kern_time.c revision 1.145
1/*	$NetBSD: kern_time.c,v 1.145 2008/04/24 15:35:29 ad Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.145 2008/04/24 15:35:29 ad Exp $");
72
73#include <sys/param.h>
74#include <sys/resourcevar.h>
75#include <sys/kernel.h>
76#include <sys/systm.h>
77#include <sys/proc.h>
78#include <sys/vnode.h>
79#include <sys/signalvar.h>
80#include <sys/syslog.h>
81#include <sys/timetc.h>
82#include <sys/timex.h>
83#include <sys/kauth.h>
84#include <sys/mount.h>
85#include <sys/syscallargs.h>
86#include <sys/cpu.h>
87
88#include <uvm/uvm_extern.h>
89
90static void	timer_intr(void *);
91static void	itimerfire(struct ptimer *);
92static void	itimerfree(struct ptimers *, int);
93
94kmutex_t	time_lock;
95kmutex_t	timer_lock;
96
97static void	*timer_sih;
98static TAILQ_HEAD(, ptimer) timer_queue;
99
100POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
101    &pool_allocator_nointr, IPL_NONE);
102POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
103    &pool_allocator_nointr, IPL_NONE);
104
105/*
106 * Initialize timekeeping.
107 */
108void
109time_init(void)
110{
111
112	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
113}
114
115void
116time_init2(void)
117{
118
119	TAILQ_INIT(&timer_queue);
120	mutex_init(&timer_lock, MUTEX_DEFAULT, IPL_SCHED);
121	timer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
122	    timer_intr, NULL);
123}
124
125/* Time of day and interval timer support.
126 *
127 * These routines provide the kernel entry points to get and set
128 * the time-of-day and per-process interval timers.  Subroutines
129 * here provide support for adding and subtracting timeval structures
130 * and decrementing interval timers, optionally reloading the interval
131 * timers when they expire.
132 */
133
134/* This function is used by clock_settime and settimeofday */
135static int
136settime1(struct proc *p, struct timespec *ts, bool check_kauth)
137{
138	struct timeval delta, tv;
139	struct timeval now;
140	struct timespec ts1;
141	struct bintime btdelta;
142	lwp_t *l;
143	int s;
144
145	TIMESPEC_TO_TIMEVAL(&tv, ts);
146
147	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
148	s = splclock();
149	microtime(&now);
150	timersub(&tv, &now, &delta);
151
152	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
153	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
154	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
155		splx(s);
156		return (EPERM);
157	}
158
159#ifdef notyet
160	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
161		splx(s);
162		return (EPERM);
163	}
164#endif
165
166	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
167	tc_setclock(&ts1);
168
169	timeradd(&boottime, &delta, &boottime);
170
171	/*
172	 * XXXSMP: There is a short race between setting the time above
173	 * and adjusting LWP's run times.  Fixing this properly means
174	 * pausing all CPUs while we adjust the clock.
175	 */
176	timeval2bintime(&delta, &btdelta);
177	mutex_enter(proc_lock);
178	LIST_FOREACH(l, &alllwp, l_list) {
179		lwp_lock(l);
180		bintime_add(&l->l_stime, &btdelta);
181		lwp_unlock(l);
182	}
183	mutex_exit(proc_lock);
184	resettodr();
185	splx(s);
186
187	return (0);
188}
189
190int
191settime(struct proc *p, struct timespec *ts)
192{
193	return (settime1(p, ts, true));
194}
195
196/* ARGSUSED */
197int
198sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
199    register_t *retval)
200{
201	/* {
202		syscallarg(clockid_t) clock_id;
203		syscallarg(struct timespec *) tp;
204	} */
205	clockid_t clock_id;
206	struct timespec ats;
207
208	clock_id = SCARG(uap, clock_id);
209	switch (clock_id) {
210	case CLOCK_REALTIME:
211		nanotime(&ats);
212		break;
213	case CLOCK_MONOTONIC:
214		nanouptime(&ats);
215		break;
216	default:
217		return (EINVAL);
218	}
219
220	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
221}
222
223/* ARGSUSED */
224int
225sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
226    register_t *retval)
227{
228	/* {
229		syscallarg(clockid_t) clock_id;
230		syscallarg(const struct timespec *) tp;
231	} */
232
233	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
234	    true);
235}
236
237
238int
239clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
240    bool check_kauth)
241{
242	struct timespec ats;
243	int error;
244
245	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
246		return (error);
247
248	switch (clock_id) {
249	case CLOCK_REALTIME:
250		if ((error = settime1(p, &ats, check_kauth)) != 0)
251			return (error);
252		break;
253	case CLOCK_MONOTONIC:
254		return (EINVAL);	/* read-only clock */
255	default:
256		return (EINVAL);
257	}
258
259	return 0;
260}
261
262int
263sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
264    register_t *retval)
265{
266	/* {
267		syscallarg(clockid_t) clock_id;
268		syscallarg(struct timespec *) tp;
269	} */
270	clockid_t clock_id;
271	struct timespec ts;
272	int error = 0;
273
274	clock_id = SCARG(uap, clock_id);
275	switch (clock_id) {
276	case CLOCK_REALTIME:
277	case CLOCK_MONOTONIC:
278		ts.tv_sec = 0;
279		if (tc_getfrequency() > 1000000000)
280			ts.tv_nsec = 1;
281		else
282			ts.tv_nsec = 1000000000 / tc_getfrequency();
283		break;
284	default:
285		return (EINVAL);
286	}
287
288	if (SCARG(uap, tp))
289		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
290
291	return error;
292}
293
294/* ARGSUSED */
295int
296sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
297    register_t *retval)
298{
299	/* {
300		syscallarg(struct timespec *) rqtp;
301		syscallarg(struct timespec *) rmtp;
302	} */
303	struct timespec rmt, rqt;
304	int error, error1;
305
306	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
307	if (error)
308		return (error);
309
310	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
311	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
312		return error;
313
314	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
315	return error1 ? error1 : error;
316}
317
318int
319nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
320{
321	struct timespec rmtstart;
322	int error, timo;
323
324	if (itimespecfix(rqt))
325		return (EINVAL);
326
327	timo = tstohz(rqt);
328	/*
329	 * Avoid inadvertantly sleeping forever
330	 */
331	if (timo == 0)
332		timo = 1;
333	getnanouptime(&rmtstart);
334again:
335	error = kpause("nanoslp", true, timo, NULL);
336	if (rmt != NULL || error == 0) {
337		struct timespec rmtend;
338		struct timespec t0;
339		struct timespec *t;
340
341		getnanouptime(&rmtend);
342		t = (rmt != NULL) ? rmt : &t0;
343		timespecsub(&rmtend, &rmtstart, t);
344		timespecsub(rqt, t, t);
345		if (t->tv_sec < 0)
346			timespecclear(t);
347		if (error == 0) {
348			timo = tstohz(t);
349			if (timo > 0)
350				goto again;
351		}
352	}
353
354	if (error == ERESTART)
355		error = EINTR;
356	if (error == EWOULDBLOCK)
357		error = 0;
358
359	return error;
360}
361
362/* ARGSUSED */
363int
364sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
365    register_t *retval)
366{
367	/* {
368		syscallarg(struct timeval *) tp;
369		syscallarg(void *) tzp;		really "struct timezone *";
370	} */
371	struct timeval atv;
372	int error = 0;
373	struct timezone tzfake;
374
375	if (SCARG(uap, tp)) {
376		microtime(&atv);
377		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
378		if (error)
379			return (error);
380	}
381	if (SCARG(uap, tzp)) {
382		/*
383		 * NetBSD has no kernel notion of time zone, so we just
384		 * fake up a timezone struct and return it if demanded.
385		 */
386		tzfake.tz_minuteswest = 0;
387		tzfake.tz_dsttime = 0;
388		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
389	}
390	return (error);
391}
392
393/* ARGSUSED */
394int
395sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
396    register_t *retval)
397{
398	/* {
399		syscallarg(const struct timeval *) tv;
400		syscallarg(const void *) tzp; really "const struct timezone *";
401	} */
402
403	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
404}
405
406int
407settimeofday1(const struct timeval *utv, bool userspace,
408    const void *utzp, struct lwp *l, bool check_kauth)
409{
410	struct timeval atv;
411	struct timespec ts;
412	int error;
413
414	/* Verify all parameters before changing time. */
415
416	/*
417	 * NetBSD has no kernel notion of time zone, and only an
418	 * obsolete program would try to set it, so we log a warning.
419	 */
420	if (utzp)
421		log(LOG_WARNING, "pid %d attempted to set the "
422		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
423
424	if (utv == NULL)
425		return 0;
426
427	if (userspace) {
428		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
429			return error;
430		utv = &atv;
431	}
432
433	TIMEVAL_TO_TIMESPEC(utv, &ts);
434	return settime1(l->l_proc, &ts, check_kauth);
435}
436
437int	time_adjusted;			/* set if an adjustment is made */
438
439/* ARGSUSED */
440int
441sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
442    register_t *retval)
443{
444	/* {
445		syscallarg(const struct timeval *) delta;
446		syscallarg(struct timeval *) olddelta;
447	} */
448	int error;
449
450	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
451	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
452		return (error);
453
454	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
455}
456
457int
458adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
459{
460	struct timeval atv;
461	int error = 0;
462
463	extern int64_t time_adjtime;  /* in kern_ntptime.c */
464
465	if (olddelta) {
466		mutex_spin_enter(&timecounter_lock);
467		atv.tv_sec = time_adjtime / 1000000;
468		atv.tv_usec = time_adjtime % 1000000;
469		mutex_spin_exit(&timecounter_lock);
470		if (atv.tv_usec < 0) {
471			atv.tv_usec += 1000000;
472			atv.tv_sec--;
473		}
474		error = copyout(&atv, olddelta, sizeof(struct timeval));
475		if (error)
476			return (error);
477	}
478
479	if (delta) {
480		error = copyin(delta, &atv, sizeof(struct timeval));
481		if (error)
482			return (error);
483
484		mutex_spin_enter(&timecounter_lock);
485		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
486			atv.tv_usec;
487		if (time_adjtime) {
488			/* We need to save the system time during shutdown */
489			time_adjusted |= 1;
490		}
491		mutex_spin_exit(&timecounter_lock);
492	}
493
494	return error;
495}
496
497/*
498 * Interval timer support. Both the BSD getitimer() family and the POSIX
499 * timer_*() family of routines are supported.
500 *
501 * All timers are kept in an array pointed to by p_timers, which is
502 * allocated on demand - many processes don't use timers at all. The
503 * first three elements in this array are reserved for the BSD timers:
504 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
505 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
506 * syscall.
507 *
508 * Realtime timers are kept in the ptimer structure as an absolute
509 * time; virtual time timers are kept as a linked list of deltas.
510 * Virtual time timers are processed in the hardclock() routine of
511 * kern_clock.c.  The real time timer is processed by a callout
512 * routine, called from the softclock() routine.  Since a callout may
513 * be delayed in real time due to interrupt processing in the system,
514 * it is possible for the real time timeout routine (realtimeexpire,
515 * given below), to be delayed in real time past when it is supposed
516 * to occur.  It does not suffice, therefore, to reload the real timer
517 * .it_value from the real time timers .it_interval.  Rather, we
518 * compute the next time in absolute time the timer should go off.  */
519
520/* Allocate a POSIX realtime timer. */
521int
522sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
523    register_t *retval)
524{
525	/* {
526		syscallarg(clockid_t) clock_id;
527		syscallarg(struct sigevent *) evp;
528		syscallarg(timer_t *) timerid;
529	} */
530
531	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
532	    SCARG(uap, evp), copyin, l);
533}
534
535int
536timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
537    copyin_t fetch_event, struct lwp *l)
538{
539	int error;
540	timer_t timerid;
541	struct ptimers *pts;
542	struct ptimer *pt;
543	struct proc *p;
544
545	p = l->l_proc;
546
547	if (id < CLOCK_REALTIME || id > CLOCK_PROF)
548		return (EINVAL);
549
550	if ((pts = p->p_timers) == NULL)
551		pts = timers_alloc(p);
552
553	pt = pool_get(&ptimer_pool, PR_WAITOK);
554	if (evp != NULL) {
555		if (((error =
556		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
557		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
558			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
559			pool_put(&ptimer_pool, pt);
560			return (error ? error : EINVAL);
561		}
562	}
563
564	/* Find a free timer slot, skipping those reserved for setitimer(). */
565	mutex_spin_enter(&timer_lock);
566	for (timerid = 3; timerid < TIMER_MAX; timerid++)
567		if (pts->pts_timers[timerid] == NULL)
568			break;
569	if (timerid == TIMER_MAX) {
570		mutex_spin_exit(&timer_lock);
571		pool_put(&ptimer_pool, pt);
572		return EAGAIN;
573	}
574	if (evp == NULL) {
575		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
576		switch (id) {
577		case CLOCK_REALTIME:
578			pt->pt_ev.sigev_signo = SIGALRM;
579			break;
580		case CLOCK_VIRTUAL:
581			pt->pt_ev.sigev_signo = SIGVTALRM;
582			break;
583		case CLOCK_PROF:
584			pt->pt_ev.sigev_signo = SIGPROF;
585			break;
586		}
587		pt->pt_ev.sigev_value.sival_int = timerid;
588	}
589	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
590	pt->pt_info.ksi_errno = 0;
591	pt->pt_info.ksi_code = 0;
592	pt->pt_info.ksi_pid = p->p_pid;
593	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
594	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
595	pt->pt_type = id;
596	pt->pt_proc = p;
597	pt->pt_overruns = 0;
598	pt->pt_poverruns = 0;
599	pt->pt_entry = timerid;
600	pt->pt_queued = false;
601	pt->pt_active = 0;
602	timerclear(&pt->pt_time.it_value);
603	callout_init(&pt->pt_ch, 0);
604	pts->pts_timers[timerid] = pt;
605	mutex_spin_exit(&timer_lock);
606
607	return copyout(&timerid, tid, sizeof(timerid));
608}
609
610/* Delete a POSIX realtime timer */
611int
612sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
613    register_t *retval)
614{
615	/* {
616		syscallarg(timer_t) timerid;
617	} */
618	struct proc *p = l->l_proc;
619	timer_t timerid;
620	struct ptimers *pts;
621	struct ptimer *pt, *ptn;
622
623	timerid = SCARG(uap, timerid);
624	pts = p->p_timers;
625
626	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
627		return (EINVAL);
628
629	mutex_spin_enter(&timer_lock);
630	if ((pt = pts->pts_timers[timerid]) == NULL) {
631		mutex_spin_exit(&timer_lock);
632		return (EINVAL);
633	}
634	if (pt->pt_active) {
635		ptn = LIST_NEXT(pt, pt_list);
636		LIST_REMOVE(pt, pt_list);
637		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
638			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
639			    &ptn->pt_time.it_value);
640		pt->pt_active = 0;
641	}
642	itimerfree(pts, timerid);
643
644	return (0);
645}
646
647/*
648 * Set up the given timer. The value in pt->pt_time.it_value is taken
649 * to be an absolute time for CLOCK_REALTIME timers and a relative
650 * time for virtual timers.
651 * Must be called at splclock().
652 */
653void
654timer_settime(struct ptimer *pt)
655{
656	struct ptimer *ptn, *pptn;
657	struct ptlist *ptl;
658
659	KASSERT(mutex_owned(&timer_lock));
660
661	if (pt->pt_type == CLOCK_REALTIME) {
662		callout_stop(&pt->pt_ch);
663		if (timerisset(&pt->pt_time.it_value)) {
664			/*
665			 * Don't need to check hzto() return value, here.
666			 * callout_reset() does it for us.
667			 */
668			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
669			    realtimerexpire, pt);
670		}
671	} else {
672		if (pt->pt_active) {
673			ptn = LIST_NEXT(pt, pt_list);
674			LIST_REMOVE(pt, pt_list);
675			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
676				timeradd(&pt->pt_time.it_value,
677				    &ptn->pt_time.it_value,
678				    &ptn->pt_time.it_value);
679		}
680		if (timerisset(&pt->pt_time.it_value)) {
681			if (pt->pt_type == CLOCK_VIRTUAL)
682				ptl = &pt->pt_proc->p_timers->pts_virtual;
683			else
684				ptl = &pt->pt_proc->p_timers->pts_prof;
685
686			for (ptn = LIST_FIRST(ptl), pptn = NULL;
687			     ptn && timercmp(&pt->pt_time.it_value,
688				 &ptn->pt_time.it_value, >);
689			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
690				timersub(&pt->pt_time.it_value,
691				    &ptn->pt_time.it_value,
692				    &pt->pt_time.it_value);
693
694			if (pptn)
695				LIST_INSERT_AFTER(pptn, pt, pt_list);
696			else
697				LIST_INSERT_HEAD(ptl, pt, pt_list);
698
699			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
700				timersub(&ptn->pt_time.it_value,
701				    &pt->pt_time.it_value,
702				    &ptn->pt_time.it_value);
703
704			pt->pt_active = 1;
705		} else
706			pt->pt_active = 0;
707	}
708}
709
710void
711timer_gettime(struct ptimer *pt, struct itimerval *aitv)
712{
713	struct timeval now;
714	struct ptimer *ptn;
715
716	KASSERT(mutex_owned(&timer_lock));
717
718	*aitv = pt->pt_time;
719	if (pt->pt_type == CLOCK_REALTIME) {
720		/*
721		 * Convert from absolute to relative time in .it_value
722		 * part of real time timer.  If time for real time
723		 * timer has passed return 0, else return difference
724		 * between current time and time for the timer to go
725		 * off.
726		 */
727		if (timerisset(&aitv->it_value)) {
728			getmicrotime(&now);
729			if (timercmp(&aitv->it_value, &now, <))
730				timerclear(&aitv->it_value);
731			else
732				timersub(&aitv->it_value, &now,
733				    &aitv->it_value);
734		}
735	} else if (pt->pt_active) {
736		if (pt->pt_type == CLOCK_VIRTUAL)
737			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
738		else
739			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
740		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
741			timeradd(&aitv->it_value,
742			    &ptn->pt_time.it_value, &aitv->it_value);
743		KASSERT(ptn != NULL); /* pt should be findable on the list */
744	} else
745		timerclear(&aitv->it_value);
746}
747
748
749
750/* Set and arm a POSIX realtime timer */
751int
752sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
753    register_t *retval)
754{
755	/* {
756		syscallarg(timer_t) timerid;
757		syscallarg(int) flags;
758		syscallarg(const struct itimerspec *) value;
759		syscallarg(struct itimerspec *) ovalue;
760	} */
761	int error;
762	struct itimerspec value, ovalue, *ovp = NULL;
763
764	if ((error = copyin(SCARG(uap, value), &value,
765	    sizeof(struct itimerspec))) != 0)
766		return (error);
767
768	if (SCARG(uap, ovalue))
769		ovp = &ovalue;
770
771	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
772	    SCARG(uap, flags), l->l_proc)) != 0)
773		return error;
774
775	if (ovp)
776		return copyout(&ovalue, SCARG(uap, ovalue),
777		    sizeof(struct itimerspec));
778	return 0;
779}
780
781int
782dotimer_settime(int timerid, struct itimerspec *value,
783    struct itimerspec *ovalue, int flags, struct proc *p)
784{
785	struct timeval now;
786	struct itimerval val, oval;
787	struct ptimers *pts;
788	struct ptimer *pt;
789
790	pts = p->p_timers;
791
792	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
793		return EINVAL;
794	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
795	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
796	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
797		return (EINVAL);
798
799	mutex_spin_enter(&timer_lock);
800	if ((pt = pts->pts_timers[timerid]) == NULL) {
801		mutex_spin_exit(&timer_lock);
802		return (EINVAL);
803	}
804
805	oval = pt->pt_time;
806	pt->pt_time = val;
807
808	/*
809	 * If we've been passed a relative time for a realtime timer,
810	 * convert it to absolute; if an absolute time for a virtual
811	 * timer, convert it to relative and make sure we don't set it
812	 * to zero, which would cancel the timer, or let it go
813	 * negative, which would confuse the comparison tests.
814	 */
815	if (timerisset(&pt->pt_time.it_value)) {
816		if (pt->pt_type == CLOCK_REALTIME) {
817			if ((flags & TIMER_ABSTIME) == 0) {
818				getmicrotime(&now);
819				timeradd(&pt->pt_time.it_value, &now,
820				    &pt->pt_time.it_value);
821			}
822		} else {
823			if ((flags & TIMER_ABSTIME) != 0) {
824				getmicrotime(&now);
825				timersub(&pt->pt_time.it_value, &now,
826				    &pt->pt_time.it_value);
827				if (!timerisset(&pt->pt_time.it_value) ||
828				    pt->pt_time.it_value.tv_sec < 0) {
829					pt->pt_time.it_value.tv_sec = 0;
830					pt->pt_time.it_value.tv_usec = 1;
831				}
832			}
833		}
834	}
835
836	timer_settime(pt);
837	mutex_spin_exit(&timer_lock);
838
839	if (ovalue) {
840		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
841		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
842	}
843
844	return (0);
845}
846
847/* Return the time remaining until a POSIX timer fires. */
848int
849sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
850    register_t *retval)
851{
852	/* {
853		syscallarg(timer_t) timerid;
854		syscallarg(struct itimerspec *) value;
855	} */
856	struct itimerspec its;
857	int error;
858
859	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
860	    &its)) != 0)
861		return error;
862
863	return copyout(&its, SCARG(uap, value), sizeof(its));
864}
865
866int
867dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
868{
869	struct ptimer *pt;
870	struct ptimers *pts;
871	struct itimerval aitv;
872
873	pts = p->p_timers;
874	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
875		return (EINVAL);
876	mutex_spin_enter(&timer_lock);
877	if ((pt = pts->pts_timers[timerid]) == NULL) {
878		mutex_spin_exit(&timer_lock);
879		return (EINVAL);
880	}
881	timer_gettime(pt, &aitv);
882	mutex_spin_exit(&timer_lock);
883
884	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
885	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
886
887	return 0;
888}
889
890/*
891 * Return the count of the number of times a periodic timer expired
892 * while a notification was already pending. The counter is reset when
893 * a timer expires and a notification can be posted.
894 */
895int
896sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
897    register_t *retval)
898{
899	/* {
900		syscallarg(timer_t) timerid;
901	} */
902	struct proc *p = l->l_proc;
903	struct ptimers *pts;
904	int timerid;
905	struct ptimer *pt;
906
907	timerid = SCARG(uap, timerid);
908
909	pts = p->p_timers;
910	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
911		return (EINVAL);
912	mutex_spin_enter(&timer_lock);
913	if ((pt = pts->pts_timers[timerid]) == NULL) {
914		mutex_spin_exit(&timer_lock);
915		return (EINVAL);
916	}
917	*retval = pt->pt_poverruns;
918	mutex_spin_exit(&timer_lock);
919
920	return (0);
921}
922
923/*
924 * Real interval timer expired:
925 * send process whose timer expired an alarm signal.
926 * If time is not set up to reload, then just return.
927 * Else compute next time timer should go off which is > current time.
928 * This is where delay in processing this timeout causes multiple
929 * SIGALRM calls to be compressed into one.
930 */
931void
932realtimerexpire(void *arg)
933{
934	struct timeval now;
935	struct ptimer *pt;
936
937	pt = arg;
938
939	mutex_spin_enter(&timer_lock);
940	itimerfire(pt);
941
942	if (!timerisset(&pt->pt_time.it_interval)) {
943		timerclear(&pt->pt_time.it_value);
944		mutex_spin_exit(&timer_lock);
945		return;
946	}
947	for (;;) {
948		timeradd(&pt->pt_time.it_value,
949		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
950		getmicrotime(&now);
951		if (timercmp(&pt->pt_time.it_value, &now, >)) {
952			/*
953			 * Don't need to check hzto() return value, here.
954			 * callout_reset() does it for us.
955			 */
956			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
957			    realtimerexpire, pt);
958			mutex_spin_exit(&timer_lock);
959			return;
960		}
961		mutex_spin_exit(&timer_lock);
962		pt->pt_overruns++;
963		mutex_spin_enter(&timer_lock);
964	}
965}
966
967/* BSD routine to get the value of an interval timer. */
968/* ARGSUSED */
969int
970sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
971    register_t *retval)
972{
973	/* {
974		syscallarg(int) which;
975		syscallarg(struct itimerval *) itv;
976	} */
977	struct proc *p = l->l_proc;
978	struct itimerval aitv;
979	int error;
980
981	error = dogetitimer(p, SCARG(uap, which), &aitv);
982	if (error)
983		return error;
984	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
985}
986
987int
988dogetitimer(struct proc *p, int which, struct itimerval *itvp)
989{
990	struct ptimers *pts;
991	struct ptimer *pt;
992
993	if ((u_int)which > ITIMER_PROF)
994		return (EINVAL);
995
996	mutex_spin_enter(&timer_lock);
997	pts = p->p_timers;
998	if (pts == NULL || (pt = pts->pts_timers[which]) == NULL) {
999		timerclear(&itvp->it_value);
1000		timerclear(&itvp->it_interval);
1001	} else
1002		timer_gettime(pt, itvp);
1003	mutex_spin_exit(&timer_lock);
1004
1005	return 0;
1006}
1007
1008/* BSD routine to set/arm an interval timer. */
1009/* ARGSUSED */
1010int
1011sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
1012    register_t *retval)
1013{
1014	/* {
1015		syscallarg(int) which;
1016		syscallarg(const struct itimerval *) itv;
1017		syscallarg(struct itimerval *) oitv;
1018	} */
1019	struct proc *p = l->l_proc;
1020	int which = SCARG(uap, which);
1021	struct sys_getitimer_args getargs;
1022	const struct itimerval *itvp;
1023	struct itimerval aitv;
1024	int error;
1025
1026	if ((u_int)which > ITIMER_PROF)
1027		return (EINVAL);
1028	itvp = SCARG(uap, itv);
1029	if (itvp &&
1030	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1031		return (error);
1032	if (SCARG(uap, oitv) != NULL) {
1033		SCARG(&getargs, which) = which;
1034		SCARG(&getargs, itv) = SCARG(uap, oitv);
1035		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1036			return (error);
1037	}
1038	if (itvp == 0)
1039		return (0);
1040
1041	return dosetitimer(p, which, &aitv);
1042}
1043
1044int
1045dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1046{
1047	struct timeval now;
1048	struct ptimers *pts;
1049	struct ptimer *pt, *spare;
1050
1051	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1052		return (EINVAL);
1053
1054	/*
1055	 * Don't bother allocating data structures if the process just
1056	 * wants to clear the timer.
1057	 */
1058	spare = NULL;
1059	pts = p->p_timers;
1060 retry:
1061	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1062	    pts->pts_timers[which] == NULL))
1063		return (0);
1064	if (pts == NULL)
1065		pts = timers_alloc(p);
1066	mutex_spin_enter(&timer_lock);
1067	pt = pts->pts_timers[which];
1068	if (pt == NULL) {
1069		if (spare == NULL) {
1070			mutex_spin_exit(&timer_lock);
1071			spare = pool_get(&ptimer_pool, PR_WAITOK);
1072			goto retry;
1073		}
1074		pt = spare;
1075		spare = NULL;
1076		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1077		pt->pt_ev.sigev_value.sival_int = which;
1078		pt->pt_overruns = 0;
1079		pt->pt_proc = p;
1080		pt->pt_type = which;
1081		pt->pt_entry = which;
1082		pt->pt_active = 0;
1083		pt->pt_queued = false;
1084		callout_init(&pt->pt_ch, CALLOUT_MPSAFE);
1085		switch (which) {
1086		case ITIMER_REAL:
1087			pt->pt_ev.sigev_signo = SIGALRM;
1088			break;
1089		case ITIMER_VIRTUAL:
1090			pt->pt_ev.sigev_signo = SIGVTALRM;
1091			break;
1092		case ITIMER_PROF:
1093			pt->pt_ev.sigev_signo = SIGPROF;
1094			break;
1095		}
1096		pts->pts_timers[which] = pt;
1097	}
1098	pt->pt_time = *itvp;
1099
1100	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1101		/* Convert to absolute time */
1102		/* XXX need to wrap in splclock for timecounters case? */
1103		getmicrotime(&now);
1104		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1105	}
1106	timer_settime(pt);
1107	mutex_spin_exit(&timer_lock);
1108	if (spare != NULL)
1109		pool_put(&ptimer_pool, spare);
1110
1111	return (0);
1112}
1113
1114/* Utility routines to manage the array of pointers to timers. */
1115struct ptimers *
1116timers_alloc(struct proc *p)
1117{
1118	struct ptimers *pts;
1119	int i;
1120
1121	pts = pool_get(&ptimers_pool, PR_WAITOK);
1122	LIST_INIT(&pts->pts_virtual);
1123	LIST_INIT(&pts->pts_prof);
1124	for (i = 0; i < TIMER_MAX; i++)
1125		pts->pts_timers[i] = NULL;
1126	pts->pts_fired = 0;
1127	mutex_spin_enter(&timer_lock);
1128	if (p->p_timers == NULL) {
1129		p->p_timers = pts;
1130		mutex_spin_exit(&timer_lock);
1131		return pts;
1132	}
1133	mutex_spin_exit(&timer_lock);
1134	pool_put(&ptimers_pool, pts);
1135	return p->p_timers;
1136}
1137
1138/*
1139 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1140 * then clean up all timers and free all the data structures. If
1141 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1142 * by timer_create(), not the BSD setitimer() timers, and only free the
1143 * structure if none of those remain.
1144 */
1145void
1146timers_free(struct proc *p, int which)
1147{
1148	struct ptimers *pts;
1149	struct ptimer *ptn;
1150	struct timeval tv;
1151	int i;
1152
1153	if (p->p_timers == NULL)
1154		return;
1155
1156	pts = p->p_timers;
1157	mutex_spin_enter(&timer_lock);
1158	if (which == TIMERS_ALL) {
1159		p->p_timers = NULL;
1160		i = 0;
1161	} else {
1162		timerclear(&tv);
1163		for (ptn = LIST_FIRST(&pts->pts_virtual);
1164		     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1165		     ptn = LIST_NEXT(ptn, pt_list))
1166			timeradd(&tv, &ptn->pt_time.it_value, &tv);
1167		LIST_FIRST(&pts->pts_virtual) = NULL;
1168		if (ptn) {
1169			timeradd(&tv, &ptn->pt_time.it_value,
1170			    &ptn->pt_time.it_value);
1171			LIST_INSERT_HEAD(&pts->pts_virtual, ptn, pt_list);
1172		}
1173		timerclear(&tv);
1174		for (ptn = LIST_FIRST(&pts->pts_prof);
1175		     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1176		     ptn = LIST_NEXT(ptn, pt_list))
1177			timeradd(&tv, &ptn->pt_time.it_value, &tv);
1178		LIST_FIRST(&pts->pts_prof) = NULL;
1179		if (ptn) {
1180			timeradd(&tv, &ptn->pt_time.it_value,
1181			    &ptn->pt_time.it_value);
1182			LIST_INSERT_HEAD(&pts->pts_prof, ptn, pt_list);
1183		}
1184		i = 3;
1185	}
1186	for ( ; i < TIMER_MAX; i++) {
1187		if (pts->pts_timers[i] != NULL) {
1188			itimerfree(pts, i);
1189			mutex_spin_enter(&timer_lock);
1190		}
1191	}
1192	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1193	    pts->pts_timers[2] == NULL) {
1194		p->p_timers = NULL;
1195		mutex_spin_exit(&timer_lock);
1196		pool_put(&ptimers_pool, pts);
1197	} else
1198		mutex_spin_exit(&timer_lock);
1199}
1200
1201static void
1202itimerfree(struct ptimers *pts, int index)
1203{
1204	struct ptimer *pt;
1205
1206	KASSERT(mutex_owned(&timer_lock));
1207
1208	pt = pts->pts_timers[index];
1209	pts->pts_timers[index] = NULL;
1210	if (pt->pt_type == CLOCK_REALTIME)
1211		callout_halt(&pt->pt_ch, &timer_lock);
1212	else if (pt->pt_queued)
1213		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1214	mutex_spin_exit(&timer_lock);
1215	callout_destroy(&pt->pt_ch);
1216	pool_put(&ptimer_pool, pt);
1217}
1218
1219/*
1220 * Decrement an interval timer by a specified number
1221 * of microseconds, which must be less than a second,
1222 * i.e. < 1000000.  If the timer expires, then reload
1223 * it.  In this case, carry over (usec - old value) to
1224 * reduce the value reloaded into the timer so that
1225 * the timer does not drift.  This routine assumes
1226 * that it is called in a context where the timers
1227 * on which it is operating cannot change in value.
1228 */
1229static int
1230itimerdecr(struct ptimer *pt, int usec)
1231{
1232	struct itimerval *itp;
1233
1234	KASSERT(mutex_owned(&timer_lock));
1235
1236	itp = &pt->pt_time;
1237	if (itp->it_value.tv_usec < usec) {
1238		if (itp->it_value.tv_sec == 0) {
1239			/* expired, and already in next interval */
1240			usec -= itp->it_value.tv_usec;
1241			goto expire;
1242		}
1243		itp->it_value.tv_usec += 1000000;
1244		itp->it_value.tv_sec--;
1245	}
1246	itp->it_value.tv_usec -= usec;
1247	usec = 0;
1248	if (timerisset(&itp->it_value))
1249		return (1);
1250	/* expired, exactly at end of interval */
1251expire:
1252	if (timerisset(&itp->it_interval)) {
1253		itp->it_value = itp->it_interval;
1254		itp->it_value.tv_usec -= usec;
1255		if (itp->it_value.tv_usec < 0) {
1256			itp->it_value.tv_usec += 1000000;
1257			itp->it_value.tv_sec--;
1258		}
1259		timer_settime(pt);
1260	} else
1261		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1262	return (0);
1263}
1264
1265static void
1266itimerfire(struct ptimer *pt)
1267{
1268
1269	KASSERT(mutex_owned(&timer_lock));
1270
1271	/*
1272	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1273	 * XXX Relying on the clock interrupt is stupid.
1274	 */
1275	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL || pt->pt_queued)
1276		return;
1277	TAILQ_INSERT_TAIL(&timer_queue, pt, pt_chain);
1278	pt->pt_queued = true;
1279	softint_schedule(timer_sih);
1280}
1281
1282void
1283timer_tick(lwp_t *l, bool user)
1284{
1285	struct ptimers *pts;
1286	struct ptimer *pt;
1287	proc_t *p;
1288
1289	p = l->l_proc;
1290	if (p->p_timers == NULL)
1291		return;
1292
1293	mutex_spin_enter(&timer_lock);
1294	if ((pts = l->l_proc->p_timers) != NULL) {
1295		/*
1296		 * Run current process's virtual and profile time, as needed.
1297		 */
1298		if (user && (pt = LIST_FIRST(&pts->pts_virtual)) != NULL)
1299			if (itimerdecr(pt, tick) == 0)
1300				itimerfire(pt);
1301		if ((pt = LIST_FIRST(&pts->pts_prof)) != NULL)
1302			if (itimerdecr(pt, tick) == 0)
1303				itimerfire(pt);
1304	}
1305	mutex_spin_exit(&timer_lock);
1306}
1307
1308static void
1309timer_intr(void *cookie)
1310{
1311	ksiginfo_t ksi;
1312	struct ptimer *pt;
1313	proc_t *p;
1314
1315	mutex_spin_enter(&timer_lock);
1316	while ((pt = TAILQ_FIRST(&timer_queue)) != NULL) {
1317		TAILQ_REMOVE(&timer_queue, pt, pt_chain);
1318		KASSERT(pt->pt_queued);
1319		pt->pt_queued = false;
1320
1321		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL)
1322			continue;
1323		p = pt->pt_proc;
1324		if (pt->pt_proc->p_timers == NULL) {
1325			/* Process is dying. */
1326			continue;
1327		}
1328		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1329			pt->pt_overruns++;
1330			continue;
1331		}
1332
1333		KSI_INIT(&ksi);
1334		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1335		ksi.ksi_code = SI_TIMER;
1336		ksi.ksi_value = pt->pt_ev.sigev_value;
1337		pt->pt_poverruns = pt->pt_overruns;
1338		pt->pt_overruns = 0;
1339		mutex_spin_exit(&timer_lock);
1340
1341		mutex_enter(proc_lock);
1342		kpsignal(p, &ksi, NULL);
1343		mutex_exit(proc_lock);
1344
1345		mutex_spin_enter(&timer_lock);
1346	}
1347	mutex_spin_exit(&timer_lock);
1348}
1349
1350/*
1351 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1352 * for usage and rationale.
1353 */
1354int
1355ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1356{
1357	struct timeval tv, delta;
1358	int rv = 0;
1359
1360	getmicrouptime(&tv);
1361	timersub(&tv, lasttime, &delta);
1362
1363	/*
1364	 * check for 0,0 is so that the message will be seen at least once,
1365	 * even if interval is huge.
1366	 */
1367	if (timercmp(&delta, mininterval, >=) ||
1368	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1369		*lasttime = tv;
1370		rv = 1;
1371	}
1372
1373	return (rv);
1374}
1375
1376/*
1377 * ppsratecheck(): packets (or events) per second limitation.
1378 */
1379int
1380ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1381{
1382	struct timeval tv, delta;
1383	int rv;
1384
1385	getmicrouptime(&tv);
1386	timersub(&tv, lasttime, &delta);
1387
1388	/*
1389	 * check for 0,0 is so that the message will be seen at least once.
1390	 * if more than one second have passed since the last update of
1391	 * lasttime, reset the counter.
1392	 *
1393	 * we do increment *curpps even in *curpps < maxpps case, as some may
1394	 * try to use *curpps for stat purposes as well.
1395	 */
1396	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1397	    delta.tv_sec >= 1) {
1398		*lasttime = tv;
1399		*curpps = 0;
1400	}
1401	if (maxpps < 0)
1402		rv = 1;
1403	else if (*curpps < maxpps)
1404		rv = 1;
1405	else
1406		rv = 0;
1407
1408#if 1 /*DIAGNOSTIC?*/
1409	/* be careful about wrap-around */
1410	if (*curpps + 1 > *curpps)
1411		*curpps = *curpps + 1;
1412#else
1413	/*
1414	 * assume that there's not too many calls to this function.
1415	 * not sure if the assumption holds, as it depends on *caller's*
1416	 * behavior, not the behavior of this function.
1417	 * IMHO it is wrong to make assumption on the caller's behavior,
1418	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1419	 */
1420	*curpps = *curpps + 1;
1421#endif
1422
1423	return (rv);
1424}
1425