kern_time.c revision 1.140
1/*	$NetBSD: kern_time.c,v 1.140 2008/02/19 14:21:56 yamt Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.140 2008/02/19 14:21:56 yamt Exp $");
72
73#include <sys/param.h>
74#include <sys/resourcevar.h>
75#include <sys/kernel.h>
76#include <sys/systm.h>
77#include <sys/proc.h>
78#include <sys/vnode.h>
79#include <sys/signalvar.h>
80#include <sys/syslog.h>
81#include <sys/timetc.h>
82#include <sys/kauth.h>
83
84#include <sys/mount.h>
85#include <sys/syscallargs.h>
86
87#include <uvm/uvm_extern.h>
88
89#include <sys/cpu.h>
90
91kmutex_t	time_lock;
92
93POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
94    &pool_allocator_nointr, IPL_NONE);
95POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
96    &pool_allocator_nointr, IPL_NONE);
97
98/*
99 * Initialize timekeeping.
100 */
101void
102time_init(void)
103{
104
105	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
106}
107
108/* Time of day and interval timer support.
109 *
110 * These routines provide the kernel entry points to get and set
111 * the time-of-day and per-process interval timers.  Subroutines
112 * here provide support for adding and subtracting timeval structures
113 * and decrementing interval timers, optionally reloading the interval
114 * timers when they expire.
115 */
116
117/* This function is used by clock_settime and settimeofday */
118static int
119settime1(struct proc *p, struct timespec *ts, bool check_kauth)
120{
121	struct timeval delta, tv;
122	struct timeval now;
123	struct timespec ts1;
124	struct bintime btdelta;
125	lwp_t *l;
126	int s;
127
128	TIMESPEC_TO_TIMEVAL(&tv, ts);
129
130	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
131	s = splclock();
132	microtime(&now);
133	timersub(&tv, &now, &delta);
134
135	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
136	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
137	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
138		splx(s);
139		return (EPERM);
140	}
141
142#ifdef notyet
143	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
144		splx(s);
145		return (EPERM);
146	}
147#endif
148
149	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
150	tc_setclock(&ts1);
151
152	timeradd(&boottime, &delta, &boottime);
153
154	/*
155	 * XXXSMP: There is a short race between setting the time above
156	 * and adjusting LWP's run times.  Fixing this properly means
157	 * pausing all CPUs while we adjust the clock.
158	 */
159	timeval2bintime(&delta, &btdelta);
160	mutex_enter(&proclist_lock);
161	LIST_FOREACH(l, &alllwp, l_list) {
162		lwp_lock(l);
163		bintime_add(&l->l_stime, &btdelta);
164		lwp_unlock(l);
165	}
166	mutex_exit(&proclist_lock);
167	resettodr();
168	splx(s);
169
170	return (0);
171}
172
173int
174settime(struct proc *p, struct timespec *ts)
175{
176	return (settime1(p, ts, true));
177}
178
179/* ARGSUSED */
180int
181sys_clock_gettime(struct lwp *l, const struct sys_clock_gettime_args *uap,
182    register_t *retval)
183{
184	/* {
185		syscallarg(clockid_t) clock_id;
186		syscallarg(struct timespec *) tp;
187	} */
188	clockid_t clock_id;
189	struct timespec ats;
190
191	clock_id = SCARG(uap, clock_id);
192	switch (clock_id) {
193	case CLOCK_REALTIME:
194		nanotime(&ats);
195		break;
196	case CLOCK_MONOTONIC:
197		nanouptime(&ats);
198		break;
199	default:
200		return (EINVAL);
201	}
202
203	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
204}
205
206/* ARGSUSED */
207int
208sys_clock_settime(struct lwp *l, const struct sys_clock_settime_args *uap,
209    register_t *retval)
210{
211	/* {
212		syscallarg(clockid_t) clock_id;
213		syscallarg(const struct timespec *) tp;
214	} */
215
216	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
217	    true);
218}
219
220
221int
222clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
223    bool check_kauth)
224{
225	struct timespec ats;
226	int error;
227
228	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
229		return (error);
230
231	switch (clock_id) {
232	case CLOCK_REALTIME:
233		if ((error = settime1(p, &ats, check_kauth)) != 0)
234			return (error);
235		break;
236	case CLOCK_MONOTONIC:
237		return (EINVAL);	/* read-only clock */
238	default:
239		return (EINVAL);
240	}
241
242	return 0;
243}
244
245int
246sys_clock_getres(struct lwp *l, const struct sys_clock_getres_args *uap,
247    register_t *retval)
248{
249	/* {
250		syscallarg(clockid_t) clock_id;
251		syscallarg(struct timespec *) tp;
252	} */
253	clockid_t clock_id;
254	struct timespec ts;
255	int error = 0;
256
257	clock_id = SCARG(uap, clock_id);
258	switch (clock_id) {
259	case CLOCK_REALTIME:
260	case CLOCK_MONOTONIC:
261		ts.tv_sec = 0;
262		if (tc_getfrequency() > 1000000000)
263			ts.tv_nsec = 1;
264		else
265			ts.tv_nsec = 1000000000 / tc_getfrequency();
266		break;
267	default:
268		return (EINVAL);
269	}
270
271	if (SCARG(uap, tp))
272		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
273
274	return error;
275}
276
277/* ARGSUSED */
278int
279sys_nanosleep(struct lwp *l, const struct sys_nanosleep_args *uap,
280    register_t *retval)
281{
282	/* {
283		syscallarg(struct timespec *) rqtp;
284		syscallarg(struct timespec *) rmtp;
285	} */
286	struct timespec rmt, rqt;
287	int error, error1;
288
289	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
290	if (error)
291		return (error);
292
293	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
294	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
295		return error;
296
297	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
298	return error1 ? error1 : error;
299}
300
301int
302nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
303{
304	int error, timo;
305
306	if (itimespecfix(rqt))
307		return (EINVAL);
308
309	timo = tstohz(rqt);
310	/*
311	 * Avoid inadvertantly sleeping forever
312	 */
313	if (timo == 0)
314		timo = 1;
315
316	if (rmt != NULL)
317		getnanouptime(rmt);
318
319	error = kpause("nanoslp", true, timo, NULL);
320	if (error == ERESTART)
321		error = EINTR;
322	if (error == EWOULDBLOCK)
323		error = 0;
324
325	if (rmt != NULL) {
326		struct timespec rmtend;
327
328		getnanouptime(&rmtend);
329
330		timespecsub(&rmtend, rmt, rmt);
331		timespecsub(rqt, rmt, rmt);
332		if (rmt->tv_sec < 0)
333			timespecclear(rmt);
334	}
335
336	return error;
337}
338
339/* ARGSUSED */
340int
341sys_gettimeofday(struct lwp *l, const struct sys_gettimeofday_args *uap,
342    register_t *retval)
343{
344	/* {
345		syscallarg(struct timeval *) tp;
346		syscallarg(void *) tzp;		really "struct timezone *";
347	} */
348	struct timeval atv;
349	int error = 0;
350	struct timezone tzfake;
351
352	if (SCARG(uap, tp)) {
353		microtime(&atv);
354		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
355		if (error)
356			return (error);
357	}
358	if (SCARG(uap, tzp)) {
359		/*
360		 * NetBSD has no kernel notion of time zone, so we just
361		 * fake up a timezone struct and return it if demanded.
362		 */
363		tzfake.tz_minuteswest = 0;
364		tzfake.tz_dsttime = 0;
365		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
366	}
367	return (error);
368}
369
370/* ARGSUSED */
371int
372sys_settimeofday(struct lwp *l, const struct sys_settimeofday_args *uap,
373    register_t *retval)
374{
375	/* {
376		syscallarg(const struct timeval *) tv;
377		syscallarg(const void *) tzp; really "const struct timezone *";
378	} */
379
380	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
381}
382
383int
384settimeofday1(const struct timeval *utv, bool userspace,
385    const void *utzp, struct lwp *l, bool check_kauth)
386{
387	struct timeval atv;
388	struct timespec ts;
389	int error;
390
391	/* Verify all parameters before changing time. */
392
393	/*
394	 * NetBSD has no kernel notion of time zone, and only an
395	 * obsolete program would try to set it, so we log a warning.
396	 */
397	if (utzp)
398		log(LOG_WARNING, "pid %d attempted to set the "
399		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
400
401	if (utv == NULL)
402		return 0;
403
404	if (userspace) {
405		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
406			return error;
407		utv = &atv;
408	}
409
410	TIMEVAL_TO_TIMESPEC(utv, &ts);
411	return settime1(l->l_proc, &ts, check_kauth);
412}
413
414int	time_adjusted;			/* set if an adjustment is made */
415
416/* ARGSUSED */
417int
418sys_adjtime(struct lwp *l, const struct sys_adjtime_args *uap,
419    register_t *retval)
420{
421	/* {
422		syscallarg(const struct timeval *) delta;
423		syscallarg(struct timeval *) olddelta;
424	} */
425	int error;
426
427	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
428	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
429		return (error);
430
431	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
432}
433
434int
435adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
436{
437	struct timeval atv;
438	int error = 0;
439
440	extern int64_t time_adjtime;  /* in kern_ntptime.c */
441
442	if (olddelta) {
443		atv.tv_sec = time_adjtime / 1000000;
444		atv.tv_usec = time_adjtime % 1000000;
445		if (atv.tv_usec < 0) {
446			atv.tv_usec += 1000000;
447			atv.tv_sec--;
448		}
449		error = copyout(&atv, olddelta, sizeof(struct timeval));
450		if (error)
451			return (error);
452	}
453
454	if (delta) {
455		error = copyin(delta, &atv, sizeof(struct timeval));
456		if (error)
457			return (error);
458
459		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
460			atv.tv_usec;
461
462		if (time_adjtime)
463			/* We need to save the system time during shutdown */
464			time_adjusted |= 1;
465	}
466
467	return error;
468}
469
470/*
471 * Interval timer support. Both the BSD getitimer() family and the POSIX
472 * timer_*() family of routines are supported.
473 *
474 * All timers are kept in an array pointed to by p_timers, which is
475 * allocated on demand - many processes don't use timers at all. The
476 * first three elements in this array are reserved for the BSD timers:
477 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
478 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
479 * syscall.
480 *
481 * Realtime timers are kept in the ptimer structure as an absolute
482 * time; virtual time timers are kept as a linked list of deltas.
483 * Virtual time timers are processed in the hardclock() routine of
484 * kern_clock.c.  The real time timer is processed by a callout
485 * routine, called from the softclock() routine.  Since a callout may
486 * be delayed in real time due to interrupt processing in the system,
487 * it is possible for the real time timeout routine (realtimeexpire,
488 * given below), to be delayed in real time past when it is supposed
489 * to occur.  It does not suffice, therefore, to reload the real timer
490 * .it_value from the real time timers .it_interval.  Rather, we
491 * compute the next time in absolute time the timer should go off.  */
492
493/* Allocate a POSIX realtime timer. */
494int
495sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
496    register_t *retval)
497{
498	/* {
499		syscallarg(clockid_t) clock_id;
500		syscallarg(struct sigevent *) evp;
501		syscallarg(timer_t *) timerid;
502	} */
503
504	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
505	    SCARG(uap, evp), copyin, l);
506}
507
508int
509timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
510    copyin_t fetch_event, struct lwp *l)
511{
512	int error;
513	timer_t timerid;
514	struct ptimer *pt;
515	struct proc *p;
516
517	p = l->l_proc;
518
519	if (id < CLOCK_REALTIME ||
520	    id > CLOCK_PROF)
521		return (EINVAL);
522
523	if (p->p_timers == NULL)
524		timers_alloc(p);
525
526	/* Find a free timer slot, skipping those reserved for setitimer(). */
527	for (timerid = 3; timerid < TIMER_MAX; timerid++)
528		if (p->p_timers->pts_timers[timerid] == NULL)
529			break;
530
531	if (timerid == TIMER_MAX)
532		return EAGAIN;
533
534	pt = pool_get(&ptimer_pool, PR_WAITOK);
535	if (evp) {
536		if (((error =
537		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
538		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
539			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
540			pool_put(&ptimer_pool, pt);
541			return (error ? error : EINVAL);
542		}
543	} else {
544		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
545		switch (id) {
546		case CLOCK_REALTIME:
547			pt->pt_ev.sigev_signo = SIGALRM;
548			break;
549		case CLOCK_VIRTUAL:
550			pt->pt_ev.sigev_signo = SIGVTALRM;
551			break;
552		case CLOCK_PROF:
553			pt->pt_ev.sigev_signo = SIGPROF;
554			break;
555		}
556		pt->pt_ev.sigev_value.sival_int = timerid;
557	}
558	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
559	pt->pt_info.ksi_errno = 0;
560	pt->pt_info.ksi_code = 0;
561	pt->pt_info.ksi_pid = p->p_pid;
562	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
563	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
564
565	pt->pt_type = id;
566	pt->pt_proc = p;
567	pt->pt_overruns = 0;
568	pt->pt_poverruns = 0;
569	pt->pt_entry = timerid;
570	timerclear(&pt->pt_time.it_value);
571	if (id == CLOCK_REALTIME)
572		callout_init(&pt->pt_ch, 0);
573	else
574		pt->pt_active = 0;
575
576	p->p_timers->pts_timers[timerid] = pt;
577
578	return copyout(&timerid, tid, sizeof(timerid));
579}
580
581/* Delete a POSIX realtime timer */
582int
583sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
584    register_t *retval)
585{
586	/* {
587		syscallarg(timer_t) timerid;
588	} */
589	struct proc *p = l->l_proc;
590	timer_t timerid;
591	struct ptimer *pt, *ptn;
592	int s;
593
594	timerid = SCARG(uap, timerid);
595
596	if ((p->p_timers == NULL) ||
597	    (timerid < 2) || (timerid >= TIMER_MAX) ||
598	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
599		return (EINVAL);
600
601	if (pt->pt_type == CLOCK_REALTIME) {
602		callout_stop(&pt->pt_ch);
603		callout_destroy(&pt->pt_ch);
604	} else if (pt->pt_active) {
605		s = splclock();
606		ptn = LIST_NEXT(pt, pt_list);
607		LIST_REMOVE(pt, pt_list);
608		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
609			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
610			    &ptn->pt_time.it_value);
611		splx(s);
612	}
613
614	p->p_timers->pts_timers[timerid] = NULL;
615	pool_put(&ptimer_pool, pt);
616
617	return (0);
618}
619
620/*
621 * Set up the given timer. The value in pt->pt_time.it_value is taken
622 * to be an absolute time for CLOCK_REALTIME timers and a relative
623 * time for virtual timers.
624 * Must be called at splclock().
625 */
626void
627timer_settime(struct ptimer *pt)
628{
629	struct ptimer *ptn, *pptn;
630	struct ptlist *ptl;
631
632	if (pt->pt_type == CLOCK_REALTIME) {
633		callout_stop(&pt->pt_ch);
634		if (timerisset(&pt->pt_time.it_value)) {
635			/*
636			 * Don't need to check hzto() return value, here.
637			 * callout_reset() does it for us.
638			 */
639			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
640			    realtimerexpire, pt);
641		}
642	} else {
643		if (pt->pt_active) {
644			ptn = LIST_NEXT(pt, pt_list);
645			LIST_REMOVE(pt, pt_list);
646			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
647				timeradd(&pt->pt_time.it_value,
648				    &ptn->pt_time.it_value,
649				    &ptn->pt_time.it_value);
650		}
651		if (timerisset(&pt->pt_time.it_value)) {
652			if (pt->pt_type == CLOCK_VIRTUAL)
653				ptl = &pt->pt_proc->p_timers->pts_virtual;
654			else
655				ptl = &pt->pt_proc->p_timers->pts_prof;
656
657			for (ptn = LIST_FIRST(ptl), pptn = NULL;
658			     ptn && timercmp(&pt->pt_time.it_value,
659				 &ptn->pt_time.it_value, >);
660			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
661				timersub(&pt->pt_time.it_value,
662				    &ptn->pt_time.it_value,
663				    &pt->pt_time.it_value);
664
665			if (pptn)
666				LIST_INSERT_AFTER(pptn, pt, pt_list);
667			else
668				LIST_INSERT_HEAD(ptl, pt, pt_list);
669
670			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
671				timersub(&ptn->pt_time.it_value,
672				    &pt->pt_time.it_value,
673				    &ptn->pt_time.it_value);
674
675			pt->pt_active = 1;
676		} else
677			pt->pt_active = 0;
678	}
679}
680
681void
682timer_gettime(struct ptimer *pt, struct itimerval *aitv)
683{
684	struct timeval now;
685	struct ptimer *ptn;
686
687	*aitv = pt->pt_time;
688	if (pt->pt_type == CLOCK_REALTIME) {
689		/*
690		 * Convert from absolute to relative time in .it_value
691		 * part of real time timer.  If time for real time
692		 * timer has passed return 0, else return difference
693		 * between current time and time for the timer to go
694		 * off.
695		 */
696		if (timerisset(&aitv->it_value)) {
697			getmicrotime(&now);
698			if (timercmp(&aitv->it_value, &now, <))
699				timerclear(&aitv->it_value);
700			else
701				timersub(&aitv->it_value, &now,
702				    &aitv->it_value);
703		}
704	} else if (pt->pt_active) {
705		if (pt->pt_type == CLOCK_VIRTUAL)
706			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
707		else
708			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
709		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
710			timeradd(&aitv->it_value,
711			    &ptn->pt_time.it_value, &aitv->it_value);
712		KASSERT(ptn != NULL); /* pt should be findable on the list */
713	} else
714		timerclear(&aitv->it_value);
715}
716
717
718
719/* Set and arm a POSIX realtime timer */
720int
721sys_timer_settime(struct lwp *l, const struct sys_timer_settime_args *uap,
722    register_t *retval)
723{
724	/* {
725		syscallarg(timer_t) timerid;
726		syscallarg(int) flags;
727		syscallarg(const struct itimerspec *) value;
728		syscallarg(struct itimerspec *) ovalue;
729	} */
730	int error;
731	struct itimerspec value, ovalue, *ovp = NULL;
732
733	if ((error = copyin(SCARG(uap, value), &value,
734	    sizeof(struct itimerspec))) != 0)
735		return (error);
736
737	if (SCARG(uap, ovalue))
738		ovp = &ovalue;
739
740	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
741	    SCARG(uap, flags), l->l_proc)) != 0)
742		return error;
743
744	if (ovp)
745		return copyout(&ovalue, SCARG(uap, ovalue),
746		    sizeof(struct itimerspec));
747	return 0;
748}
749
750int
751dotimer_settime(int timerid, struct itimerspec *value,
752    struct itimerspec *ovalue, int flags, struct proc *p)
753{
754	struct timeval now;
755	struct itimerval val, oval;
756	struct ptimer *pt;
757	int s;
758
759	if ((p->p_timers == NULL) ||
760	    (timerid < 2) || (timerid >= TIMER_MAX) ||
761	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
762		return (EINVAL);
763
764	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
765	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
766	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
767		return (EINVAL);
768
769	oval = pt->pt_time;
770	pt->pt_time = val;
771
772	s = splclock();
773	/*
774	 * If we've been passed a relative time for a realtime timer,
775	 * convert it to absolute; if an absolute time for a virtual
776	 * timer, convert it to relative and make sure we don't set it
777	 * to zero, which would cancel the timer, or let it go
778	 * negative, which would confuse the comparison tests.
779	 */
780	if (timerisset(&pt->pt_time.it_value)) {
781		if (pt->pt_type == CLOCK_REALTIME) {
782			if ((flags & TIMER_ABSTIME) == 0) {
783				getmicrotime(&now);
784				timeradd(&pt->pt_time.it_value, &now,
785				    &pt->pt_time.it_value);
786			}
787		} else {
788			if ((flags & TIMER_ABSTIME) != 0) {
789				getmicrotime(&now);
790				timersub(&pt->pt_time.it_value, &now,
791				    &pt->pt_time.it_value);
792				if (!timerisset(&pt->pt_time.it_value) ||
793				    pt->pt_time.it_value.tv_sec < 0) {
794					pt->pt_time.it_value.tv_sec = 0;
795					pt->pt_time.it_value.tv_usec = 1;
796				}
797			}
798		}
799	}
800
801	timer_settime(pt);
802	splx(s);
803
804	if (ovalue) {
805		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
806		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
807	}
808
809	return (0);
810}
811
812/* Return the time remaining until a POSIX timer fires. */
813int
814sys_timer_gettime(struct lwp *l, const struct sys_timer_gettime_args *uap,
815    register_t *retval)
816{
817	/* {
818		syscallarg(timer_t) timerid;
819		syscallarg(struct itimerspec *) value;
820	} */
821	struct itimerspec its;
822	int error;
823
824	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
825	    &its)) != 0)
826		return error;
827
828	return copyout(&its, SCARG(uap, value), sizeof(its));
829}
830
831int
832dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
833{
834	int s;
835	struct ptimer *pt;
836	struct itimerval aitv;
837
838	if ((p->p_timers == NULL) ||
839	    (timerid < 2) || (timerid >= TIMER_MAX) ||
840	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
841		return (EINVAL);
842
843	s = splclock();
844	timer_gettime(pt, &aitv);
845	splx(s);
846
847	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
848	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
849
850	return 0;
851}
852
853/*
854 * Return the count of the number of times a periodic timer expired
855 * while a notification was already pending. The counter is reset when
856 * a timer expires and a notification can be posted.
857 */
858int
859sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
860    register_t *retval)
861{
862	/* {
863		syscallarg(timer_t) timerid;
864	} */
865	struct proc *p = l->l_proc;
866	int timerid;
867	struct ptimer *pt;
868
869	timerid = SCARG(uap, timerid);
870
871	if ((p->p_timers == NULL) ||
872	    (timerid < 2) || (timerid >= TIMER_MAX) ||
873	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
874		return (EINVAL);
875
876	*retval = pt->pt_poverruns;
877
878	return (0);
879}
880
881/*
882 * Real interval timer expired:
883 * send process whose timer expired an alarm signal.
884 * If time is not set up to reload, then just return.
885 * Else compute next time timer should go off which is > current time.
886 * This is where delay in processing this timeout causes multiple
887 * SIGALRM calls to be compressed into one.
888 */
889void
890realtimerexpire(void *arg)
891{
892	struct timeval now;
893	struct ptimer *pt;
894	int s;
895
896	pt = (struct ptimer *)arg;
897
898	itimerfire(pt);
899
900	if (!timerisset(&pt->pt_time.it_interval)) {
901		timerclear(&pt->pt_time.it_value);
902		return;
903	}
904	for (;;) {
905		s = splclock();	/* XXX need spl now? */
906		timeradd(&pt->pt_time.it_value,
907		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
908		getmicrotime(&now);
909		if (timercmp(&pt->pt_time.it_value, &now, >)) {
910			/*
911			 * Don't need to check hzto() return value, here.
912			 * callout_reset() does it for us.
913			 */
914			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
915			    realtimerexpire, pt);
916			splx(s);
917			return;
918		}
919		splx(s);
920		pt->pt_overruns++;
921	}
922}
923
924/* BSD routine to get the value of an interval timer. */
925/* ARGSUSED */
926int
927sys_getitimer(struct lwp *l, const struct sys_getitimer_args *uap,
928    register_t *retval)
929{
930	/* {
931		syscallarg(int) which;
932		syscallarg(struct itimerval *) itv;
933	} */
934	struct proc *p = l->l_proc;
935	struct itimerval aitv;
936	int error;
937
938	error = dogetitimer(p, SCARG(uap, which), &aitv);
939	if (error)
940		return error;
941	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
942}
943
944int
945dogetitimer(struct proc *p, int which, struct itimerval *itvp)
946{
947	int s;
948
949	if ((u_int)which > ITIMER_PROF)
950		return (EINVAL);
951
952	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
953		timerclear(&itvp->it_value);
954		timerclear(&itvp->it_interval);
955	} else {
956		s = splclock();
957		timer_gettime(p->p_timers->pts_timers[which], itvp);
958		splx(s);
959	}
960
961	return 0;
962}
963
964/* BSD routine to set/arm an interval timer. */
965/* ARGSUSED */
966int
967sys_setitimer(struct lwp *l, const struct sys_setitimer_args *uap,
968    register_t *retval)
969{
970	/* {
971		syscallarg(int) which;
972		syscallarg(const struct itimerval *) itv;
973		syscallarg(struct itimerval *) oitv;
974	} */
975	struct proc *p = l->l_proc;
976	int which = SCARG(uap, which);
977	struct sys_getitimer_args getargs;
978	const struct itimerval *itvp;
979	struct itimerval aitv;
980	int error;
981
982	if ((u_int)which > ITIMER_PROF)
983		return (EINVAL);
984	itvp = SCARG(uap, itv);
985	if (itvp &&
986	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
987		return (error);
988	if (SCARG(uap, oitv) != NULL) {
989		SCARG(&getargs, which) = which;
990		SCARG(&getargs, itv) = SCARG(uap, oitv);
991		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
992			return (error);
993	}
994	if (itvp == 0)
995		return (0);
996
997	return dosetitimer(p, which, &aitv);
998}
999
1000int
1001dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1002{
1003	struct timeval now;
1004	struct ptimer *pt;
1005	int s;
1006
1007	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1008		return (EINVAL);
1009
1010	/*
1011	 * Don't bother allocating data structures if the process just
1012	 * wants to clear the timer.
1013	 */
1014	if (!timerisset(&itvp->it_value) &&
1015	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1016		return (0);
1017
1018	if (p->p_timers == NULL)
1019		timers_alloc(p);
1020	if (p->p_timers->pts_timers[which] == NULL) {
1021		pt = pool_get(&ptimer_pool, PR_WAITOK);
1022		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1023		pt->pt_ev.sigev_value.sival_int = which;
1024		pt->pt_overruns = 0;
1025		pt->pt_proc = p;
1026		pt->pt_type = which;
1027		pt->pt_entry = which;
1028		switch (which) {
1029		case ITIMER_REAL:
1030			callout_init(&pt->pt_ch, 0);
1031			pt->pt_ev.sigev_signo = SIGALRM;
1032			break;
1033		case ITIMER_VIRTUAL:
1034			pt->pt_active = 0;
1035			pt->pt_ev.sigev_signo = SIGVTALRM;
1036			break;
1037		case ITIMER_PROF:
1038			pt->pt_active = 0;
1039			pt->pt_ev.sigev_signo = SIGPROF;
1040			break;
1041		}
1042	} else
1043		pt = p->p_timers->pts_timers[which];
1044
1045	pt->pt_time = *itvp;
1046	p->p_timers->pts_timers[which] = pt;
1047
1048	s = splclock();
1049	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1050		/* Convert to absolute time */
1051		/* XXX need to wrap in splclock for timecounters case? */
1052		getmicrotime(&now);
1053		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1054	}
1055	timer_settime(pt);
1056	splx(s);
1057
1058	return (0);
1059}
1060
1061/* Utility routines to manage the array of pointers to timers. */
1062void
1063timers_alloc(struct proc *p)
1064{
1065	int i;
1066	struct ptimers *pts;
1067
1068	pts = pool_get(&ptimers_pool, PR_WAITOK);
1069	LIST_INIT(&pts->pts_virtual);
1070	LIST_INIT(&pts->pts_prof);
1071	for (i = 0; i < TIMER_MAX; i++)
1072		pts->pts_timers[i] = NULL;
1073	pts->pts_fired = 0;
1074	p->p_timers = pts;
1075}
1076
1077/*
1078 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1079 * then clean up all timers and free all the data structures. If
1080 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1081 * by timer_create(), not the BSD setitimer() timers, and only free the
1082 * structure if none of those remain.
1083 */
1084void
1085timers_free(struct proc *p, int which)
1086{
1087	int i, s;
1088	struct ptimers *pts;
1089	struct ptimer *pt, *ptn;
1090	struct timeval tv;
1091
1092	if (p->p_timers) {
1093		pts = p->p_timers;
1094		if (which == TIMERS_ALL)
1095			i = 0;
1096		else {
1097			s = splclock();
1098			timerclear(&tv);
1099			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1100			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1101			     ptn = LIST_NEXT(ptn, pt_list))
1102				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1103			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1104			if (ptn) {
1105				timeradd(&tv, &ptn->pt_time.it_value,
1106				    &ptn->pt_time.it_value);
1107				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1108				    ptn, pt_list);
1109			}
1110
1111			timerclear(&tv);
1112			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1113			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1114			     ptn = LIST_NEXT(ptn, pt_list))
1115				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1116			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1117			if (ptn) {
1118				timeradd(&tv, &ptn->pt_time.it_value,
1119				    &ptn->pt_time.it_value);
1120				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1121				    pt_list);
1122			}
1123			splx(s);
1124			i = 3;
1125		}
1126		for ( ; i < TIMER_MAX; i++)
1127			if ((pt = pts->pts_timers[i]) != NULL) {
1128				if (pt->pt_type == CLOCK_REALTIME) {
1129					callout_stop(&pt->pt_ch);
1130					callout_destroy(&pt->pt_ch);
1131				}
1132				pts->pts_timers[i] = NULL;
1133				pool_put(&ptimer_pool, pt);
1134			}
1135		if ((pts->pts_timers[0] == NULL) &&
1136		    (pts->pts_timers[1] == NULL) &&
1137		    (pts->pts_timers[2] == NULL)) {
1138			p->p_timers = NULL;
1139			pool_put(&ptimers_pool, pts);
1140		}
1141	}
1142}
1143
1144/*
1145 * Decrement an interval timer by a specified number
1146 * of microseconds, which must be less than a second,
1147 * i.e. < 1000000.  If the timer expires, then reload
1148 * it.  In this case, carry over (usec - old value) to
1149 * reduce the value reloaded into the timer so that
1150 * the timer does not drift.  This routine assumes
1151 * that it is called in a context where the timers
1152 * on which it is operating cannot change in value.
1153 */
1154int
1155itimerdecr(struct ptimer *pt, int usec)
1156{
1157	struct itimerval *itp;
1158
1159	itp = &pt->pt_time;
1160	if (itp->it_value.tv_usec < usec) {
1161		if (itp->it_value.tv_sec == 0) {
1162			/* expired, and already in next interval */
1163			usec -= itp->it_value.tv_usec;
1164			goto expire;
1165		}
1166		itp->it_value.tv_usec += 1000000;
1167		itp->it_value.tv_sec--;
1168	}
1169	itp->it_value.tv_usec -= usec;
1170	usec = 0;
1171	if (timerisset(&itp->it_value))
1172		return (1);
1173	/* expired, exactly at end of interval */
1174expire:
1175	if (timerisset(&itp->it_interval)) {
1176		itp->it_value = itp->it_interval;
1177		itp->it_value.tv_usec -= usec;
1178		if (itp->it_value.tv_usec < 0) {
1179			itp->it_value.tv_usec += 1000000;
1180			itp->it_value.tv_sec--;
1181		}
1182		timer_settime(pt);
1183	} else
1184		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1185	return (0);
1186}
1187
1188void
1189itimerfire(struct ptimer *pt)
1190{
1191	struct proc *p = pt->pt_proc;
1192
1193	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1194		/*
1195		 * No RT signal infrastructure exists at this time;
1196		 * just post the signal number and throw away the
1197		 * value.
1198		 */
1199		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1200			pt->pt_overruns++;
1201		else {
1202			ksiginfo_t ksi;
1203			KSI_INIT(&ksi);
1204			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1205			ksi.ksi_code = SI_TIMER;
1206			ksi.ksi_value = pt->pt_ev.sigev_value;
1207			pt->pt_poverruns = pt->pt_overruns;
1208			pt->pt_overruns = 0;
1209			mutex_enter(&proclist_mutex);
1210			kpsignal(p, &ksi, NULL);
1211			mutex_exit(&proclist_mutex);
1212		}
1213	}
1214}
1215
1216/*
1217 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1218 * for usage and rationale.
1219 */
1220int
1221ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1222{
1223	struct timeval tv, delta;
1224	int rv = 0;
1225
1226	getmicrouptime(&tv);
1227	timersub(&tv, lasttime, &delta);
1228
1229	/*
1230	 * check for 0,0 is so that the message will be seen at least once,
1231	 * even if interval is huge.
1232	 */
1233	if (timercmp(&delta, mininterval, >=) ||
1234	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1235		*lasttime = tv;
1236		rv = 1;
1237	}
1238
1239	return (rv);
1240}
1241
1242/*
1243 * ppsratecheck(): packets (or events) per second limitation.
1244 */
1245int
1246ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1247{
1248	struct timeval tv, delta;
1249	int rv;
1250
1251	getmicrouptime(&tv);
1252	timersub(&tv, lasttime, &delta);
1253
1254	/*
1255	 * check for 0,0 is so that the message will be seen at least once.
1256	 * if more than one second have passed since the last update of
1257	 * lasttime, reset the counter.
1258	 *
1259	 * we do increment *curpps even in *curpps < maxpps case, as some may
1260	 * try to use *curpps for stat purposes as well.
1261	 */
1262	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1263	    delta.tv_sec >= 1) {
1264		*lasttime = tv;
1265		*curpps = 0;
1266	}
1267	if (maxpps < 0)
1268		rv = 1;
1269	else if (*curpps < maxpps)
1270		rv = 1;
1271	else
1272		rv = 0;
1273
1274#if 1 /*DIAGNOSTIC?*/
1275	/* be careful about wrap-around */
1276	if (*curpps + 1 > *curpps)
1277		*curpps = *curpps + 1;
1278#else
1279	/*
1280	 * assume that there's not too many calls to this function.
1281	 * not sure if the assumption holds, as it depends on *caller's*
1282	 * behavior, not the behavior of this function.
1283	 * IMHO it is wrong to make assumption on the caller's behavior,
1284	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1285	 */
1286	*curpps = *curpps + 1;
1287#endif
1288
1289	return (rv);
1290}
1291