kern_time.c revision 1.141
1/*	$NetBSD: kern_time.c,v 1.141 2008/02/25 12:25:03 yamt Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.141 2008/02/25 12:25:03 yamt Exp $");
72
73#include <sys/param.h>
74#include <sys/resourcevar.h>
75#include <sys/kernel.h>
76#include <sys/systm.h>
77#include <sys/proc.h>
78#include <sys/vnode.h>
79#include <sys/signalvar.h>
80#include <sys/syslog.h>
81#include <sys/timetc.h>
82#include <sys/kauth.h>
83
84#include <sys/mount.h>
85#include <sys/syscallargs.h>
86
87#include <uvm/uvm_extern.h>
88
89#include <sys/cpu.h>
90
91kmutex_t	time_lock;
92
93POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
94    &pool_allocator_nointr, IPL_NONE);
95POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
96    &pool_allocator_nointr, IPL_NONE);
97
98/*
99 * Initialize timekeeping.
100 */
101void
102time_init(void)
103{
104
105	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
106}
107
108/* Time of day and interval timer support.
109 *
110 * These routines provide the kernel entry points to get and set
111 * the time-of-day and per-process interval timers.  Subroutines
112 * here provide support for adding and subtracting timeval structures
113 * and decrementing interval timers, optionally reloading the interval
114 * timers when they expire.
115 */
116
117/* This function is used by clock_settime and settimeofday */
118static int
119settime1(struct proc *p, struct timespec *ts, bool check_kauth)
120{
121	struct timeval delta, tv;
122	struct timeval now;
123	struct timespec ts1;
124	struct bintime btdelta;
125	lwp_t *l;
126	int s;
127
128	TIMESPEC_TO_TIMEVAL(&tv, ts);
129
130	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
131	s = splclock();
132	microtime(&now);
133	timersub(&tv, &now, &delta);
134
135	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
136	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
137	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
138		splx(s);
139		return (EPERM);
140	}
141
142#ifdef notyet
143	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
144		splx(s);
145		return (EPERM);
146	}
147#endif
148
149	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
150	tc_setclock(&ts1);
151
152	timeradd(&boottime, &delta, &boottime);
153
154	/*
155	 * XXXSMP: There is a short race between setting the time above
156	 * and adjusting LWP's run times.  Fixing this properly means
157	 * pausing all CPUs while we adjust the clock.
158	 */
159	timeval2bintime(&delta, &btdelta);
160	mutex_enter(&proclist_lock);
161	LIST_FOREACH(l, &alllwp, l_list) {
162		lwp_lock(l);
163		bintime_add(&l->l_stime, &btdelta);
164		lwp_unlock(l);
165	}
166	mutex_exit(&proclist_lock);
167	resettodr();
168	splx(s);
169
170	return (0);
171}
172
173int
174settime(struct proc *p, struct timespec *ts)
175{
176	return (settime1(p, ts, true));
177}
178
179/* ARGSUSED */
180int
181sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
182    register_t *retval)
183{
184	/* {
185		syscallarg(clockid_t) clock_id;
186		syscallarg(struct timespec *) tp;
187	} */
188	clockid_t clock_id;
189	struct timespec ats;
190
191	clock_id = SCARG(uap, clock_id);
192	switch (clock_id) {
193	case CLOCK_REALTIME:
194		nanotime(&ats);
195		break;
196	case CLOCK_MONOTONIC:
197		nanouptime(&ats);
198		break;
199	default:
200		return (EINVAL);
201	}
202
203	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
204}
205
206/* ARGSUSED */
207int
208sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
209    register_t *retval)
210{
211	/* {
212		syscallarg(clockid_t) clock_id;
213		syscallarg(const struct timespec *) tp;
214	} */
215
216	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
217	    true);
218}
219
220
221int
222clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
223    bool check_kauth)
224{
225	struct timespec ats;
226	int error;
227
228	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
229		return (error);
230
231	switch (clock_id) {
232	case CLOCK_REALTIME:
233		if ((error = settime1(p, &ats, check_kauth)) != 0)
234			return (error);
235		break;
236	case CLOCK_MONOTONIC:
237		return (EINVAL);	/* read-only clock */
238	default:
239		return (EINVAL);
240	}
241
242	return 0;
243}
244
245int
246sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
247    register_t *retval)
248{
249	/* {
250		syscallarg(clockid_t) clock_id;
251		syscallarg(struct timespec *) tp;
252	} */
253	clockid_t clock_id;
254	struct timespec ts;
255	int error = 0;
256
257	clock_id = SCARG(uap, clock_id);
258	switch (clock_id) {
259	case CLOCK_REALTIME:
260	case CLOCK_MONOTONIC:
261		ts.tv_sec = 0;
262		if (tc_getfrequency() > 1000000000)
263			ts.tv_nsec = 1;
264		else
265			ts.tv_nsec = 1000000000 / tc_getfrequency();
266		break;
267	default:
268		return (EINVAL);
269	}
270
271	if (SCARG(uap, tp))
272		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
273
274	return error;
275}
276
277/* ARGSUSED */
278int
279sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
280    register_t *retval)
281{
282	/* {
283		syscallarg(struct timespec *) rqtp;
284		syscallarg(struct timespec *) rmtp;
285	} */
286	struct timespec rmt, rqt;
287	int error, error1;
288
289	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
290	if (error)
291		return (error);
292
293	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
294	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
295		return error;
296
297	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
298	return error1 ? error1 : error;
299}
300
301int
302nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
303{
304	struct timespec rmtstart;
305	int error, timo;
306
307	if (itimespecfix(rqt))
308		return (EINVAL);
309
310	timo = tstohz(rqt);
311	/*
312	 * Avoid inadvertantly sleeping forever
313	 */
314	if (timo == 0)
315		timo = 1;
316	getnanouptime(&rmtstart);
317again:
318	error = kpause("nanoslp", true, timo, NULL);
319	if (rmt != NULL || error == 0) {
320		struct timespec rmtend;
321		struct timespec t0;
322		struct timespec *t;
323
324		getnanouptime(&rmtend);
325		t = (rmt != NULL) ? rmt : &t0;
326		timespecsub(&rmtend, &rmtstart, t);
327		timespecsub(rqt, t, t);
328		if (t->tv_sec < 0)
329			timespecclear(t);
330		if (error == 0) {
331			timo = tstohz(t);
332			if (timo > 0)
333				goto again;
334		}
335	}
336
337	if (error == ERESTART)
338		error = EINTR;
339	if (error == EWOULDBLOCK)
340		error = 0;
341
342	return error;
343}
344
345/* ARGSUSED */
346int
347sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
348    register_t *retval)
349{
350	/* {
351		syscallarg(struct timeval *) tp;
352		syscallarg(void *) tzp;		really "struct timezone *";
353	} */
354	struct timeval atv;
355	int error = 0;
356	struct timezone tzfake;
357
358	if (SCARG(uap, tp)) {
359		microtime(&atv);
360		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
361		if (error)
362			return (error);
363	}
364	if (SCARG(uap, tzp)) {
365		/*
366		 * NetBSD has no kernel notion of time zone, so we just
367		 * fake up a timezone struct and return it if demanded.
368		 */
369		tzfake.tz_minuteswest = 0;
370		tzfake.tz_dsttime = 0;
371		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
372	}
373	return (error);
374}
375
376/* ARGSUSED */
377int
378sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
379    register_t *retval)
380{
381	/* {
382		syscallarg(const struct timeval *) tv;
383		syscallarg(const void *) tzp; really "const struct timezone *";
384	} */
385
386	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
387}
388
389int
390settimeofday1(const struct timeval *utv, bool userspace,
391    const void *utzp, struct lwp *l, bool check_kauth)
392{
393	struct timeval atv;
394	struct timespec ts;
395	int error;
396
397	/* Verify all parameters before changing time. */
398
399	/*
400	 * NetBSD has no kernel notion of time zone, and only an
401	 * obsolete program would try to set it, so we log a warning.
402	 */
403	if (utzp)
404		log(LOG_WARNING, "pid %d attempted to set the "
405		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
406
407	if (utv == NULL)
408		return 0;
409
410	if (userspace) {
411		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
412			return error;
413		utv = &atv;
414	}
415
416	TIMEVAL_TO_TIMESPEC(utv, &ts);
417	return settime1(l->l_proc, &ts, check_kauth);
418}
419
420int	time_adjusted;			/* set if an adjustment is made */
421
422/* ARGSUSED */
423int
424sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
425    register_t *retval)
426{
427	/* {
428		syscallarg(const struct timeval *) delta;
429		syscallarg(struct timeval *) olddelta;
430	} */
431	int error;
432
433	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
434	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
435		return (error);
436
437	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
438}
439
440int
441adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
442{
443	struct timeval atv;
444	int error = 0;
445
446	extern int64_t time_adjtime;  /* in kern_ntptime.c */
447
448	if (olddelta) {
449		atv.tv_sec = time_adjtime / 1000000;
450		atv.tv_usec = time_adjtime % 1000000;
451		if (atv.tv_usec < 0) {
452			atv.tv_usec += 1000000;
453			atv.tv_sec--;
454		}
455		error = copyout(&atv, olddelta, sizeof(struct timeval));
456		if (error)
457			return (error);
458	}
459
460	if (delta) {
461		error = copyin(delta, &atv, sizeof(struct timeval));
462		if (error)
463			return (error);
464
465		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
466			atv.tv_usec;
467
468		if (time_adjtime)
469			/* We need to save the system time during shutdown */
470			time_adjusted |= 1;
471	}
472
473	return error;
474}
475
476/*
477 * Interval timer support. Both the BSD getitimer() family and the POSIX
478 * timer_*() family of routines are supported.
479 *
480 * All timers are kept in an array pointed to by p_timers, which is
481 * allocated on demand - many processes don't use timers at all. The
482 * first three elements in this array are reserved for the BSD timers:
483 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
484 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
485 * syscall.
486 *
487 * Realtime timers are kept in the ptimer structure as an absolute
488 * time; virtual time timers are kept as a linked list of deltas.
489 * Virtual time timers are processed in the hardclock() routine of
490 * kern_clock.c.  The real time timer is processed by a callout
491 * routine, called from the softclock() routine.  Since a callout may
492 * be delayed in real time due to interrupt processing in the system,
493 * it is possible for the real time timeout routine (realtimeexpire,
494 * given below), to be delayed in real time past when it is supposed
495 * to occur.  It does not suffice, therefore, to reload the real timer
496 * .it_value from the real time timers .it_interval.  Rather, we
497 * compute the next time in absolute time the timer should go off.  */
498
499/* Allocate a POSIX realtime timer. */
500int
501sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
502    register_t *retval)
503{
504	/* {
505		syscallarg(clockid_t) clock_id;
506		syscallarg(struct sigevent *) evp;
507		syscallarg(timer_t *) timerid;
508	} */
509
510	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
511	    SCARG(uap, evp), copyin, l);
512}
513
514int
515timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
516    copyin_t fetch_event, struct lwp *l)
517{
518	int error;
519	timer_t timerid;
520	struct ptimer *pt;
521	struct proc *p;
522
523	p = l->l_proc;
524
525	if (id < CLOCK_REALTIME ||
526	    id > CLOCK_PROF)
527		return (EINVAL);
528
529	if (p->p_timers == NULL)
530		timers_alloc(p);
531
532	/* Find a free timer slot, skipping those reserved for setitimer(). */
533	for (timerid = 3; timerid < TIMER_MAX; timerid++)
534		if (p->p_timers->pts_timers[timerid] == NULL)
535			break;
536
537	if (timerid == TIMER_MAX)
538		return EAGAIN;
539
540	pt = pool_get(&ptimer_pool, PR_WAITOK);
541	if (evp) {
542		if (((error =
543		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
544		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
545			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
546			pool_put(&ptimer_pool, pt);
547			return (error ? error : EINVAL);
548		}
549	} else {
550		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
551		switch (id) {
552		case CLOCK_REALTIME:
553			pt->pt_ev.sigev_signo = SIGALRM;
554			break;
555		case CLOCK_VIRTUAL:
556			pt->pt_ev.sigev_signo = SIGVTALRM;
557			break;
558		case CLOCK_PROF:
559			pt->pt_ev.sigev_signo = SIGPROF;
560			break;
561		}
562		pt->pt_ev.sigev_value.sival_int = timerid;
563	}
564	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
565	pt->pt_info.ksi_errno = 0;
566	pt->pt_info.ksi_code = 0;
567	pt->pt_info.ksi_pid = p->p_pid;
568	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
569	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
570
571	pt->pt_type = id;
572	pt->pt_proc = p;
573	pt->pt_overruns = 0;
574	pt->pt_poverruns = 0;
575	pt->pt_entry = timerid;
576	timerclear(&pt->pt_time.it_value);
577	if (id == CLOCK_REALTIME)
578		callout_init(&pt->pt_ch, 0);
579	else
580		pt->pt_active = 0;
581
582	p->p_timers->pts_timers[timerid] = pt;
583
584	return copyout(&timerid, tid, sizeof(timerid));
585}
586
587/* Delete a POSIX realtime timer */
588int
589sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
590    register_t *retval)
591{
592	/* {
593		syscallarg(timer_t) timerid;
594	} */
595	struct proc *p = l->l_proc;
596	timer_t timerid;
597	struct ptimer *pt, *ptn;
598	int s;
599
600	timerid = SCARG(uap, timerid);
601
602	if ((p->p_timers == NULL) ||
603	    (timerid < 2) || (timerid >= TIMER_MAX) ||
604	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
605		return (EINVAL);
606
607	if (pt->pt_type == CLOCK_REALTIME) {
608		callout_stop(&pt->pt_ch);
609		callout_destroy(&pt->pt_ch);
610	} else if (pt->pt_active) {
611		s = splclock();
612		ptn = LIST_NEXT(pt, pt_list);
613		LIST_REMOVE(pt, pt_list);
614		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
615			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
616			    &ptn->pt_time.it_value);
617		splx(s);
618	}
619
620	p->p_timers->pts_timers[timerid] = NULL;
621	pool_put(&ptimer_pool, pt);
622
623	return (0);
624}
625
626/*
627 * Set up the given timer. The value in pt->pt_time.it_value is taken
628 * to be an absolute time for CLOCK_REALTIME timers and a relative
629 * time for virtual timers.
630 * Must be called at splclock().
631 */
632void
633timer_settime(struct ptimer *pt)
634{
635	struct ptimer *ptn, *pptn;
636	struct ptlist *ptl;
637
638	if (pt->pt_type == CLOCK_REALTIME) {
639		callout_stop(&pt->pt_ch);
640		if (timerisset(&pt->pt_time.it_value)) {
641			/*
642			 * Don't need to check hzto() return value, here.
643			 * callout_reset() does it for us.
644			 */
645			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
646			    realtimerexpire, pt);
647		}
648	} else {
649		if (pt->pt_active) {
650			ptn = LIST_NEXT(pt, pt_list);
651			LIST_REMOVE(pt, pt_list);
652			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
653				timeradd(&pt->pt_time.it_value,
654				    &ptn->pt_time.it_value,
655				    &ptn->pt_time.it_value);
656		}
657		if (timerisset(&pt->pt_time.it_value)) {
658			if (pt->pt_type == CLOCK_VIRTUAL)
659				ptl = &pt->pt_proc->p_timers->pts_virtual;
660			else
661				ptl = &pt->pt_proc->p_timers->pts_prof;
662
663			for (ptn = LIST_FIRST(ptl), pptn = NULL;
664			     ptn && timercmp(&pt->pt_time.it_value,
665				 &ptn->pt_time.it_value, >);
666			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
667				timersub(&pt->pt_time.it_value,
668				    &ptn->pt_time.it_value,
669				    &pt->pt_time.it_value);
670
671			if (pptn)
672				LIST_INSERT_AFTER(pptn, pt, pt_list);
673			else
674				LIST_INSERT_HEAD(ptl, pt, pt_list);
675
676			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
677				timersub(&ptn->pt_time.it_value,
678				    &pt->pt_time.it_value,
679				    &ptn->pt_time.it_value);
680
681			pt->pt_active = 1;
682		} else
683			pt->pt_active = 0;
684	}
685}
686
687void
688timer_gettime(struct ptimer *pt, struct itimerval *aitv)
689{
690	struct timeval now;
691	struct ptimer *ptn;
692
693	*aitv = pt->pt_time;
694	if (pt->pt_type == CLOCK_REALTIME) {
695		/*
696		 * Convert from absolute to relative time in .it_value
697		 * part of real time timer.  If time for real time
698		 * timer has passed return 0, else return difference
699		 * between current time and time for the timer to go
700		 * off.
701		 */
702		if (timerisset(&aitv->it_value)) {
703			getmicrotime(&now);
704			if (timercmp(&aitv->it_value, &now, <))
705				timerclear(&aitv->it_value);
706			else
707				timersub(&aitv->it_value, &now,
708				    &aitv->it_value);
709		}
710	} else if (pt->pt_active) {
711		if (pt->pt_type == CLOCK_VIRTUAL)
712			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
713		else
714			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
715		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
716			timeradd(&aitv->it_value,
717			    &ptn->pt_time.it_value, &aitv->it_value);
718		KASSERT(ptn != NULL); /* pt should be findable on the list */
719	} else
720		timerclear(&aitv->it_value);
721}
722
723
724
725/* Set and arm a POSIX realtime timer */
726int
727sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
728    register_t *retval)
729{
730	/* {
731		syscallarg(timer_t) timerid;
732		syscallarg(int) flags;
733		syscallarg(const struct itimerspec *) value;
734		syscallarg(struct itimerspec *) ovalue;
735	} */
736	int error;
737	struct itimerspec value, ovalue, *ovp = NULL;
738
739	if ((error = copyin(SCARG(uap, value), &value,
740	    sizeof(struct itimerspec))) != 0)
741		return (error);
742
743	if (SCARG(uap, ovalue))
744		ovp = &ovalue;
745
746	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
747	    SCARG(uap, flags), l->l_proc)) != 0)
748		return error;
749
750	if (ovp)
751		return copyout(&ovalue, SCARG(uap, ovalue),
752		    sizeof(struct itimerspec));
753	return 0;
754}
755
756int
757dotimer_settime(int timerid, struct itimerspec *value,
758    struct itimerspec *ovalue, int flags, struct proc *p)
759{
760	struct timeval now;
761	struct itimerval val, oval;
762	struct ptimer *pt;
763	int s;
764
765	if ((p->p_timers == NULL) ||
766	    (timerid < 2) || (timerid >= TIMER_MAX) ||
767	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
768		return (EINVAL);
769
770	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
771	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
772	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
773		return (EINVAL);
774
775	oval = pt->pt_time;
776	pt->pt_time = val;
777
778	s = splclock();
779	/*
780	 * If we've been passed a relative time for a realtime timer,
781	 * convert it to absolute; if an absolute time for a virtual
782	 * timer, convert it to relative and make sure we don't set it
783	 * to zero, which would cancel the timer, or let it go
784	 * negative, which would confuse the comparison tests.
785	 */
786	if (timerisset(&pt->pt_time.it_value)) {
787		if (pt->pt_type == CLOCK_REALTIME) {
788			if ((flags & TIMER_ABSTIME) == 0) {
789				getmicrotime(&now);
790				timeradd(&pt->pt_time.it_value, &now,
791				    &pt->pt_time.it_value);
792			}
793		} else {
794			if ((flags & TIMER_ABSTIME) != 0) {
795				getmicrotime(&now);
796				timersub(&pt->pt_time.it_value, &now,
797				    &pt->pt_time.it_value);
798				if (!timerisset(&pt->pt_time.it_value) ||
799				    pt->pt_time.it_value.tv_sec < 0) {
800					pt->pt_time.it_value.tv_sec = 0;
801					pt->pt_time.it_value.tv_usec = 1;
802				}
803			}
804		}
805	}
806
807	timer_settime(pt);
808	splx(s);
809
810	if (ovalue) {
811		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
812		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
813	}
814
815	return (0);
816}
817
818/* Return the time remaining until a POSIX timer fires. */
819int
820sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
821    register_t *retval)
822{
823	/* {
824		syscallarg(timer_t) timerid;
825		syscallarg(struct itimerspec *) value;
826	} */
827	struct itimerspec its;
828	int error;
829
830	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
831	    &its)) != 0)
832		return error;
833
834	return copyout(&its, SCARG(uap, value), sizeof(its));
835}
836
837int
838dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
839{
840	int s;
841	struct ptimer *pt;
842	struct itimerval aitv;
843
844	if ((p->p_timers == NULL) ||
845	    (timerid < 2) || (timerid >= TIMER_MAX) ||
846	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
847		return (EINVAL);
848
849	s = splclock();
850	timer_gettime(pt, &aitv);
851	splx(s);
852
853	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
854	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
855
856	return 0;
857}
858
859/*
860 * Return the count of the number of times a periodic timer expired
861 * while a notification was already pending. The counter is reset when
862 * a timer expires and a notification can be posted.
863 */
864int
865sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
866    register_t *retval)
867{
868	/* {
869		syscallarg(timer_t) timerid;
870	} */
871	struct proc *p = l->l_proc;
872	int timerid;
873	struct ptimer *pt;
874
875	timerid = SCARG(uap, timerid);
876
877	if ((p->p_timers == NULL) ||
878	    (timerid < 2) || (timerid >= TIMER_MAX) ||
879	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
880		return (EINVAL);
881
882	*retval = pt->pt_poverruns;
883
884	return (0);
885}
886
887/*
888 * Real interval timer expired:
889 * send process whose timer expired an alarm signal.
890 * If time is not set up to reload, then just return.
891 * Else compute next time timer should go off which is > current time.
892 * This is where delay in processing this timeout causes multiple
893 * SIGALRM calls to be compressed into one.
894 */
895void
896realtimerexpire(void *arg)
897{
898	struct timeval now;
899	struct ptimer *pt;
900	int s;
901
902	pt = (struct ptimer *)arg;
903
904	itimerfire(pt);
905
906	if (!timerisset(&pt->pt_time.it_interval)) {
907		timerclear(&pt->pt_time.it_value);
908		return;
909	}
910	for (;;) {
911		s = splclock();	/* XXX need spl now? */
912		timeradd(&pt->pt_time.it_value,
913		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
914		getmicrotime(&now);
915		if (timercmp(&pt->pt_time.it_value, &now, >)) {
916			/*
917			 * Don't need to check hzto() return value, here.
918			 * callout_reset() does it for us.
919			 */
920			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
921			    realtimerexpire, pt);
922			splx(s);
923			return;
924		}
925		splx(s);
926		pt->pt_overruns++;
927	}
928}
929
930/* BSD routine to get the value of an interval timer. */
931/* ARGSUSED */
932int
933sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
934    register_t *retval)
935{
936	/* {
937		syscallarg(int) which;
938		syscallarg(struct itimerval *) itv;
939	} */
940	struct proc *p = l->l_proc;
941	struct itimerval aitv;
942	int error;
943
944	error = dogetitimer(p, SCARG(uap, which), &aitv);
945	if (error)
946		return error;
947	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
948}
949
950int
951dogetitimer(struct proc *p, int which, struct itimerval *itvp)
952{
953	int s;
954
955	if ((u_int)which > ITIMER_PROF)
956		return (EINVAL);
957
958	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
959		timerclear(&itvp->it_value);
960		timerclear(&itvp->it_interval);
961	} else {
962		s = splclock();
963		timer_gettime(p->p_timers->pts_timers[which], itvp);
964		splx(s);
965	}
966
967	return 0;
968}
969
970/* BSD routine to set/arm an interval timer. */
971/* ARGSUSED */
972int
973sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
974    register_t *retval)
975{
976	/* {
977		syscallarg(int) which;
978		syscallarg(const struct itimerval *) itv;
979		syscallarg(struct itimerval *) oitv;
980	} */
981	struct proc *p = l->l_proc;
982	int which = SCARG(uap, which);
983	struct sys_getitimer_args getargs;
984	const struct itimerval *itvp;
985	struct itimerval aitv;
986	int error;
987
988	if ((u_int)which > ITIMER_PROF)
989		return (EINVAL);
990	itvp = SCARG(uap, itv);
991	if (itvp &&
992	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
993		return (error);
994	if (SCARG(uap, oitv) != NULL) {
995		SCARG(&getargs, which) = which;
996		SCARG(&getargs, itv) = SCARG(uap, oitv);
997		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
998			return (error);
999	}
1000	if (itvp == 0)
1001		return (0);
1002
1003	return dosetitimer(p, which, &aitv);
1004}
1005
1006int
1007dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1008{
1009	struct timeval now;
1010	struct ptimer *pt;
1011	int s;
1012
1013	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1014		return (EINVAL);
1015
1016	/*
1017	 * Don't bother allocating data structures if the process just
1018	 * wants to clear the timer.
1019	 */
1020	if (!timerisset(&itvp->it_value) &&
1021	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1022		return (0);
1023
1024	if (p->p_timers == NULL)
1025		timers_alloc(p);
1026	if (p->p_timers->pts_timers[which] == NULL) {
1027		pt = pool_get(&ptimer_pool, PR_WAITOK);
1028		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1029		pt->pt_ev.sigev_value.sival_int = which;
1030		pt->pt_overruns = 0;
1031		pt->pt_proc = p;
1032		pt->pt_type = which;
1033		pt->pt_entry = which;
1034		switch (which) {
1035		case ITIMER_REAL:
1036			callout_init(&pt->pt_ch, 0);
1037			pt->pt_ev.sigev_signo = SIGALRM;
1038			break;
1039		case ITIMER_VIRTUAL:
1040			pt->pt_active = 0;
1041			pt->pt_ev.sigev_signo = SIGVTALRM;
1042			break;
1043		case ITIMER_PROF:
1044			pt->pt_active = 0;
1045			pt->pt_ev.sigev_signo = SIGPROF;
1046			break;
1047		}
1048	} else
1049		pt = p->p_timers->pts_timers[which];
1050
1051	pt->pt_time = *itvp;
1052	p->p_timers->pts_timers[which] = pt;
1053
1054	s = splclock();
1055	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1056		/* Convert to absolute time */
1057		/* XXX need to wrap in splclock for timecounters case? */
1058		getmicrotime(&now);
1059		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1060	}
1061	timer_settime(pt);
1062	splx(s);
1063
1064	return (0);
1065}
1066
1067/* Utility routines to manage the array of pointers to timers. */
1068void
1069timers_alloc(struct proc *p)
1070{
1071	int i;
1072	struct ptimers *pts;
1073
1074	pts = pool_get(&ptimers_pool, PR_WAITOK);
1075	LIST_INIT(&pts->pts_virtual);
1076	LIST_INIT(&pts->pts_prof);
1077	for (i = 0; i < TIMER_MAX; i++)
1078		pts->pts_timers[i] = NULL;
1079	pts->pts_fired = 0;
1080	p->p_timers = pts;
1081}
1082
1083/*
1084 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1085 * then clean up all timers and free all the data structures. If
1086 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1087 * by timer_create(), not the BSD setitimer() timers, and only free the
1088 * structure if none of those remain.
1089 */
1090void
1091timers_free(struct proc *p, int which)
1092{
1093	int i, s;
1094	struct ptimers *pts;
1095	struct ptimer *pt, *ptn;
1096	struct timeval tv;
1097
1098	if (p->p_timers) {
1099		pts = p->p_timers;
1100		if (which == TIMERS_ALL)
1101			i = 0;
1102		else {
1103			s = splclock();
1104			timerclear(&tv);
1105			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1106			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1107			     ptn = LIST_NEXT(ptn, pt_list))
1108				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1109			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1110			if (ptn) {
1111				timeradd(&tv, &ptn->pt_time.it_value,
1112				    &ptn->pt_time.it_value);
1113				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1114				    ptn, pt_list);
1115			}
1116
1117			timerclear(&tv);
1118			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1119			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1120			     ptn = LIST_NEXT(ptn, pt_list))
1121				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1122			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1123			if (ptn) {
1124				timeradd(&tv, &ptn->pt_time.it_value,
1125				    &ptn->pt_time.it_value);
1126				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1127				    pt_list);
1128			}
1129			splx(s);
1130			i = 3;
1131		}
1132		for ( ; i < TIMER_MAX; i++)
1133			if ((pt = pts->pts_timers[i]) != NULL) {
1134				if (pt->pt_type == CLOCK_REALTIME) {
1135					callout_stop(&pt->pt_ch);
1136					callout_destroy(&pt->pt_ch);
1137				}
1138				pts->pts_timers[i] = NULL;
1139				pool_put(&ptimer_pool, pt);
1140			}
1141		if ((pts->pts_timers[0] == NULL) &&
1142		    (pts->pts_timers[1] == NULL) &&
1143		    (pts->pts_timers[2] == NULL)) {
1144			p->p_timers = NULL;
1145			pool_put(&ptimers_pool, pts);
1146		}
1147	}
1148}
1149
1150/*
1151 * Decrement an interval timer by a specified number
1152 * of microseconds, which must be less than a second,
1153 * i.e. < 1000000.  If the timer expires, then reload
1154 * it.  In this case, carry over (usec - old value) to
1155 * reduce the value reloaded into the timer so that
1156 * the timer does not drift.  This routine assumes
1157 * that it is called in a context where the timers
1158 * on which it is operating cannot change in value.
1159 */
1160int
1161itimerdecr(struct ptimer *pt, int usec)
1162{
1163	struct itimerval *itp;
1164
1165	itp = &pt->pt_time;
1166	if (itp->it_value.tv_usec < usec) {
1167		if (itp->it_value.tv_sec == 0) {
1168			/* expired, and already in next interval */
1169			usec -= itp->it_value.tv_usec;
1170			goto expire;
1171		}
1172		itp->it_value.tv_usec += 1000000;
1173		itp->it_value.tv_sec--;
1174	}
1175	itp->it_value.tv_usec -= usec;
1176	usec = 0;
1177	if (timerisset(&itp->it_value))
1178		return (1);
1179	/* expired, exactly at end of interval */
1180expire:
1181	if (timerisset(&itp->it_interval)) {
1182		itp->it_value = itp->it_interval;
1183		itp->it_value.tv_usec -= usec;
1184		if (itp->it_value.tv_usec < 0) {
1185			itp->it_value.tv_usec += 1000000;
1186			itp->it_value.tv_sec--;
1187		}
1188		timer_settime(pt);
1189	} else
1190		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1191	return (0);
1192}
1193
1194void
1195itimerfire(struct ptimer *pt)
1196{
1197	struct proc *p = pt->pt_proc;
1198
1199	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1200		/*
1201		 * No RT signal infrastructure exists at this time;
1202		 * just post the signal number and throw away the
1203		 * value.
1204		 */
1205		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1206			pt->pt_overruns++;
1207		else {
1208			ksiginfo_t ksi;
1209			KSI_INIT(&ksi);
1210			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1211			ksi.ksi_code = SI_TIMER;
1212			ksi.ksi_value = pt->pt_ev.sigev_value;
1213			pt->pt_poverruns = pt->pt_overruns;
1214			pt->pt_overruns = 0;
1215			mutex_enter(&proclist_mutex);
1216			kpsignal(p, &ksi, NULL);
1217			mutex_exit(&proclist_mutex);
1218		}
1219	}
1220}
1221
1222/*
1223 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1224 * for usage and rationale.
1225 */
1226int
1227ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1228{
1229	struct timeval tv, delta;
1230	int rv = 0;
1231
1232	getmicrouptime(&tv);
1233	timersub(&tv, lasttime, &delta);
1234
1235	/*
1236	 * check for 0,0 is so that the message will be seen at least once,
1237	 * even if interval is huge.
1238	 */
1239	if (timercmp(&delta, mininterval, >=) ||
1240	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1241		*lasttime = tv;
1242		rv = 1;
1243	}
1244
1245	return (rv);
1246}
1247
1248/*
1249 * ppsratecheck(): packets (or events) per second limitation.
1250 */
1251int
1252ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1253{
1254	struct timeval tv, delta;
1255	int rv;
1256
1257	getmicrouptime(&tv);
1258	timersub(&tv, lasttime, &delta);
1259
1260	/*
1261	 * check for 0,0 is so that the message will be seen at least once.
1262	 * if more than one second have passed since the last update of
1263	 * lasttime, reset the counter.
1264	 *
1265	 * we do increment *curpps even in *curpps < maxpps case, as some may
1266	 * try to use *curpps for stat purposes as well.
1267	 */
1268	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1269	    delta.tv_sec >= 1) {
1270		*lasttime = tv;
1271		*curpps = 0;
1272	}
1273	if (maxpps < 0)
1274		rv = 1;
1275	else if (*curpps < maxpps)
1276		rv = 1;
1277	else
1278		rv = 0;
1279
1280#if 1 /*DIAGNOSTIC?*/
1281	/* be careful about wrap-around */
1282	if (*curpps + 1 > *curpps)
1283		*curpps = *curpps + 1;
1284#else
1285	/*
1286	 * assume that there's not too many calls to this function.
1287	 * not sure if the assumption holds, as it depends on *caller's*
1288	 * behavior, not the behavior of this function.
1289	 * IMHO it is wrong to make assumption on the caller's behavior,
1290	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1291	 */
1292	*curpps = *curpps + 1;
1293#endif
1294
1295	return (rv);
1296}
1297