kern_time.c revision 1.173
1/*	$NetBSD: kern_time.c,v 1.173 2012/02/20 01:12:42 rmind Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61 */
62
63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.173 2012/02/20 01:12:42 rmind Exp $");
65
66#include <sys/param.h>
67#include <sys/resourcevar.h>
68#include <sys/kernel.h>
69#include <sys/systm.h>
70#include <sys/proc.h>
71#include <sys/vnode.h>
72#include <sys/signalvar.h>
73#include <sys/syslog.h>
74#include <sys/timetc.h>
75#include <sys/timex.h>
76#include <sys/kauth.h>
77#include <sys/mount.h>
78#include <sys/syscallargs.h>
79#include <sys/cpu.h>
80
81static void	timer_intr(void *);
82static void	itimerfire(struct ptimer *);
83static void	itimerfree(struct ptimers *, int);
84
85kmutex_t	timer_lock;
86
87static void	*timer_sih;
88static TAILQ_HEAD(, ptimer) timer_queue;
89
90struct pool ptimer_pool, ptimers_pool;
91
92#define	CLOCK_VIRTUAL_P(clockid)	\
93	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
94
95CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
96CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
97CTASSERT(ITIMER_PROF == CLOCK_PROF);
98CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
99
100/*
101 * Initialize timekeeping.
102 */
103void
104time_init(void)
105{
106
107	pool_init(&ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
108	    &pool_allocator_nointr, IPL_NONE);
109	pool_init(&ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
110	    &pool_allocator_nointr, IPL_NONE);
111}
112
113void
114time_init2(void)
115{
116
117	TAILQ_INIT(&timer_queue);
118	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
119	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
120	    timer_intr, NULL);
121}
122
123/* Time of day and interval timer support.
124 *
125 * These routines provide the kernel entry points to get and set
126 * the time-of-day and per-process interval timers.  Subroutines
127 * here provide support for adding and subtracting timeval structures
128 * and decrementing interval timers, optionally reloading the interval
129 * timers when they expire.
130 */
131
132/* This function is used by clock_settime and settimeofday */
133static int
134settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
135{
136	struct timespec delta, now;
137	int s;
138
139	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
140	s = splclock();
141	nanotime(&now);
142	timespecsub(ts, &now, &delta);
143
144	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
145	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
146	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
147		splx(s);
148		return (EPERM);
149	}
150
151#ifdef notyet
152	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
153		splx(s);
154		return (EPERM);
155	}
156#endif
157
158	tc_setclock(ts);
159
160	timespecadd(&boottime, &delta, &boottime);
161
162	resettodr();
163	splx(s);
164
165	return (0);
166}
167
168int
169settime(struct proc *p, struct timespec *ts)
170{
171	return (settime1(p, ts, true));
172}
173
174/* ARGSUSED */
175int
176sys___clock_gettime50(struct lwp *l,
177    const struct sys___clock_gettime50_args *uap, register_t *retval)
178{
179	/* {
180		syscallarg(clockid_t) clock_id;
181		syscallarg(struct timespec *) tp;
182	} */
183	int error;
184	struct timespec ats;
185
186	error = clock_gettime1(SCARG(uap, clock_id), &ats);
187	if (error != 0)
188		return error;
189
190	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
191}
192
193int
194clock_gettime1(clockid_t clock_id, struct timespec *ts)
195{
196
197	switch (clock_id) {
198	case CLOCK_REALTIME:
199		nanotime(ts);
200		break;
201	case CLOCK_MONOTONIC:
202		nanouptime(ts);
203		break;
204	default:
205		return EINVAL;
206	}
207
208	return 0;
209}
210
211/* ARGSUSED */
212int
213sys___clock_settime50(struct lwp *l,
214    const struct sys___clock_settime50_args *uap, register_t *retval)
215{
216	/* {
217		syscallarg(clockid_t) clock_id;
218		syscallarg(const struct timespec *) tp;
219	} */
220	int error;
221	struct timespec ats;
222
223	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
224		return error;
225
226	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
227}
228
229
230int
231clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
232    bool check_kauth)
233{
234	int error;
235
236	switch (clock_id) {
237	case CLOCK_REALTIME:
238		if ((error = settime1(p, tp, check_kauth)) != 0)
239			return (error);
240		break;
241	case CLOCK_MONOTONIC:
242		return (EINVAL);	/* read-only clock */
243	default:
244		return (EINVAL);
245	}
246
247	return 0;
248}
249
250int
251sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
252    register_t *retval)
253{
254	/* {
255		syscallarg(clockid_t) clock_id;
256		syscallarg(struct timespec *) tp;
257	} */
258	struct timespec ts;
259	int error = 0;
260
261	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
262		return error;
263
264	if (SCARG(uap, tp))
265		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
266
267	return error;
268}
269
270int
271clock_getres1(clockid_t clock_id, struct timespec *ts)
272{
273
274	switch (clock_id) {
275	case CLOCK_REALTIME:
276	case CLOCK_MONOTONIC:
277		ts->tv_sec = 0;
278		if (tc_getfrequency() > 1000000000)
279			ts->tv_nsec = 1;
280		else
281			ts->tv_nsec = 1000000000 / tc_getfrequency();
282		break;
283	default:
284		return EINVAL;
285	}
286
287	return 0;
288}
289
290/* ARGSUSED */
291int
292sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
293    register_t *retval)
294{
295	/* {
296		syscallarg(struct timespec *) rqtp;
297		syscallarg(struct timespec *) rmtp;
298	} */
299	struct timespec rmt, rqt;
300	int error, error1;
301
302	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
303	if (error)
304		return (error);
305
306	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
307	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
308		return error;
309
310	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
311	return error1 ? error1 : error;
312}
313
314int
315nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
316{
317	struct timespec rmtstart;
318	int error, timo;
319
320	if ((error = itimespecfix(rqt)) != 0)
321		return error;
322
323	timo = tstohz(rqt);
324	/*
325	 * Avoid inadvertantly sleeping forever
326	 */
327	if (timo == 0)
328		timo = 1;
329	getnanouptime(&rmtstart);
330again:
331	error = kpause("nanoslp", true, timo, NULL);
332	if (rmt != NULL || error == 0) {
333		struct timespec rmtend;
334		struct timespec t0;
335		struct timespec *t;
336
337		getnanouptime(&rmtend);
338		t = (rmt != NULL) ? rmt : &t0;
339		timespecsub(&rmtend, &rmtstart, t);
340		timespecsub(rqt, t, t);
341		if (t->tv_sec < 0)
342			timespecclear(t);
343		if (error == 0) {
344			timo = tstohz(t);
345			if (timo > 0)
346				goto again;
347		}
348	}
349
350	if (error == ERESTART)
351		error = EINTR;
352	if (error == EWOULDBLOCK)
353		error = 0;
354
355	return error;
356}
357
358/* ARGSUSED */
359int
360sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
361    register_t *retval)
362{
363	/* {
364		syscallarg(struct timeval *) tp;
365		syscallarg(void *) tzp;		really "struct timezone *";
366	} */
367	struct timeval atv;
368	int error = 0;
369	struct timezone tzfake;
370
371	if (SCARG(uap, tp)) {
372		microtime(&atv);
373		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
374		if (error)
375			return (error);
376	}
377	if (SCARG(uap, tzp)) {
378		/*
379		 * NetBSD has no kernel notion of time zone, so we just
380		 * fake up a timezone struct and return it if demanded.
381		 */
382		tzfake.tz_minuteswest = 0;
383		tzfake.tz_dsttime = 0;
384		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
385	}
386	return (error);
387}
388
389/* ARGSUSED */
390int
391sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
392    register_t *retval)
393{
394	/* {
395		syscallarg(const struct timeval *) tv;
396		syscallarg(const void *) tzp; really "const struct timezone *";
397	} */
398
399	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
400}
401
402int
403settimeofday1(const struct timeval *utv, bool userspace,
404    const void *utzp, struct lwp *l, bool check_kauth)
405{
406	struct timeval atv;
407	struct timespec ts;
408	int error;
409
410	/* Verify all parameters before changing time. */
411
412	/*
413	 * NetBSD has no kernel notion of time zone, and only an
414	 * obsolete program would try to set it, so we log a warning.
415	 */
416	if (utzp)
417		log(LOG_WARNING, "pid %d attempted to set the "
418		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
419
420	if (utv == NULL)
421		return 0;
422
423	if (userspace) {
424		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
425			return error;
426		utv = &atv;
427	}
428
429	TIMEVAL_TO_TIMESPEC(utv, &ts);
430	return settime1(l->l_proc, &ts, check_kauth);
431}
432
433int	time_adjusted;			/* set if an adjustment is made */
434
435/* ARGSUSED */
436int
437sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
438    register_t *retval)
439{
440	/* {
441		syscallarg(const struct timeval *) delta;
442		syscallarg(struct timeval *) olddelta;
443	} */
444	int error = 0;
445	struct timeval atv, oldatv;
446
447	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
448	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
449		return error;
450
451	if (SCARG(uap, delta)) {
452		error = copyin(SCARG(uap, delta), &atv,
453		    sizeof(*SCARG(uap, delta)));
454		if (error)
455			return (error);
456	}
457	adjtime1(SCARG(uap, delta) ? &atv : NULL,
458	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
459	if (SCARG(uap, olddelta))
460		error = copyout(&oldatv, SCARG(uap, olddelta),
461		    sizeof(*SCARG(uap, olddelta)));
462	return error;
463}
464
465void
466adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
467{
468	extern int64_t time_adjtime;  /* in kern_ntptime.c */
469
470	if (olddelta) {
471		mutex_spin_enter(&timecounter_lock);
472		olddelta->tv_sec = time_adjtime / 1000000;
473		olddelta->tv_usec = time_adjtime % 1000000;
474		if (olddelta->tv_usec < 0) {
475			olddelta->tv_usec += 1000000;
476			olddelta->tv_sec--;
477		}
478		mutex_spin_exit(&timecounter_lock);
479	}
480
481	if (delta) {
482		mutex_spin_enter(&timecounter_lock);
483		time_adjtime = delta->tv_sec * 1000000 + delta->tv_usec;
484
485		if (time_adjtime) {
486			/* We need to save the system time during shutdown */
487			time_adjusted |= 1;
488		}
489		mutex_spin_exit(&timecounter_lock);
490	}
491}
492
493/*
494 * Interval timer support. Both the BSD getitimer() family and the POSIX
495 * timer_*() family of routines are supported.
496 *
497 * All timers are kept in an array pointed to by p_timers, which is
498 * allocated on demand - many processes don't use timers at all. The
499 * first three elements in this array are reserved for the BSD timers:
500 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
501 * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
502 * allocated by the timer_create() syscall.
503 *
504 * Realtime timers are kept in the ptimer structure as an absolute
505 * time; virtual time timers are kept as a linked list of deltas.
506 * Virtual time timers are processed in the hardclock() routine of
507 * kern_clock.c.  The real time timer is processed by a callout
508 * routine, called from the softclock() routine.  Since a callout may
509 * be delayed in real time due to interrupt processing in the system,
510 * it is possible for the real time timeout routine (realtimeexpire,
511 * given below), to be delayed in real time past when it is supposed
512 * to occur.  It does not suffice, therefore, to reload the real timer
513 * .it_value from the real time timers .it_interval.  Rather, we
514 * compute the next time in absolute time the timer should go off.  */
515
516/* Allocate a POSIX realtime timer. */
517int
518sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
519    register_t *retval)
520{
521	/* {
522		syscallarg(clockid_t) clock_id;
523		syscallarg(struct sigevent *) evp;
524		syscallarg(timer_t *) timerid;
525	} */
526
527	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
528	    SCARG(uap, evp), copyin, l);
529}
530
531int
532timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
533    copyin_t fetch_event, struct lwp *l)
534{
535	int error;
536	timer_t timerid;
537	struct ptimers *pts;
538	struct ptimer *pt;
539	struct proc *p;
540
541	p = l->l_proc;
542
543	if ((u_int)id > CLOCK_MONOTONIC)
544		return (EINVAL);
545
546	if ((pts = p->p_timers) == NULL)
547		pts = timers_alloc(p);
548
549	pt = pool_get(&ptimer_pool, PR_WAITOK);
550	if (evp != NULL) {
551		if (((error =
552		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
553		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
554			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
555			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
556			 (pt->pt_ev.sigev_signo <= 0 ||
557			  pt->pt_ev.sigev_signo >= NSIG))) {
558			pool_put(&ptimer_pool, pt);
559			return (error ? error : EINVAL);
560		}
561	}
562
563	/* Find a free timer slot, skipping those reserved for setitimer(). */
564	mutex_spin_enter(&timer_lock);
565	for (timerid = 3; timerid < TIMER_MAX; timerid++)
566		if (pts->pts_timers[timerid] == NULL)
567			break;
568	if (timerid == TIMER_MAX) {
569		mutex_spin_exit(&timer_lock);
570		pool_put(&ptimer_pool, pt);
571		return EAGAIN;
572	}
573	if (evp == NULL) {
574		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
575		switch (id) {
576		case CLOCK_REALTIME:
577		case CLOCK_MONOTONIC:
578			pt->pt_ev.sigev_signo = SIGALRM;
579			break;
580		case CLOCK_VIRTUAL:
581			pt->pt_ev.sigev_signo = SIGVTALRM;
582			break;
583		case CLOCK_PROF:
584			pt->pt_ev.sigev_signo = SIGPROF;
585			break;
586		}
587		pt->pt_ev.sigev_value.sival_int = timerid;
588	}
589	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
590	pt->pt_info.ksi_errno = 0;
591	pt->pt_info.ksi_code = 0;
592	pt->pt_info.ksi_pid = p->p_pid;
593	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
594	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
595	pt->pt_type = id;
596	pt->pt_proc = p;
597	pt->pt_overruns = 0;
598	pt->pt_poverruns = 0;
599	pt->pt_entry = timerid;
600	pt->pt_queued = false;
601	timespecclear(&pt->pt_time.it_value);
602	if (!CLOCK_VIRTUAL_P(id))
603		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
604	else
605		pt->pt_active = 0;
606
607	pts->pts_timers[timerid] = pt;
608	mutex_spin_exit(&timer_lock);
609
610	return copyout(&timerid, tid, sizeof(timerid));
611}
612
613/* Delete a POSIX realtime timer */
614int
615sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
616    register_t *retval)
617{
618	/* {
619		syscallarg(timer_t) timerid;
620	} */
621	struct proc *p = l->l_proc;
622	timer_t timerid;
623	struct ptimers *pts;
624	struct ptimer *pt, *ptn;
625
626	timerid = SCARG(uap, timerid);
627	pts = p->p_timers;
628
629	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
630		return (EINVAL);
631
632	mutex_spin_enter(&timer_lock);
633	if ((pt = pts->pts_timers[timerid]) == NULL) {
634		mutex_spin_exit(&timer_lock);
635		return (EINVAL);
636	}
637	if (CLOCK_VIRTUAL_P(pt->pt_type)) {
638		if (pt->pt_active) {
639			ptn = LIST_NEXT(pt, pt_list);
640			LIST_REMOVE(pt, pt_list);
641			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
642				timespecadd(&pt->pt_time.it_value,
643				    &ptn->pt_time.it_value,
644				    &ptn->pt_time.it_value);
645			pt->pt_active = 0;
646		}
647	}
648	itimerfree(pts, timerid);
649
650	return (0);
651}
652
653/*
654 * Set up the given timer. The value in pt->pt_time.it_value is taken
655 * to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC timers and
656 * a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
657 */
658void
659timer_settime(struct ptimer *pt)
660{
661	struct ptimer *ptn, *pptn;
662	struct ptlist *ptl;
663
664	KASSERT(mutex_owned(&timer_lock));
665
666	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
667		callout_halt(&pt->pt_ch, &timer_lock);
668		if (timespecisset(&pt->pt_time.it_value)) {
669			/*
670			 * Don't need to check tshzto() return value, here.
671			 * callout_reset() does it for us.
672			 */
673			callout_reset(&pt->pt_ch,
674			    pt->pt_type == CLOCK_MONOTONIC ?
675			    tshztoup(&pt->pt_time.it_value) :
676			    tshzto(&pt->pt_time.it_value),
677			    realtimerexpire, pt);
678		}
679	} else {
680		if (pt->pt_active) {
681			ptn = LIST_NEXT(pt, pt_list);
682			LIST_REMOVE(pt, pt_list);
683			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
684				timespecadd(&pt->pt_time.it_value,
685				    &ptn->pt_time.it_value,
686				    &ptn->pt_time.it_value);
687		}
688		if (timespecisset(&pt->pt_time.it_value)) {
689			if (pt->pt_type == CLOCK_VIRTUAL)
690				ptl = &pt->pt_proc->p_timers->pts_virtual;
691			else
692				ptl = &pt->pt_proc->p_timers->pts_prof;
693
694			for (ptn = LIST_FIRST(ptl), pptn = NULL;
695			     ptn && timespeccmp(&pt->pt_time.it_value,
696				 &ptn->pt_time.it_value, >);
697			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
698				timespecsub(&pt->pt_time.it_value,
699				    &ptn->pt_time.it_value,
700				    &pt->pt_time.it_value);
701
702			if (pptn)
703				LIST_INSERT_AFTER(pptn, pt, pt_list);
704			else
705				LIST_INSERT_HEAD(ptl, pt, pt_list);
706
707			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
708				timespecsub(&ptn->pt_time.it_value,
709				    &pt->pt_time.it_value,
710				    &ptn->pt_time.it_value);
711
712			pt->pt_active = 1;
713		} else
714			pt->pt_active = 0;
715	}
716}
717
718void
719timer_gettime(struct ptimer *pt, struct itimerspec *aits)
720{
721	struct timespec now;
722	struct ptimer *ptn;
723
724	KASSERT(mutex_owned(&timer_lock));
725
726	*aits = pt->pt_time;
727	if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
728		/*
729		 * Convert from absolute to relative time in .it_value
730		 * part of real time timer.  If time for real time
731		 * timer has passed return 0, else return difference
732		 * between current time and time for the timer to go
733		 * off.
734		 */
735		if (timespecisset(&aits->it_value)) {
736			if (pt->pt_type == CLOCK_REALTIME) {
737				getnanotime(&now);
738			} else { /* CLOCK_MONOTONIC */
739				getnanouptime(&now);
740			}
741			if (timespeccmp(&aits->it_value, &now, <))
742				timespecclear(&aits->it_value);
743			else
744				timespecsub(&aits->it_value, &now,
745				    &aits->it_value);
746		}
747	} else if (pt->pt_active) {
748		if (pt->pt_type == CLOCK_VIRTUAL)
749			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
750		else
751			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
752		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
753			timespecadd(&aits->it_value,
754			    &ptn->pt_time.it_value, &aits->it_value);
755		KASSERT(ptn != NULL); /* pt should be findable on the list */
756	} else
757		timespecclear(&aits->it_value);
758}
759
760
761
762/* Set and arm a POSIX realtime timer */
763int
764sys___timer_settime50(struct lwp *l,
765    const struct sys___timer_settime50_args *uap,
766    register_t *retval)
767{
768	/* {
769		syscallarg(timer_t) timerid;
770		syscallarg(int) flags;
771		syscallarg(const struct itimerspec *) value;
772		syscallarg(struct itimerspec *) ovalue;
773	} */
774	int error;
775	struct itimerspec value, ovalue, *ovp = NULL;
776
777	if ((error = copyin(SCARG(uap, value), &value,
778	    sizeof(struct itimerspec))) != 0)
779		return (error);
780
781	if (SCARG(uap, ovalue))
782		ovp = &ovalue;
783
784	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
785	    SCARG(uap, flags), l->l_proc)) != 0)
786		return error;
787
788	if (ovp)
789		return copyout(&ovalue, SCARG(uap, ovalue),
790		    sizeof(struct itimerspec));
791	return 0;
792}
793
794int
795dotimer_settime(int timerid, struct itimerspec *value,
796    struct itimerspec *ovalue, int flags, struct proc *p)
797{
798	struct timespec now;
799	struct itimerspec val, oval;
800	struct ptimers *pts;
801	struct ptimer *pt;
802	int error;
803
804	pts = p->p_timers;
805
806	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
807		return EINVAL;
808	val = *value;
809	if ((error = itimespecfix(&val.it_value)) != 0 ||
810	    (error = itimespecfix(&val.it_interval)) != 0)
811		return error;
812
813	mutex_spin_enter(&timer_lock);
814	if ((pt = pts->pts_timers[timerid]) == NULL) {
815		mutex_spin_exit(&timer_lock);
816		return EINVAL;
817	}
818
819	oval = pt->pt_time;
820	pt->pt_time = val;
821
822	/*
823	 * If we've been passed a relative time for a realtime timer,
824	 * convert it to absolute; if an absolute time for a virtual
825	 * timer, convert it to relative and make sure we don't set it
826	 * to zero, which would cancel the timer, or let it go
827	 * negative, which would confuse the comparison tests.
828	 */
829	if (timespecisset(&pt->pt_time.it_value)) {
830		if (!CLOCK_VIRTUAL_P(pt->pt_type)) {
831			if ((flags & TIMER_ABSTIME) == 0) {
832				if (pt->pt_type == CLOCK_REALTIME) {
833					getnanotime(&now);
834				} else { /* CLOCK_MONOTONIC */
835					getnanouptime(&now);
836				}
837				timespecadd(&pt->pt_time.it_value, &now,
838				    &pt->pt_time.it_value);
839			}
840		} else {
841			if ((flags & TIMER_ABSTIME) != 0) {
842				getnanotime(&now);
843				timespecsub(&pt->pt_time.it_value, &now,
844				    &pt->pt_time.it_value);
845				if (!timespecisset(&pt->pt_time.it_value) ||
846				    pt->pt_time.it_value.tv_sec < 0) {
847					pt->pt_time.it_value.tv_sec = 0;
848					pt->pt_time.it_value.tv_nsec = 1;
849				}
850			}
851		}
852	}
853
854	timer_settime(pt);
855	mutex_spin_exit(&timer_lock);
856
857	if (ovalue)
858		*ovalue = oval;
859
860	return (0);
861}
862
863/* Return the time remaining until a POSIX timer fires. */
864int
865sys___timer_gettime50(struct lwp *l,
866    const struct sys___timer_gettime50_args *uap, register_t *retval)
867{
868	/* {
869		syscallarg(timer_t) timerid;
870		syscallarg(struct itimerspec *) value;
871	} */
872	struct itimerspec its;
873	int error;
874
875	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
876	    &its)) != 0)
877		return error;
878
879	return copyout(&its, SCARG(uap, value), sizeof(its));
880}
881
882int
883dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
884{
885	struct ptimer *pt;
886	struct ptimers *pts;
887
888	pts = p->p_timers;
889	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
890		return (EINVAL);
891	mutex_spin_enter(&timer_lock);
892	if ((pt = pts->pts_timers[timerid]) == NULL) {
893		mutex_spin_exit(&timer_lock);
894		return (EINVAL);
895	}
896	timer_gettime(pt, its);
897	mutex_spin_exit(&timer_lock);
898
899	return 0;
900}
901
902/*
903 * Return the count of the number of times a periodic timer expired
904 * while a notification was already pending. The counter is reset when
905 * a timer expires and a notification can be posted.
906 */
907int
908sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
909    register_t *retval)
910{
911	/* {
912		syscallarg(timer_t) timerid;
913	} */
914	struct proc *p = l->l_proc;
915	struct ptimers *pts;
916	int timerid;
917	struct ptimer *pt;
918
919	timerid = SCARG(uap, timerid);
920
921	pts = p->p_timers;
922	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
923		return (EINVAL);
924	mutex_spin_enter(&timer_lock);
925	if ((pt = pts->pts_timers[timerid]) == NULL) {
926		mutex_spin_exit(&timer_lock);
927		return (EINVAL);
928	}
929	*retval = pt->pt_poverruns;
930	mutex_spin_exit(&timer_lock);
931
932	return (0);
933}
934
935/*
936 * Real interval timer expired:
937 * send process whose timer expired an alarm signal.
938 * If time is not set up to reload, then just return.
939 * Else compute next time timer should go off which is > current time.
940 * This is where delay in processing this timeout causes multiple
941 * SIGALRM calls to be compressed into one.
942 */
943void
944realtimerexpire(void *arg)
945{
946	uint64_t last_val, next_val, interval, now_ns;
947	struct timespec now, next;
948	struct ptimer *pt;
949	int backwards;
950
951	pt = arg;
952
953	mutex_spin_enter(&timer_lock);
954	itimerfire(pt);
955
956	if (!timespecisset(&pt->pt_time.it_interval)) {
957		timespecclear(&pt->pt_time.it_value);
958		mutex_spin_exit(&timer_lock);
959		return;
960	}
961
962	if (pt->pt_type == CLOCK_MONOTONIC) {
963		getnanouptime(&now);
964	} else {
965		getnanotime(&now);
966	}
967	backwards = (timespeccmp(&pt->pt_time.it_value, &now, >));
968	timespecadd(&pt->pt_time.it_value, &pt->pt_time.it_interval, &next);
969	/* Handle the easy case of non-overflown timers first. */
970	if (!backwards && timespeccmp(&next, &now, >)) {
971		pt->pt_time.it_value = next;
972	} else {
973		now_ns = timespec2ns(&now);
974		last_val = timespec2ns(&pt->pt_time.it_value);
975		interval = timespec2ns(&pt->pt_time.it_interval);
976
977		next_val = now_ns +
978		    (now_ns - last_val + interval - 1) % interval;
979
980		if (backwards)
981			next_val += interval;
982		else
983			pt->pt_overruns += (now_ns - last_val) / interval;
984
985		pt->pt_time.it_value.tv_sec = next_val / 1000000000;
986		pt->pt_time.it_value.tv_nsec = next_val % 1000000000;
987	}
988
989	/*
990	 * Don't need to check tshzto() return value, here.
991	 * callout_reset() does it for us.
992	 */
993	callout_reset(&pt->pt_ch, pt->pt_type == CLOCK_MONOTONIC ?
994	    tshztoup(&pt->pt_time.it_value) : tshzto(&pt->pt_time.it_value),
995	    realtimerexpire, pt);
996	mutex_spin_exit(&timer_lock);
997}
998
999/* BSD routine to get the value of an interval timer. */
1000/* ARGSUSED */
1001int
1002sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1003    register_t *retval)
1004{
1005	/* {
1006		syscallarg(int) which;
1007		syscallarg(struct itimerval *) itv;
1008	} */
1009	struct proc *p = l->l_proc;
1010	struct itimerval aitv;
1011	int error;
1012
1013	error = dogetitimer(p, SCARG(uap, which), &aitv);
1014	if (error)
1015		return error;
1016	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1017}
1018
1019int
1020dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1021{
1022	struct ptimers *pts;
1023	struct ptimer *pt;
1024	struct itimerspec its;
1025
1026	if ((u_int)which > ITIMER_MONOTONIC)
1027		return (EINVAL);
1028
1029	mutex_spin_enter(&timer_lock);
1030	pts = p->p_timers;
1031	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
1032		timerclear(&itvp->it_value);
1033		timerclear(&itvp->it_interval);
1034	} else {
1035		timer_gettime(pt, &its);
1036		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1037		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1038	}
1039	mutex_spin_exit(&timer_lock);
1040
1041	return 0;
1042}
1043
1044/* BSD routine to set/arm an interval timer. */
1045/* ARGSUSED */
1046int
1047sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1048    register_t *retval)
1049{
1050	/* {
1051		syscallarg(int) which;
1052		syscallarg(const struct itimerval *) itv;
1053		syscallarg(struct itimerval *) oitv;
1054	} */
1055	struct proc *p = l->l_proc;
1056	int which = SCARG(uap, which);
1057	struct sys___getitimer50_args getargs;
1058	const struct itimerval *itvp;
1059	struct itimerval aitv;
1060	int error;
1061
1062	if ((u_int)which > ITIMER_MONOTONIC)
1063		return (EINVAL);
1064	itvp = SCARG(uap, itv);
1065	if (itvp &&
1066	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1067		return (error);
1068	if (SCARG(uap, oitv) != NULL) {
1069		SCARG(&getargs, which) = which;
1070		SCARG(&getargs, itv) = SCARG(uap, oitv);
1071		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1072			return (error);
1073	}
1074	if (itvp == 0)
1075		return (0);
1076
1077	return dosetitimer(p, which, &aitv);
1078}
1079
1080int
1081dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1082{
1083	struct timespec now;
1084	struct ptimers *pts;
1085	struct ptimer *pt, *spare;
1086
1087	KASSERT((u_int)which <= CLOCK_MONOTONIC);
1088	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1089		return (EINVAL);
1090
1091	/*
1092	 * Don't bother allocating data structures if the process just
1093	 * wants to clear the timer.
1094	 */
1095	spare = NULL;
1096	pts = p->p_timers;
1097 retry:
1098	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1099	    pts->pts_timers[which] == NULL))
1100		return (0);
1101	if (pts == NULL)
1102		pts = timers_alloc(p);
1103	mutex_spin_enter(&timer_lock);
1104	pt = pts->pts_timers[which];
1105	if (pt == NULL) {
1106		if (spare == NULL) {
1107			mutex_spin_exit(&timer_lock);
1108			spare = pool_get(&ptimer_pool, PR_WAITOK);
1109			goto retry;
1110		}
1111		pt = spare;
1112		spare = NULL;
1113		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1114		pt->pt_ev.sigev_value.sival_int = which;
1115		pt->pt_overruns = 0;
1116		pt->pt_proc = p;
1117		pt->pt_type = which;
1118		pt->pt_entry = which;
1119		pt->pt_queued = false;
1120		if (pt->pt_type == CLOCK_REALTIME)
1121			callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1122		else
1123			pt->pt_active = 0;
1124
1125		switch (which) {
1126		case ITIMER_REAL:
1127		case ITIMER_MONOTONIC:
1128			pt->pt_ev.sigev_signo = SIGALRM;
1129			break;
1130		case ITIMER_VIRTUAL:
1131			pt->pt_ev.sigev_signo = SIGVTALRM;
1132			break;
1133		case ITIMER_PROF:
1134			pt->pt_ev.sigev_signo = SIGPROF;
1135			break;
1136		}
1137		pts->pts_timers[which] = pt;
1138	}
1139
1140	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &pt->pt_time.it_value);
1141	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &pt->pt_time.it_interval);
1142
1143	if (timespecisset(&pt->pt_time.it_value)) {
1144		/* Convert to absolute time */
1145		/* XXX need to wrap in splclock for timecounters case? */
1146		switch (which) {
1147		case ITIMER_REAL:
1148			getnanotime(&now);
1149			timespecadd(&pt->pt_time.it_value, &now,
1150			    &pt->pt_time.it_value);
1151			break;
1152		case ITIMER_MONOTONIC:
1153			getnanouptime(&now);
1154			timespecadd(&pt->pt_time.it_value, &now,
1155			    &pt->pt_time.it_value);
1156			break;
1157		default:
1158			break;
1159		}
1160	}
1161	timer_settime(pt);
1162	mutex_spin_exit(&timer_lock);
1163	if (spare != NULL)
1164		pool_put(&ptimer_pool, spare);
1165
1166	return (0);
1167}
1168
1169/* Utility routines to manage the array of pointers to timers. */
1170struct ptimers *
1171timers_alloc(struct proc *p)
1172{
1173	struct ptimers *pts;
1174	int i;
1175
1176	pts = pool_get(&ptimers_pool, PR_WAITOK);
1177	LIST_INIT(&pts->pts_virtual);
1178	LIST_INIT(&pts->pts_prof);
1179	for (i = 0; i < TIMER_MAX; i++)
1180		pts->pts_timers[i] = NULL;
1181	pts->pts_fired = 0;
1182	mutex_spin_enter(&timer_lock);
1183	if (p->p_timers == NULL) {
1184		p->p_timers = pts;
1185		mutex_spin_exit(&timer_lock);
1186		return pts;
1187	}
1188	mutex_spin_exit(&timer_lock);
1189	pool_put(&ptimers_pool, pts);
1190	return p->p_timers;
1191}
1192
1193/*
1194 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1195 * then clean up all timers and free all the data structures. If
1196 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1197 * by timer_create(), not the BSD setitimer() timers, and only free the
1198 * structure if none of those remain.
1199 */
1200void
1201timers_free(struct proc *p, int which)
1202{
1203	struct ptimers *pts;
1204	struct ptimer *ptn;
1205	struct timespec ts;
1206	int i;
1207
1208	if (p->p_timers == NULL)
1209		return;
1210
1211	pts = p->p_timers;
1212	mutex_spin_enter(&timer_lock);
1213	if (which == TIMERS_ALL) {
1214		p->p_timers = NULL;
1215		i = 0;
1216	} else {
1217		timespecclear(&ts);
1218		for (ptn = LIST_FIRST(&pts->pts_virtual);
1219		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1220		     ptn = LIST_NEXT(ptn, pt_list)) {
1221			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1222			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1223		}
1224		LIST_FIRST(&pts->pts_virtual) = NULL;
1225		if (ptn) {
1226			KASSERT(ptn->pt_type == CLOCK_VIRTUAL);
1227			timespecadd(&ts, &ptn->pt_time.it_value,
1228			    &ptn->pt_time.it_value);
1229			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1230		}
1231		timespecclear(&ts);
1232		for (ptn = LIST_FIRST(&pts->pts_prof);
1233		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1234		     ptn = LIST_NEXT(ptn, pt_list)) {
1235			KASSERT(ptn->pt_type == CLOCK_PROF);
1236			timespecadd(&ts, &ptn->pt_time.it_value, &ts);
1237		}
1238		LIST_FIRST(&pts->pts_prof) = NULL;
1239		if (ptn) {
1240			KASSERT(ptn->pt_type == CLOCK_PROF);
1241			timespecadd(&ts, &ptn->pt_time.it_value,
1242			    &ptn->pt_time.it_value);
1243			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1244		}
1245		i = 3;
1246	}
1247	for ( ; i < TIMER_MAX; i++) {
1248		if (pts->pts_timers[i] != NULL) {
1249			itimerfree(pts, i);
1250			mutex_spin_enter(&timer_lock);
1251		}
1252	}
1253	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1254	    pts->pts_timers[2] == NULL) {
1255		p->p_timers = NULL;
1256		mutex_spin_exit(&timer_lock);
1257		pool_put(&ptimers_pool, pts);
1258	} else
1259		mutex_spin_exit(&timer_lock);
1260}
1261
1262static void
1263itimerfree(struct ptimers *pts, int index)
1264{
1265	struct ptimer *pt;
1266
1267	KASSERT(mutex_owned(&timer_lock));
1268
1269	pt = pts->pts_timers[index];
1270	pts->pts_timers[index] = NULL;
1271	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1272		callout_halt(&pt->pt_ch, &timer_lock);
1273	if (pt->pt_queued)
1274		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1275	mutex_spin_exit(&timer_lock);
1276	if (!CLOCK_VIRTUAL_P(pt->pt_type))
1277		callout_destroy(&pt->pt_ch);
1278	pool_put(&ptimer_pool, pt);
1279}
1280
1281/*
1282 * Decrement an interval timer by a specified number
1283 * of nanoseconds, which must be less than a second,
1284 * i.e. < 1000000000.  If the timer expires, then reload
1285 * it.  In this case, carry over (nsec - old value) to
1286 * reduce the value reloaded into the timer so that
1287 * the timer does not drift.  This routine assumes
1288 * that it is called in a context where the timers
1289 * on which it is operating cannot change in value.
1290 */
1291static int
1292itimerdecr(struct ptimer *pt, int nsec)
1293{
1294	struct itimerspec *itp;
1295
1296	KASSERT(mutex_owned(&timer_lock));
1297	KASSERT(CLOCK_VIRTUAL_P(pt->pt_type));
1298
1299	itp = &pt->pt_time;
1300	if (itp->it_value.tv_nsec < nsec) {
1301		if (itp->it_value.tv_sec == 0) {
1302			/* expired, and already in next interval */
1303			nsec -= itp->it_value.tv_nsec;
1304			goto expire;
1305		}
1306		itp->it_value.tv_nsec += 1000000000;
1307		itp->it_value.tv_sec--;
1308	}
1309	itp->it_value.tv_nsec -= nsec;
1310	nsec = 0;
1311	if (timespecisset(&itp->it_value))
1312		return (1);
1313	/* expired, exactly at end of interval */
1314expire:
1315	if (timespecisset(&itp->it_interval)) {
1316		itp->it_value = itp->it_interval;
1317		itp->it_value.tv_nsec -= nsec;
1318		if (itp->it_value.tv_nsec < 0) {
1319			itp->it_value.tv_nsec += 1000000000;
1320			itp->it_value.tv_sec--;
1321		}
1322		timer_settime(pt);
1323	} else
1324		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
1325	return (0);
1326}
1327
1328static void
1329itimerfire(struct ptimer *pt)
1330{
1331
1332	KASSERT(mutex_owned(&timer_lock));
1333
1334	/*
1335	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1336	 * XXX Relying on the clock interrupt is stupid.
1337	 */
1338	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued) {
1339		return;
1340	}
1341	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1342	pt->pt_queued = true;
1343	softint_schedule(timer_sih);
1344}
1345
1346void
1347timer_tick(lwp_t *l, bool user)
1348{
1349	struct ptimers *pts;
1350	struct ptimer *pt;
1351	proc_t *p;
1352
1353	p = l->l_proc;
1354	if (p->p_timers == NULL)
1355		return;
1356
1357	mutex_spin_enter(&timer_lock);
1358	if ((pts = l->l_proc->p_timers) != NULL) {
1359		/*
1360		 * Run current process's virtual and profile time, as needed.
1361		 */
1362		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1363			if (itimerdecr(pt, tick * 1000) == 0)
1364				itimerfire(pt);
1365		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1366			if (itimerdecr(pt, tick * 1000) == 0)
1367				itimerfire(pt);
1368	}
1369	mutex_spin_exit(&timer_lock);
1370}
1371
1372static void
1373timer_intr(void *cookie)
1374{
1375	ksiginfo_t ksi;
1376	struct ptimer *pt;
1377	proc_t *p;
1378
1379	mutex_enter(proc_lock);
1380	mutex_spin_enter(&timer_lock);
1381	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1382		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1383		KASSERT(pt->pt_queued);
1384		pt->pt_queued = false;
1385
1386		if (pt->pt_proc->p_timers == NULL) {
1387			/* Process is dying. */
1388			continue;
1389		}
1390		p = pt->pt_proc;
1391		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1392			continue;
1393		}
1394		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1395			pt->pt_overruns++;
1396			continue;
1397		}
1398
1399		KSI_INIT(&ksi);
1400		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1401		ksi.ksi_code = SI_TIMER;
1402		ksi.ksi_value = pt->pt_ev.sigev_value;
1403		pt->pt_poverruns = pt->pt_overruns;
1404		pt->pt_overruns = 0;
1405		mutex_spin_exit(&timer_lock);
1406		kpsignal(p, &ksi, NULL);
1407		mutex_spin_enter(&timer_lock);
1408	}
1409	mutex_spin_exit(&timer_lock);
1410	mutex_exit(proc_lock);
1411}
1412
1413/*
1414 * Check if the time will wrap if set to ts.
1415 *
1416 * ts - timespec describing the new time
1417 * delta - the delta between the current time and ts
1418 */
1419bool
1420time_wraps(struct timespec *ts, struct timespec *delta)
1421{
1422
1423	/*
1424	 * Don't allow the time to be set forward so far it
1425	 * will wrap and become negative, thus allowing an
1426	 * attacker to bypass the next check below.  The
1427	 * cutoff is 1 year before rollover occurs, so even
1428	 * if the attacker uses adjtime(2) to move the time
1429	 * past the cutoff, it will take a very long time
1430	 * to get to the wrap point.
1431	 */
1432	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
1433	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
1434		return true;
1435
1436	return false;
1437}
1438