kern_time.c revision 1.146
1/*	$NetBSD: kern_time.c,v 1.146 2008/04/28 20:24:03 martin Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 1982, 1986, 1989, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
61 */
62
63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.146 2008/04/28 20:24:03 martin Exp $");
65
66#include <sys/param.h>
67#include <sys/resourcevar.h>
68#include <sys/kernel.h>
69#include <sys/systm.h>
70#include <sys/proc.h>
71#include <sys/vnode.h>
72#include <sys/signalvar.h>
73#include <sys/syslog.h>
74#include <sys/timetc.h>
75#include <sys/timex.h>
76#include <sys/kauth.h>
77#include <sys/mount.h>
78#include <sys/syscallargs.h>
79#include <sys/cpu.h>
80
81#include <uvm/uvm_extern.h>
82
83static void	timer_intr(void *);
84static void	itimerfire(struct ptimer *);
85static void	itimerfree(struct ptimers *, int);
86
87kmutex_t	time_lock;
88kmutex_t	timer_lock;
89
90static void	*timer_sih;
91static TAILQ_HEAD(, ptimer) timer_queue;
92
93POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
94    &pool_allocator_nointr, IPL_NONE);
95POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
96    &pool_allocator_nointr, IPL_NONE);
97
98/*
99 * Initialize timekeeping.
100 */
101void
102time_init(void)
103{
104
105	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
106}
107
108void
109time_init2(void)
110{
111
112	TAILQ_INIT(&timer_queue);
113	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
114	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
115	    timer_intr, NULL);
116}
117
118/* Time of day and interval timer support.
119 *
120 * These routines provide the kernel entry points to get and set
121 * the time-of-day and per-process interval timers.  Subroutines
122 * here provide support for adding and subtracting timeval structures
123 * and decrementing interval timers, optionally reloading the interval
124 * timers when they expire.
125 */
126
127/* This function is used by clock_settime and settimeofday */
128static int
129settime1(struct proc *p, struct timespec *ts, bool check_kauth)
130{
131	struct timeval delta, tv;
132	struct timeval now;
133	struct timespec ts1;
134	struct bintime btdelta;
135	lwp_t *l;
136	int s;
137
138	TIMESPEC_TO_TIMEVAL(&tv, ts);
139
140	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
141	s = splclock();
142	microtime(&now);
143	timersub(&tv, &now, &delta);
144
145	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
146	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
147	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
148		splx(s);
149		return (EPERM);
150	}
151
152#ifdef notyet
153	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
154		splx(s);
155		return (EPERM);
156	}
157#endif
158
159	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
160	tc_setclock(&ts1);
161
162	timeradd(&boottime, &delta, &boottime);
163
164	/*
165	 * XXXSMP: There is a short race between setting the time above
166	 * and adjusting LWP's run times.  Fixing this properly means
167	 * pausing all CPUs while we adjust the clock.
168	 */
169	timeval2bintime(&delta, &btdelta);
170	mutex_enter(proc_lock);
171	LIST_FOREACH(l, &alllwp, l_list) {
172		lwp_lock(l);
173		bintime_add(&l->l_stime, &btdelta);
174		lwp_unlock(l);
175	}
176	mutex_exit(proc_lock);
177	resettodr();
178	splx(s);
179
180	return (0);
181}
182
183int
184settime(struct proc *p, struct timespec *ts)
185{
186	return (settime1(p, ts, true));
187}
188
189/* ARGSUSED */
190int
191sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
192    register_t *retval)
193{
194	/* {
195		syscallarg(clockid_t) clock_id;
196		syscallarg(struct timespec *) tp;
197	} */
198	clockid_t clock_id;
199	struct timespec ats;
200
201	clock_id = SCARG(uap, clock_id);
202	switch (clock_id) {
203	case CLOCK_REALTIME:
204		nanotime(&ats);
205		break;
206	case CLOCK_MONOTONIC:
207		nanouptime(&ats);
208		break;
209	default:
210		return (EINVAL);
211	}
212
213	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
214}
215
216/* ARGSUSED */
217int
218sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
219    register_t *retval)
220{
221	/* {
222		syscallarg(clockid_t) clock_id;
223		syscallarg(const struct timespec *) tp;
224	} */
225
226	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
227	    true);
228}
229
230
231int
232clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
233    bool check_kauth)
234{
235	struct timespec ats;
236	int error;
237
238	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
239		return (error);
240
241	switch (clock_id) {
242	case CLOCK_REALTIME:
243		if ((error = settime1(p, &ats, check_kauth)) != 0)
244			return (error);
245		break;
246	case CLOCK_MONOTONIC:
247		return (EINVAL);	/* read-only clock */
248	default:
249		return (EINVAL);
250	}
251
252	return 0;
253}
254
255int
256sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
257    register_t *retval)
258{
259	/* {
260		syscallarg(clockid_t) clock_id;
261		syscallarg(struct timespec *) tp;
262	} */
263	clockid_t clock_id;
264	struct timespec ts;
265	int error = 0;
266
267	clock_id = SCARG(uap, clock_id);
268	switch (clock_id) {
269	case CLOCK_REALTIME:
270	case CLOCK_MONOTONIC:
271		ts.tv_sec = 0;
272		if (tc_getfrequency() > 1000000000)
273			ts.tv_nsec = 1;
274		else
275			ts.tv_nsec = 1000000000 / tc_getfrequency();
276		break;
277	default:
278		return (EINVAL);
279	}
280
281	if (SCARG(uap, tp))
282		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
283
284	return error;
285}
286
287/* ARGSUSED */
288int
289sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
290    register_t *retval)
291{
292	/* {
293		syscallarg(struct timespec *) rqtp;
294		syscallarg(struct timespec *) rmtp;
295	} */
296	struct timespec rmt, rqt;
297	int error, error1;
298
299	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
300	if (error)
301		return (error);
302
303	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
304	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
305		return error;
306
307	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
308	return error1 ? error1 : error;
309}
310
311int
312nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
313{
314	struct timespec rmtstart;
315	int error, timo;
316
317	if (itimespecfix(rqt))
318		return (EINVAL);
319
320	timo = tstohz(rqt);
321	/*
322	 * Avoid inadvertantly sleeping forever
323	 */
324	if (timo == 0)
325		timo = 1;
326	getnanouptime(&rmtstart);
327again:
328	error = kpause("nanoslp", true, timo, NULL);
329	if (rmt != NULL || error == 0) {
330		struct timespec rmtend;
331		struct timespec t0;
332		struct timespec *t;
333
334		getnanouptime(&rmtend);
335		t = (rmt != NULL) ? rmt : &t0;
336		timespecsub(&rmtend, &rmtstart, t);
337		timespecsub(rqt, t, t);
338		if (t->tv_sec < 0)
339			timespecclear(t);
340		if (error == 0) {
341			timo = tstohz(t);
342			if (timo > 0)
343				goto again;
344		}
345	}
346
347	if (error == ERESTART)
348		error = EINTR;
349	if (error == EWOULDBLOCK)
350		error = 0;
351
352	return error;
353}
354
355/* ARGSUSED */
356int
357sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
358    register_t *retval)
359{
360	/* {
361		syscallarg(struct timeval *) tp;
362		syscallarg(void *) tzp;		really "struct timezone *";
363	} */
364	struct timeval atv;
365	int error = 0;
366	struct timezone tzfake;
367
368	if (SCARG(uap, tp)) {
369		microtime(&atv);
370		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
371		if (error)
372			return (error);
373	}
374	if (SCARG(uap, tzp)) {
375		/*
376		 * NetBSD has no kernel notion of time zone, so we just
377		 * fake up a timezone struct and return it if demanded.
378		 */
379		tzfake.tz_minuteswest = 0;
380		tzfake.tz_dsttime = 0;
381		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
382	}
383	return (error);
384}
385
386/* ARGSUSED */
387int
388sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
389    register_t *retval)
390{
391	/* {
392		syscallarg(const struct timeval *) tv;
393		syscallarg(const void *) tzp; really "const struct timezone *";
394	} */
395
396	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
397}
398
399int
400settimeofday1(const struct timeval *utv, bool userspace,
401    const void *utzp, struct lwp *l, bool check_kauth)
402{
403	struct timeval atv;
404	struct timespec ts;
405	int error;
406
407	/* Verify all parameters before changing time. */
408
409	/*
410	 * NetBSD has no kernel notion of time zone, and only an
411	 * obsolete program would try to set it, so we log a warning.
412	 */
413	if (utzp)
414		log(LOG_WARNING, "pid %d attempted to set the "
415		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
416
417	if (utv == NULL)
418		return 0;
419
420	if (userspace) {
421		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
422			return error;
423		utv = &atv;
424	}
425
426	TIMEVAL_TO_TIMESPEC(utv, &ts);
427	return settime1(l->l_proc, &ts, check_kauth);
428}
429
430int	time_adjusted;			/* set if an adjustment is made */
431
432/* ARGSUSED */
433int
434sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
435    register_t *retval)
436{
437	/* {
438		syscallarg(const struct timeval *) delta;
439		syscallarg(struct timeval *) olddelta;
440	} */
441	int error;
442
443	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
444	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
445		return (error);
446
447	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
448}
449
450int
451adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
452{
453	struct timeval atv;
454	int error = 0;
455
456	extern int64_t time_adjtime;  /* in kern_ntptime.c */
457
458	if (olddelta) {
459		mutex_spin_enter(&timecounter_lock);
460		atv.tv_sec = time_adjtime / 1000000;
461		atv.tv_usec = time_adjtime % 1000000;
462		mutex_spin_exit(&timecounter_lock);
463		if (atv.tv_usec < 0) {
464			atv.tv_usec += 1000000;
465			atv.tv_sec--;
466		}
467		error = copyout(&atv, olddelta, sizeof(struct timeval));
468		if (error)
469			return (error);
470	}
471
472	if (delta) {
473		error = copyin(delta, &atv, sizeof(struct timeval));
474		if (error)
475			return (error);
476
477		mutex_spin_enter(&timecounter_lock);
478		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
479			atv.tv_usec;
480		if (time_adjtime) {
481			/* We need to save the system time during shutdown */
482			time_adjusted |= 1;
483		}
484		mutex_spin_exit(&timecounter_lock);
485	}
486
487	return error;
488}
489
490/*
491 * Interval timer support. Both the BSD getitimer() family and the POSIX
492 * timer_*() family of routines are supported.
493 *
494 * All timers are kept in an array pointed to by p_timers, which is
495 * allocated on demand - many processes don't use timers at all. The
496 * first three elements in this array are reserved for the BSD timers:
497 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
498 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
499 * syscall.
500 *
501 * Realtime timers are kept in the ptimer structure as an absolute
502 * time; virtual time timers are kept as a linked list of deltas.
503 * Virtual time timers are processed in the hardclock() routine of
504 * kern_clock.c.  The real time timer is processed by a callout
505 * routine, called from the softclock() routine.  Since a callout may
506 * be delayed in real time due to interrupt processing in the system,
507 * it is possible for the real time timeout routine (realtimeexpire,
508 * given below), to be delayed in real time past when it is supposed
509 * to occur.  It does not suffice, therefore, to reload the real timer
510 * .it_value from the real time timers .it_interval.  Rather, we
511 * compute the next time in absolute time the timer should go off.  */
512
513/* Allocate a POSIX realtime timer. */
514int
515sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
516    register_t *retval)
517{
518	/* {
519		syscallarg(clockid_t) clock_id;
520		syscallarg(struct sigevent *) evp;
521		syscallarg(timer_t *) timerid;
522	} */
523
524	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
525	    SCARG(uap, evp), copyin, l);
526}
527
528int
529timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
530    copyin_t fetch_event, struct lwp *l)
531{
532	int error;
533	timer_t timerid;
534	struct ptimers *pts;
535	struct ptimer *pt;
536	struct proc *p;
537
538	p = l->l_proc;
539
540	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
541		return (EINVAL);
542
543	if ((pts = p->p_timers) == NULL)
544		pts = timers_alloc(p);
545
546	pt = pool_get(&ptimer_pool, PR_WAITOK);
547	if (evp != NULL) {
548		if (((error =
549		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
550		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
551			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
552			pool_put(&ptimer_pool, pt);
553			return (error ? error : EINVAL);
554		}
555	}
556
557	/* Find a free timer slot, skipping those reserved for setitimer(). */
558	mutex_spin_enter(&timer_lock);
559	for (timerid = 3; timerid < TIMER_MAX; timerid++)
560		if (pts->pts_timers[timerid] == NULL)
561			break;
562	if (timerid == TIMER_MAX) {
563		mutex_spin_exit(&timer_lock);
564		pool_put(&ptimer_pool, pt);
565		return EAGAIN;
566	}
567	if (evp == NULL) {
568		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
569		switch (id) {
570		case CLOCK_REALTIME:
571			pt->pt_ev.sigev_signo = SIGALRM;
572			break;
573		case CLOCK_VIRTUAL:
574			pt->pt_ev.sigev_signo = SIGVTALRM;
575			break;
576		case CLOCK_PROF:
577			pt->pt_ev.sigev_signo = SIGPROF;
578			break;
579		}
580		pt->pt_ev.sigev_value.sival_int = timerid;
581	}
582	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
583	pt->pt_info.ksi_errno = 0;
584	pt->pt_info.ksi_code = 0;
585	pt->pt_info.ksi_pid = p->p_pid;
586	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
587	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
588	pt->pt_type = id;
589	pt->pt_proc = p;
590	pt->pt_overruns = 0;
591	pt->pt_poverruns = 0;
592	pt->pt_entry = timerid;
593	pt->pt_queued = false;
594	pt->pt_active = 0;
595	timerclear(&pt->pt_time.it_value);
596	callout_init(&pt->pt_ch, 0);
597	pts->pts_timers[timerid] = pt;
598	mutex_spin_exit(&timer_lock);
599
600	return copyout(&timerid, tid, sizeof(timerid));
601}
602
603/* Delete a POSIX realtime timer */
604int
605sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
606    register_t *retval)
607{
608	/* {
609		syscallarg(timer_t) timerid;
610	} */
611	struct proc *p = l->l_proc;
612	timer_t timerid;
613	struct ptimers *pts;
614	struct ptimer *pt, *ptn;
615
616	timerid = SCARG(uap, timerid);
617	pts = p->p_timers;
618
619	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
620		return (EINVAL);
621
622	mutex_spin_enter(&timer_lock);
623	if ((pt = pts->pts_timers[timerid]) == NULL) {
624		mutex_spin_exit(&timer_lock);
625		return (EINVAL);
626	}
627	if (pt->pt_active) {
628		ptn = LIST_NEXT(pt, pt_list);
629		LIST_REMOVE(pt, pt_list);
630		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
631			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
632			    &ptn->pt_time.it_value);
633		pt->pt_active = 0;
634	}
635	itimerfree(pts, timerid);
636
637	return (0);
638}
639
640/*
641 * Set up the given timer. The value in pt->pt_time.it_value is taken
642 * to be an absolute time for CLOCK_REALTIME timers and a relative
643 * time for virtual timers.
644 * Must be called at splclock().
645 */
646void
647timer_settime(struct ptimer *pt)
648{
649	struct ptimer *ptn, *pptn;
650	struct ptlist *ptl;
651
652	KASSERT(mutex_owned(&timer_lock));
653
654	if (pt->pt_type == CLOCK_REALTIME) {
655		callout_stop(&pt->pt_ch);
656		if (timerisset(&pt->pt_time.it_value)) {
657			/*
658			 * Don't need to check hzto() return value, here.
659			 * callout_reset() does it for us.
660			 */
661			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
662			    realtimerexpire, pt);
663		}
664	} else {
665		if (pt->pt_active) {
666			ptn = LIST_NEXT(pt, pt_list);
667			LIST_REMOVE(pt, pt_list);
668			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
669				timeradd(&pt->pt_time.it_value,
670				    &ptn->pt_time.it_value,
671				    &ptn->pt_time.it_value);
672		}
673		if (timerisset(&pt->pt_time.it_value)) {
674			if (pt->pt_type == CLOCK_VIRTUAL)
675				ptl = &pt->pt_proc->p_timers->pts_virtual;
676			else
677				ptl = &pt->pt_proc->p_timers->pts_prof;
678
679			for (ptn = LIST_FIRST(ptl), pptn = NULL;
680			     ptn && timercmp(&pt->pt_time.it_value,
681				 &ptn->pt_time.it_value, >);
682			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
683				timersub(&pt->pt_time.it_value,
684				    &ptn->pt_time.it_value,
685				    &pt->pt_time.it_value);
686
687			if (pptn)
688				LIST_INSERT_AFTER(pptn, pt, pt_list);
689			else
690				LIST_INSERT_HEAD(ptl, pt, pt_list);
691
692			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
693				timersub(&ptn->pt_time.it_value,
694				    &pt->pt_time.it_value,
695				    &ptn->pt_time.it_value);
696
697			pt->pt_active = 1;
698		} else
699			pt->pt_active = 0;
700	}
701}
702
703void
704timer_gettime(struct ptimer *pt, struct itimerval *aitv)
705{
706	struct timeval now;
707	struct ptimer *ptn;
708
709	KASSERT(mutex_owned(&timer_lock));
710
711	*aitv = pt->pt_time;
712	if (pt->pt_type == CLOCK_REALTIME) {
713		/*
714		 * Convert from absolute to relative time in .it_value
715		 * part of real time timer.  If time for real time
716		 * timer has passed return 0, else return difference
717		 * between current time and time for the timer to go
718		 * off.
719		 */
720		if (timerisset(&aitv->it_value)) {
721			getmicrotime(&now);
722			if (timercmp(&aitv->it_value, &now, <))
723				timerclear(&aitv->it_value);
724			else
725				timersub(&aitv->it_value, &now,
726				    &aitv->it_value);
727		}
728	} else if (pt->pt_active) {
729		if (pt->pt_type == CLOCK_VIRTUAL)
730			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
731		else
732			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
733		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
734			timeradd(&aitv->it_value,
735			    &ptn->pt_time.it_value, &aitv->it_value);
736		KASSERT(ptn != NULL); /* pt should be findable on the list */
737	} else
738		timerclear(&aitv->it_value);
739}
740
741
742
743/* Set and arm a POSIX realtime timer */
744int
745sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
746    register_t *retval)
747{
748	/* {
749		syscallarg(timer_t) timerid;
750		syscallarg(int) flags;
751		syscallarg(const struct itimerspec *) value;
752		syscallarg(struct itimerspec *) ovalue;
753	} */
754	int error;
755	struct itimerspec value, ovalue, *ovp = NULL;
756
757	if ((error = copyin(SCARG(uap, value), &value,
758	    sizeof(struct itimerspec))) != 0)
759		return (error);
760
761	if (SCARG(uap, ovalue))
762		ovp = &ovalue;
763
764	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
765	    SCARG(uap, flags), l->l_proc)) != 0)
766		return error;
767
768	if (ovp)
769		return copyout(&ovalue, SCARG(uap, ovalue),
770		    sizeof(struct itimerspec));
771	return 0;
772}
773
774int
775dotimer_settime(int timerid, struct itimerspec *value,
776    struct itimerspec *ovalue, int flags, struct proc *p)
777{
778	struct timeval now;
779	struct itimerval val, oval;
780	struct ptimers *pts;
781	struct ptimer *pt;
782
783	pts = p->p_timers;
784
785	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
786		return EINVAL;
787	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
788	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
789	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
790		return (EINVAL);
791
792	mutex_spin_enter(&timer_lock);
793	if ((pt = pts->pts_timers[timerid]) == NULL) {
794		mutex_spin_exit(&timer_lock);
795		return (EINVAL);
796	}
797
798	oval = pt->pt_time;
799	pt->pt_time = val;
800
801	/*
802	 * If we've been passed a relative time for a realtime timer,
803	 * convert it to absolute; if an absolute time for a virtual
804	 * timer, convert it to relative and make sure we don't set it
805	 * to zero, which would cancel the timer, or let it go
806	 * negative, which would confuse the comparison tests.
807	 */
808	if (timerisset(&pt->pt_time.it_value)) {
809		if (pt->pt_type == CLOCK_REALTIME) {
810			if ((flags & TIMER_ABSTIME) == 0) {
811				getmicrotime(&now);
812				timeradd(&pt->pt_time.it_value, &now,
813				    &pt->pt_time.it_value);
814			}
815		} else {
816			if ((flags & TIMER_ABSTIME) != 0) {
817				getmicrotime(&now);
818				timersub(&pt->pt_time.it_value, &now,
819				    &pt->pt_time.it_value);
820				if (!timerisset(&pt->pt_time.it_value) ||
821				    pt->pt_time.it_value.tv_sec < 0) {
822					pt->pt_time.it_value.tv_sec = 0;
823					pt->pt_time.it_value.tv_usec = 1;
824				}
825			}
826		}
827	}
828
829	timer_settime(pt);
830	mutex_spin_exit(&timer_lock);
831
832	if (ovalue) {
833		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
834		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
835	}
836
837	return (0);
838}
839
840/* Return the time remaining until a POSIX timer fires. */
841int
842sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
843    register_t *retval)
844{
845	/* {
846		syscallarg(timer_t) timerid;
847		syscallarg(struct itimerspec *) value;
848	} */
849	struct itimerspec its;
850	int error;
851
852	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
853	    &its)) != 0)
854		return error;
855
856	return copyout(&its, SCARG(uap, value), sizeof(its));
857}
858
859int
860dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
861{
862	struct ptimer *pt;
863	struct ptimers *pts;
864	struct itimerval aitv;
865
866	pts = p->p_timers;
867	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
868		return (EINVAL);
869	mutex_spin_enter(&timer_lock);
870	if ((pt = pts->pts_timers[timerid]) == NULL) {
871		mutex_spin_exit(&timer_lock);
872		return (EINVAL);
873	}
874	timer_gettime(pt, &aitv);
875	mutex_spin_exit(&timer_lock);
876
877	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
878	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
879
880	return 0;
881}
882
883/*
884 * Return the count of the number of times a periodic timer expired
885 * while a notification was already pending. The counter is reset when
886 * a timer expires and a notification can be posted.
887 */
888int
889sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
890    register_t *retval)
891{
892	/* {
893		syscallarg(timer_t) timerid;
894	} */
895	struct proc *p = l->l_proc;
896	struct ptimers *pts;
897	int timerid;
898	struct ptimer *pt;
899
900	timerid = SCARG(uap, timerid);
901
902	pts = p->p_timers;
903	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
904		return (EINVAL);
905	mutex_spin_enter(&timer_lock);
906	if ((pt = pts->pts_timers[timerid]) == NULL) {
907		mutex_spin_exit(&timer_lock);
908		return (EINVAL);
909	}
910	*retval = pt->pt_poverruns;
911	mutex_spin_exit(&timer_lock);
912
913	return (0);
914}
915
916/*
917 * Real interval timer expired:
918 * send process whose timer expired an alarm signal.
919 * If time is not set up to reload, then just return.
920 * Else compute next time timer should go off which is > current time.
921 * This is where delay in processing this timeout causes multiple
922 * SIGALRM calls to be compressed into one.
923 */
924void
925realtimerexpire(void *arg)
926{
927	struct timeval now;
928	struct ptimer *pt;
929
930	pt = arg;
931
932	mutex_spin_enter(&timer_lock);
933	itimerfire(pt);
934
935	if (!timerisset(&pt->pt_time.it_interval)) {
936		timerclear(&pt->pt_time.it_value);
937		mutex_spin_exit(&timer_lock);
938		return;
939	}
940	for (;;) {
941		timeradd(&pt->pt_time.it_value,
942		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
943		getmicrotime(&now);
944		if (timercmp(&pt->pt_time.it_value, &now, >)) {
945			/*
946			 * Don't need to check hzto() return value, here.
947			 * callout_reset() does it for us.
948			 */
949			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
950			    realtimerexpire, pt);
951			mutex_spin_exit(&timer_lock);
952			return;
953		}
954		mutex_spin_exit(&timer_lock);
955		pt->pt_overruns++;
956		mutex_spin_enter(&timer_lock);
957	}
958}
959
960/* BSD routine to get the value of an interval timer. */
961/* ARGSUSED */
962int
963sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
964    register_t *retval)
965{
966	/* {
967		syscallarg(int) which;
968		syscallarg(struct itimerval *) itv;
969	} */
970	struct proc *p = l->l_proc;
971	struct itimerval aitv;
972	int error;
973
974	error = dogetitimer(p, SCARG(uap, which), &aitv);
975	if (error)
976		return error;
977	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
978}
979
980int
981dogetitimer(struct proc *p, int which, struct itimerval *itvp)
982{
983	struct ptimers *pts;
984	struct ptimer *pt;
985
986	if ((u_int)which > ITIMER_PROF)
987		return (EINVAL);
988
989	mutex_spin_enter(&timer_lock);
990	pts = p->p_timers;
991	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
992		timerclear(&itvp->it_value);
993		timerclear(&itvp->it_interval);
994	} else
995		timer_gettime(pt, itvp);
996	mutex_spin_exit(&timer_lock);
997
998	return 0;
999}
1000
1001/* BSD routine to set/arm an interval timer. */
1002/* ARGSUSED */
1003int
1004sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1005    register_t *retval)
1006{
1007	/* {
1008		syscallarg(int) which;
1009		syscallarg(const struct itimerval *) itv;
1010		syscallarg(struct itimerval *) oitv;
1011	} */
1012	struct proc *p = l->l_proc;
1013	int which = SCARG(uap, which);
1014	struct sys_getitimer_args getargs;
1015	const struct itimerval *itvp;
1016	struct itimerval aitv;
1017	int error;
1018
1019	if ((u_int)which > ITIMER_PROF)
1020		return (EINVAL);
1021	itvp = SCARG(uap, itv);
1022	if (itvp &&
1023	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1024		return (error);
1025	if (SCARG(uap, oitv) != NULL) {
1026		SCARG(&getargs, which) = which;
1027		SCARG(&getargs, itv) = SCARG(uap, oitv);
1028		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1029			return (error);
1030	}
1031	if (itvp == 0)
1032		return (0);
1033
1034	return dosetitimer(p, which, &aitv);
1035}
1036
1037int
1038dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1039{
1040	struct timeval now;
1041	struct ptimers *pts;
1042	struct ptimer *pt, *spare;
1043
1044	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1045		return (EINVAL);
1046
1047	/*
1048	 * Don't bother allocating data structures if the process just
1049	 * wants to clear the timer.
1050	 */
1051	spare = NULL;
1052	pts = p->p_timers;
1053 retry:
1054	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1055	    pts->pts_timers[which] == NULL))
1056		return (0);
1057	if (pts == NULL)
1058		pts = timers_alloc(p);
1059	mutex_spin_enter(&timer_lock);
1060	pt = pts->pts_timers[which];
1061	if (pt == NULL) {
1062		if (spare == NULL) {
1063			mutex_spin_exit(&timer_lock);
1064			spare = pool_get(&ptimer_pool, PR_WAITOK);
1065			goto retry;
1066		}
1067		pt = spare;
1068		spare = NULL;
1069		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1070		pt->pt_ev.sigev_value.sival_int = which;
1071		pt->pt_overruns = 0;
1072		pt->pt_proc = p;
1073		pt->pt_type = which;
1074		pt->pt_entry = which;
1075		pt->pt_active = 0;
1076		pt->pt_queued = false;
1077		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1078		switch (which) {
1079		case ITIMER_REAL:
1080			pt->pt_ev.sigev_signo = SIGALRM;
1081			break;
1082		case ITIMER_VIRTUAL:
1083			pt->pt_ev.sigev_signo = SIGVTALRM;
1084			break;
1085		case ITIMER_PROF:
1086			pt->pt_ev.sigev_signo = SIGPROF;
1087			break;
1088		}
1089		pts->pts_timers[which] = pt;
1090	}
1091	pt->pt_time = *itvp;
1092
1093	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1094		/* Convert to absolute time */
1095		/* XXX need to wrap in splclock for timecounters case? */
1096		getmicrotime(&now);
1097		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1098	}
1099	timer_settime(pt);
1100	mutex_spin_exit(&timer_lock);
1101	if (spare != NULL)
1102		pool_put(&ptimer_pool, spare);
1103
1104	return (0);
1105}
1106
1107/* Utility routines to manage the array of pointers to timers. */
1108struct ptimers *
1109timers_alloc(struct proc *p)
1110{
1111	struct ptimers *pts;
1112	int i;
1113
1114	pts = pool_get(&ptimers_pool, PR_WAITOK);
1115	LIST_INIT(&pts->pts_virtual);
1116	LIST_INIT(&pts->pts_prof);
1117	for (i = 0; i < TIMER_MAX; i++)
1118		pts->pts_timers[i] = NULL;
1119	pts->pts_fired = 0;
1120	mutex_spin_enter(&timer_lock);
1121	if (p->p_timers == NULL) {
1122		p->p_timers = pts;
1123		mutex_spin_exit(&timer_lock);
1124		return pts;
1125	}
1126	mutex_spin_exit(&timer_lock);
1127	pool_put(&ptimers_pool, pts);
1128	return p->p_timers;
1129}
1130
1131/*
1132 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1133 * then clean up all timers and free all the data structures. If
1134 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1135 * by timer_create(), not the BSD setitimer() timers, and only free the
1136 * structure if none of those remain.
1137 */
1138void
1139timers_free(struct proc *p, int which)
1140{
1141	struct ptimers *pts;
1142	struct ptimer *ptn;
1143	struct timeval tv;
1144	int i;
1145
1146	if (p->p_timers == NULL)
1147		return;
1148
1149	pts = p->p_timers;
1150	mutex_spin_enter(&timer_lock);
1151	if (which == TIMERS_ALL) {
1152		p->p_timers = NULL;
1153		i = 0;
1154	} else {
1155		timerclear(&tv);
1156		for (ptn = LIST_FIRST(&pts->pts_virtual);
1157		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1158		     ptn = LIST_NEXT(ptn, pt_list))
1159			timeradd(&tv, &ptn->pt_time.it_value, &tv);
1160		LIST_FIRST(&pts->pts_virtual) = NULL;
1161		if (ptn) {
1162			timeradd(&tv, &ptn->pt_time.it_value,
1163			    &ptn->pt_time.it_value);
1164			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1165		}
1166		timerclear(&tv);
1167		for (ptn = LIST_FIRST(&pts->pts_prof);
1168		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1169		     ptn = LIST_NEXT(ptn, pt_list))
1170			timeradd(&tv, &ptn->pt_time.it_value, &tv);
1171		LIST_FIRST(&pts->pts_prof) = NULL;
1172		if (ptn) {
1173			timeradd(&tv, &ptn->pt_time.it_value,
1174			    &ptn->pt_time.it_value);
1175			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1176		}
1177		i = 3;
1178	}
1179	for ( ; i < TIMER_MAX; i++) {
1180		if (pts->pts_timers[i] != NULL) {
1181			itimerfree(pts, i);
1182			mutex_spin_enter(&timer_lock);
1183		}
1184	}
1185	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1186	    pts->pts_timers[2] == NULL) {
1187		p->p_timers = NULL;
1188		mutex_spin_exit(&timer_lock);
1189		pool_put(&ptimers_pool, pts);
1190	} else
1191		mutex_spin_exit(&timer_lock);
1192}
1193
1194static void
1195itimerfree(struct ptimers *pts, int index)
1196{
1197	struct ptimer *pt;
1198
1199	KASSERT(mutex_owned(&timer_lock));
1200
1201	pt = pts->pts_timers[index];
1202	pts->pts_timers[index] = NULL;
1203	if (pt->pt_type == CLOCK_REALTIME)
1204		callout_halt(&pt->pt_ch, &timer_lock);
1205	else if (pt->pt_queued)
1206		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1207	mutex_spin_exit(&timer_lock);
1208	callout_destroy(&pt->pt_ch);
1209	pool_put(&ptimer_pool, pt);
1210}
1211
1212/*
1213 * Decrement an interval timer by a specified number
1214 * of microseconds, which must be less than a second,
1215 * i.e. < 1000000.  If the timer expires, then reload
1216 * it.  In this case, carry over (usec - old value) to
1217 * reduce the value reloaded into the timer so that
1218 * the timer does not drift.  This routine assumes
1219 * that it is called in a context where the timers
1220 * on which it is operating cannot change in value.
1221 */
1222static int
1223itimerdecr(struct ptimer *pt, int usec)
1224{
1225	struct itimerval *itp;
1226
1227	KASSERT(mutex_owned(&timer_lock));
1228
1229	itp = &pt->pt_time;
1230	if (itp->it_value.tv_usec < usec) {
1231		if (itp->it_value.tv_sec == 0) {
1232			/* expired, and already in next interval */
1233			usec -= itp->it_value.tv_usec;
1234			goto expire;
1235		}
1236		itp->it_value.tv_usec += 1000000;
1237		itp->it_value.tv_sec--;
1238	}
1239	itp->it_value.tv_usec -= usec;
1240	usec = 0;
1241	if (timerisset(&itp->it_value))
1242		return (1);
1243	/* expired, exactly at end of interval */
1244expire:
1245	if (timerisset(&itp->it_interval)) {
1246		itp->it_value = itp->it_interval;
1247		itp->it_value.tv_usec -= usec;
1248		if (itp->it_value.tv_usec < 0) {
1249			itp->it_value.tv_usec += 1000000;
1250			itp->it_value.tv_sec--;
1251		}
1252		timer_settime(pt);
1253	} else
1254		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1255	return (0);
1256}
1257
1258static void
1259itimerfire(struct ptimer *pt)
1260{
1261
1262	KASSERT(mutex_owned(&timer_lock));
1263
1264	/*
1265	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1266	 * XXX Relying on the clock interrupt is stupid.
1267	 */
1268	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
1269		return;
1270	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1271	pt->pt_queued = true;
1272	softint_schedule(timer_sih);
1273}
1274
1275void
1276timer_tick(lwp_t *l, bool user)
1277{
1278	struct ptimers *pts;
1279	struct ptimer *pt;
1280	proc_t *p;
1281
1282	p = l->l_proc;
1283	if (p->p_timers == NULL)
1284		return;
1285
1286	mutex_spin_enter(&timer_lock);
1287	if ((pts = l->l_proc->p_timers) != NULL) {
1288		/*
1289		 * Run current process's virtual and profile time, as needed.
1290		 */
1291		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1292			if (itimerdecr(pt, tick) == 0)
1293				itimerfire(pt);
1294		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1295			if (itimerdecr(pt, tick) == 0)
1296				itimerfire(pt);
1297	}
1298	mutex_spin_exit(&timer_lock);
1299}
1300
1301static void
1302timer_intr(void *cookie)
1303{
1304	ksiginfo_t ksi;
1305	struct ptimer *pt;
1306	proc_t *p;
1307
1308	mutex_spin_enter(&timer_lock);
1309	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1310		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1311		KASSERT(pt->pt_queued);
1312		pt->pt_queued = false;
1313
1314		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1315			continue;
1316		p = pt->pt_proc;
1317		if (pt->pt_proc->p_timers == NULL) {
1318			/* Process is dying. */
1319			continue;
1320		}
1321		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1322			pt->pt_overruns++;
1323			continue;
1324		}
1325
1326		KSI_INIT(&ksi);
1327		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1328		ksi.ksi_code = SI_TIMER;
1329		ksi.ksi_value = pt->pt_ev.sigev_value;
1330		pt->pt_poverruns = pt->pt_overruns;
1331		pt->pt_overruns = 0;
1332		mutex_spin_exit(&timer_lock);
1333
1334		mutex_enter(proc_lock);
1335		kpsignal(p, &ksi, NULL);
1336		mutex_exit(proc_lock);
1337
1338		mutex_spin_enter(&timer_lock);
1339	}
1340	mutex_spin_exit(&timer_lock);
1341}
1342
1343/*
1344 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1345 * for usage and rationale.
1346 */
1347int
1348ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1349{
1350	struct timeval tv, delta;
1351	int rv = 0;
1352
1353	getmicrouptime(&tv);
1354	timersub(&tv, lasttime, &delta);
1355
1356	/*
1357	 * check for 0,0 is so that the message will be seen at least once,
1358	 * even if interval is huge.
1359	 */
1360	if (timercmp(&delta, mininterval, >=) ||
1361	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1362		*lasttime = tv;
1363		rv = 1;
1364	}
1365
1366	return (rv);
1367}
1368
1369/*
1370 * ppsratecheck(): packets (or events) per second limitation.
1371 */
1372int
1373ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1374{
1375	struct timeval tv, delta;
1376	int rv;
1377
1378	getmicrouptime(&tv);
1379	timersub(&tv, lasttime, &delta);
1380
1381	/*
1382	 * check for 0,0 is so that the message will be seen at least once.
1383	 * if more than one second have passed since the last update of
1384	 * lasttime, reset the counter.
1385	 *
1386	 * we do increment *curpps even in *curpps < maxpps case, as some may
1387	 * try to use *curpps for stat purposes as well.
1388	 */
1389	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1390	    delta.tv_sec >= 1) {
1391		*lasttime = tv;
1392		*curpps = 0;
1393	}
1394	if (maxpps < 0)
1395		rv = 1;
1396	else if (*curpps < maxpps)
1397		rv = 1;
1398	else
1399		rv = 0;
1400
1401#if 1 /*DIAGNOSTIC?*/
1402	/* be careful about wrap-around */
1403	if (*curpps + 1 > *curpps)
1404		*curpps = *curpps + 1;
1405#else
1406	/*
1407	 * assume that there's not too many calls to this function.
1408	 * not sure if the assumption holds, as it depends on *caller's*
1409	 * behavior, not the behavior of this function.
1410	 * IMHO it is wrong to make assumption on the caller's behavior,
1411	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1412	 */
1413	*curpps = *curpps + 1;
1414#endif
1415
1416	return (rv);
1417}
1418