
940		return (EINVAL);
941	}
942	*retval = pt->pt_poverruns;
943	mutex_spin_exit(&timer_lock);
944
945	return (0);
946}
947
948/*
949 * Real interval timer expired:
950 * send process whose timer expired an alarm signal.
951 * If time is not set up to reload, then just return.
952 * Else compute next time timer should go off which is > current time.
953 * This is where delay in processing this timeout causes multiple
954 * SIGALRM calls to be compressed into one.
955 */
956void
957realtimerexpire(void *arg)
958{
959	uint64_t last_val, next_val, interval, now_ns;
960	struct timespec now, next;
961	struct ptimer *pt;
962	int backwards;
963
964	pt = arg;
965
966	mutex_spin_enter(&timer_lock);
967	itimerfire(pt);
968
969	if (!timespecisset(&pt->pt_time.it_interval)) {
970		timespecclear(&pt->pt_time.it_value);
971		mutex_spin_exit(&timer_lock);
972		return;
973	}
974
975	if (pt->pt_type == CLOCK_MONOTONIC) {
976		getnanouptime(&now);
977	} else {
978		getnanotime(&now);
979	}
980	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
981	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
982	/* Handle the easy case of non-overflown timers first. */
983	if (!backwards && timespeccmp(&next, &now, >)) {
984		pt->pt_time.it_value = next;
985	} else {
986		now_ns = timespec2ns(&now);
987		last_val = timespec2ns(&pt->pt_time.it_value);
988		interval = timespec2ns(&pt->pt_time.it_interval);
989
990		next_val = now_ns +
991		    (now_ns - last_val + interval - 1) % interval;
992
993		if (backwards)
994			next_val += interval;
995		else
996			pt->pt_overruns += (now_ns - last_val) / interval;
997
998		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
999		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
1000	}
1001
1002	/*
1003	 * Don't need to check tshzto() return value, here.
1004	 * callout_reset() does it for us.
1005	 */
1006	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
1007	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
1008	    realtimerexpire, pt);
1009	mutex_spin_exit(&timer_lock);
1010}
1011
1012/* BSD routine to get the value of an interval timer. */
1013/* ARGSUSED */
1014int
1015sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1016    register_t *retval)
1017{
1018	/* {
1019		syscallarg(int) which;
1020		syscallarg(struct itimerval *) itv;
1021	} */
1022	struct proc *p = l->l_proc;
1023	struct itimerval aitv;
1024	int error;
1025
1026	error = dogetitimer(p, SCARG(uap, which), &aitv);
1027	if (error)
1028		return error;
1029	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1030}
1031
1032int
1033dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1034{
1035	struct ptimers *pts;
1036	struct ptimer *pt;
1037	struct itimerspec its;
1038
1039	if ((u_int)which > ITIMER_MONOTONIC)
1040		return (EINVAL);
1041
1042	mutex_spin_enter(&timer_lock);
1043	pts = p->p_timers;
1044	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1045		timerclear(&itvp->it_value);
1046		timerclear(&itvp->it_interval);
1047	} else {
1048		timer_gettime(pt, &its);
1049		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1050		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1051	}
1052	mutex_spin_exit(&timer_lock);
1053
1054	return 0;
1055}
1056
1057/* BSD routine to set/arm an interval timer. */
1058/* ARGSUSED */
1059int
1060sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1061    register_t *retval)
1062{
1063	/* {
1064		syscallarg(int) which;
1065		syscallarg(const struct itimerval *) itv;
1066		syscallarg(struct itimerval *) oitv;
1067	} */
1068	struct proc *p = l->l_proc;
1069	int which = SCARG(uap, which);
1070	struct sys___getitimer50_args getargs;
1071	const struct itimerval *itvp;
1072	struct itimerval aitv;
1073	int error;
1074
1075	if ((u_int)which > ITIMER_MONOTONIC)
1076		return (EINVAL);
1077	itvp = SCARG(uap, itv);
1078	if (itvp &&
1079	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1080		return (error);
1081	if (SCARG(uap, oitv) != NULL) {
1082		SCARG(&getargs, which) = which;
1083		SCARG(&getargs, itv) = SCARG(uap, oitv);
1084		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1085			return (error);
1086	}
1087	if (itvp == 0)
1088		return (0);
1089
1090	return dosetitimer(p, which, &aitv);
1091}
1092
1093int
1094dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1095{
1096	struct timespec now;
1097	struct ptimers *pts;
1098	struct ptimer *pt, *spare;
1099
1100	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1101	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1102		return (EINVAL);
1103
1104	/*
1105	 * Don't bother allocating data structures if the process just
1106	 * wants to clear the timer.
1107	 */
1108	spare = NULL;
1109	pts = p->p_timers;
1110 retry:
1111	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1112	    pts->pts_timers[which] == NULL))
1113		return (0);
1114	if (pts == NULL)
1115		pts = timers_alloc(p);
1116	mutex_spin_enter(&timer_lock);
1117	pt = pts->pts_timers[which];
1118	if (pt == NULL) {
1119		if (spare == NULL) {
1120			mutex_spin_exit(&timer_lock);
1121			spare = pool_get(&ptimer_pool, PR_WAITOK);
1122			goto retry;
1123		}
1124		pt = spare;
1125		spare = NULL;
1126		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1127		pt->pt_ev.sigev_value.sival_int = which;
1128		pt->pt_overruns = 0;
1129		pt->pt_proc = p;
1130		pt->pt_type = which;
1131		pt->pt_entry = which;
1132		pt->pt_queued = false;
1133		if (pt->pt_type == CLOCK_REALTIME)
1134			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1135		else
1136			pt->pt_active = 0;
1137
1138		switch (which) {
1139		case ITIMER_REAL:
1140		case ITIMER_MONOTONIC:
1141			pt->pt_ev.sigev_signo = SIGALRM;
1142			break;
1143		case ITIMER_VIRTUAL:
1144			pt->pt_ev.sigev_signo = SIGVTALRM;
1145			break;
1146		case ITIMER_PROF:
1147			pt->pt_ev.sigev_signo = SIGPROF;
1148			break;
1149		}
1150		pts->pts_timers[which] = pt;
1151	}
1152
1153	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1154	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1155
1156	if (timespecisset(&pt->pt_time.it_value)) {
1157		/* Convert to absolute time */
1158		/* XXX need to wrap in splclock for timecounters case? */
1159		switch (which) {
1160		case ITIMER_REAL:
1161			getnanotime(&now);
1162			timespecadd(&pt->pt_time.it_value, &now,
1163			    &pt->pt_time.it_value);
1164			break;
1165		case ITIMER_MONOTONIC:
1166			getnanouptime(&now);
1167			timespecadd(&pt->pt_time.it_value, &now,
1168			    &pt->pt_time.it_value);
1169			break;
1170		default:
1171			break;
1172		}
1173	}
1174	timer_settime(pt);
1175	mutex_spin_exit(&timer_lock);
1176	if (spare != NULL)
1177		pool_put(&ptimer_pool, spare);
1178
1179	return (0);
1180}
1181
1182/* Utility routines to manage the array of pointers to timers. */
1183struct ptimers *
1184timers_alloc(struct proc *p)
1185{
1186	struct ptimers *pts;
1187	int i;
1188
1189	pts = pool_get(&ptimers_pool, PR_WAITOK);
1190	LIST_INIT(&pts->pts_virtual);
1191	LIST_INIT(&pts->pts_prof);
1192	for (i = 0; i < TIMER_MAX; i++)
1193		pts->pts_timers[i] = NULL;
1194	pts->pts_fired = 0;
1195	mutex_spin_enter(&timer_lock);
1196	if (p->p_timers == NULL) {
1197		p->p_timers = pts;
1198		mutex_spin_exit(&timer_lock);
1199		return pts;
1200	}
1201	mutex_spin_exit(&timer_lock);
1202	pool_put(&ptimers_pool, pts);
1203	return p->p_timers;
1204}
1205
1206/*
1207 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1208 * then clean up all timers and free all the data structures. If
1209 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1210 * by timer_create(), not the BSD setitimer() timers, and only free the
1211 * structure if none of those remain.
1212 */
1213void
1214timers_free(struct proc *p, int which)
1215{
1216	struct ptimers *pts;
1217	struct ptimer *ptn;
1218	struct timespec ts;
1219	int i;
1220
1221	if (p->p_timers == NULL)
1222		return;
1223
1224	pts = p->p_timers;
1225	mutex_spin_enter(&timer_lock);
1226	if (which == TIMERS_ALL) {
1227		p->p_timers = NULL;
1228		i = 0;
1229	} else {
1230		timespecclear(&ts);
1231		for (ptn = LIST_FIRST(&pts->pts_virtual);
1232		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1233		     ptn = LIST_NEXT(ptn, pt_list)) {
1234			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1235			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1236		}
1237		LIST_FIRST(&pts->pts_virtual) = NULL;
1238		if (ptn) {
1239			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1240			timespecadd(&ts, &ptn->pt_time.it_value,
1241			    &ptn->pt_time.it_value);
1242			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1243		}
1244		timespecclear(&ts);
1245		for (ptn = LIST_FIRST(&pts->pts_prof);
1246		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1247		     ptn = LIST_NEXT(ptn, pt_list)) {
1248			KASSERT(ptn->pt_type == CLOCK_PROF);
1249			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1250		}
1251		LIST_FIRST(&pts->pts_prof) = NULL;
1252		if (ptn) {
1253			KASSERT(ptn->pt_type == CLOCK_PROF);
1254			timespecadd(&ts, &ptn->pt_time.it_value,
1255			    &ptn->pt_time.it_value);
1256			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1257		}
1258		i = 3;
1259	}
1260	for ( ; i < TIMER_MAX; i++) {
1261		if (pts->pts_timers[i] != NULL) {
1262			itimerfree(pts, i);
1263			mutex_spin_enter(&timer_lock);
1264		}
1265	}
1266	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1267	    pts->pts_timers[2] == NULL) {
1268		p->p_timers = NULL;
1269		mutex_spin_exit(&timer_lock);
1270		pool_put(&ptimers_pool, pts);
1271	} else
1272		mutex_spin_exit(&timer_lock);
1273}
1274
1275static void
1276itimerfree(struct ptimers *pts, int index)
1277{
1278	struct ptimer *pt;
1279
1280	KASSERT(mutex_owned(&timer_lock));
1281
1282	pt = pts->pts_timers[index];
1283	pts->pts_timers[index] = NULL;
1284	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1285		callout_halt(&pt->pt_ch, &timer_lock);
1286	if (pt->pt_queued)
1287		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1288	mutex_spin_exit(&timer_lock);
1289	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1290		callout_destroy(&pt->pt_ch);
1291	pool_put(&ptimer_pool, pt);
1292}
1293
1294/*
1295 * Decrement an interval timer by a specified number
1296 * of nanoseconds, which must be less than a second,
1297 * i.e. < 1000000000.  If the timer expires, then reload
1298 * it.  In this case, carry over (nsec - old value) to
1299 * reduce the value reloaded into the timer so that
1300 * the timer does not drift.  This routine assumes
1301 * that it is called in a context where the timers
1302 * on which it is operating cannot change in value.
1303 */
1304static int
1305itimerdecr(struct ptimer *pt, int nsec)
1306{
1307	struct itimerspec *itp;
1308
1309	KASSERT(mutex_owned(&timer_lock));
1310	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1311
1312	itp = &pt->pt_time;
1313	if (itp->it_value.tv_nsec < nsec) {
1314		if (itp->it_value.tv_sec == 0) {
1315			/* expired, and already in next interval */
1316			nsec -= itp->it_value.tv_nsec;
1317			goto expire;
1318		}
1319		itp->it_value.tv_nsec += 1000000000;
1320		itp->it_value.tv_sec--;
1321	}
1322	itp->it_value.tv_nsec -= nsec;
1323	nsec = 0;
1324	if (timespecisset(&itp->it_value))
1325		return (1);
1326	/* expired, exactly at end of interval */
1327expire:
1328	if (timespecisset(&itp->it_interval)) {
1329		itp->it_value = itp->it_interval;
1330		itp->it_value.tv_nsec -= nsec;
1331		if (itp->it_value.tv_nsec < 0) {
1332			itp->it_value.tv_nsec += 1000000000;
1333			itp->it_value.tv_sec--;
1334		}
1335		timer_settime(pt);
1336	} else
1337		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
1338	return (0);
1339}
1340
1341static void
1342itimerfire(struct ptimer *pt)
1343{
1344
1345	KASSERT(mutex_owned(&timer_lock));
1346
1347	/*
1348	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1349	 * XXX Relying on the clock interrupt is stupid.
1350	 */
1351	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1352		return;
1353	}
1354	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1355	pt->pt_queued = true;
1356	softint_schedule(timer_sih);
1357}
1358
1359void
1360timer_tick(lwp_t *l, bool user)
1361{
1362	struct ptimers *pts;
1363	struct ptimer *pt;
1364	proc_t *p;
1365
1366	p = l->l_proc;
1367	if (p->p_timers == NULL)
1368		return;
1369
1370	mutex_spin_enter(&timer_lock);
1371	if ((pts = l->l_proc->p_timers) != NULL) {
1372		/*
1373		 * Run current process's virtual and profile time, as needed.
1374		 */
1375		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1376			if (itimerdecr(pt, tick * 1000) == 0)
1377				itimerfire(pt);
1378		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1379			if (itimerdecr(pt, tick * 1000) == 0)
1380				itimerfire(pt);
1381	}
1382	mutex_spin_exit(&timer_lock);
1383}
1384
1385static void
1386timer_intr(void *cookie)
1387{
1388	ksiginfo_t ksi;
1389	struct ptimer *pt;
1390	proc_t *p;
1391
1392	mutex_enter(proc_lock);
1393	mutex_spin_enter(&timer_lock);
1394	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1395		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1396		KASSERT(pt->pt_queued);
1397		pt->pt_queued = false;
1398
1399		if (pt->pt_proc->p_timers == NULL) {
1400			/* Process is dying. */
1401			continue;
1402		}
1403		p = pt->pt_proc;
1404		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1405			continue;
1406		}
1407		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1408			pt->pt_overruns++;
1409			continue;
1410		}
1411
1412		KSI_INIT(&ksi);
1413		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1414		ksi.ksi_code = SI_TIMER;
1415		ksi.ksi_value = pt->pt_ev.sigev_value;
1416		pt->pt_poverruns = pt->pt_overruns;
1417		pt->pt_overruns = 0;
1418		mutex_spin_exit(&timer_lock);
1419		kpsignal(p, &ksi, NULL);
1420		mutex_spin_enter(&timer_lock);
1421	}
1422	mutex_spin_exit(&timer_lock);
1423	mutex_exit(proc_lock);
1424}
1425
1426/*
1427 * Check if the time will wrap if set to ts.
1428 *
1429 * ts - timespec describing the new time
1430 * delta - the delta between the current time and ts
1431 */
1432bool
1433time_wraps(struct timespec *ts, struct timespec *delta)
1434{
1435
1436	/*
1437	 * Don't allow the time to be set forward so far it
1438	 * will wrap and become negative, thus allowing an
1439	 * attacker to bypass the next check below.  The
1440	 * cutoff is 1 year before rollover occurs, so even
1441	 * if the attacker uses adjtime(2) to move the time
1442	 * past the cutoff, it will take a very long time
1443	 * to get to the wrap point.
1444	 */
1445	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1446	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
1447		return true;
1448
1449	return false;
1450}
1451