kern_time.c revision 1.14
1/*	$NetBSD: kern_time.c,v 1.14 1995/03/21 13:33:41 mycroft Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
36 */
37
38#include <sys/param.h>
39#include <sys/resourcevar.h>
40#include <sys/kernel.h>
41#include <sys/systm.h>
42#include <sys/proc.h>
43#include <sys/vnode.h>
44
45#include <sys/mount.h>
46#include <sys/syscallargs.h>
47
48#include <machine/cpu.h>
49
50/*
51 * Time of day and interval timer support.
52 *
53 * These routines provide the kernel entry points to get and set
54 * the time-of-day and per-process interval timers.  Subroutines
55 * here provide support for adding and subtracting timeval structures
56 * and decrementing interval timers, optionally reloading the interval
57 * timers when they expire.
58 */
59
60/* ARGSUSED */
61int
62gettimeofday(p, uap, retval)
63	struct proc *p;
64	register struct gettimeofday_args /* {
65		syscallarg(struct timeval *) tp;
66		syscallarg(struct timezone *) tzp;
67	} */ *uap;
68	register_t *retval;
69{
70	struct timeval atv;
71	int error = 0;
72
73	if (SCARG(uap, tp)) {
74		microtime(&atv);
75		if (error = copyout((caddr_t)&atv, (caddr_t)SCARG(uap, tp),
76		    sizeof (atv)))
77			return (error);
78	}
79	if (SCARG(uap, tzp))
80		error = copyout((caddr_t)&tz, (caddr_t)SCARG(uap, tzp),
81		    sizeof (tz));
82	return (error);
83}
84
85/* ARGSUSED */
86int
87settimeofday(p, uap, retval)
88	struct proc *p;
89	struct settimeofday_args /* {
90		syscallarg(struct timeval *) tv;
91		syscallarg(struct timezone *) tzp;
92	} */ *uap;
93	register_t *retval;
94{
95	struct timeval atv, delta;
96	struct timezone atz;
97	int error, s;
98
99	if (error = suser(p->p_ucred, &p->p_acflag))
100		return (error);
101	/* Verify all parameters before changing time. */
102	if (SCARG(uap, tv) && (error = copyin((caddr_t)SCARG(uap, tv),
103	    (caddr_t)&atv, sizeof(atv))))
104		return (error);
105	if (SCARG(uap, tzp) && (error = copyin((caddr_t)SCARG(uap, tzp),
106	    (caddr_t)&atz, sizeof(atz))))
107		return (error);
108	if (SCARG(uap, tv)) {
109		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
110		s = splclock();
111		timersub(&atv, &time, &delta);
112		time = atv;
113		(void) splsoftclock();
114		timeradd(&boottime, &delta, &boottime);
115		timeradd(&runtime, &delta, &runtime);
116# 		if defined(NFSCLIENT) || defined(NFSSERVER)
117			lease_updatetime(delta.tv_sec);
118#		endif
119		splx(s);
120		resettodr();
121	}
122	if (SCARG(uap, tzp))
123		tz = atz;
124	return (0);
125}
126
127int	tickdelta;			/* current clock skew, us. per tick */
128long	timedelta;			/* unapplied time correction, us. */
129long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
130
131/* ARGSUSED */
132int
133adjtime(p, uap, retval)
134	struct proc *p;
135	register struct adjtime_args /* {
136		syscallarg(struct timeval *) delta;
137		syscallarg(struct timeval *) olddelta;
138	} */ *uap;
139	register_t *retval;
140{
141	struct timeval atv;
142	register long ndelta, ntickdelta, odelta;
143	int s, error;
144
145	if (error = suser(p->p_ucred, &p->p_acflag))
146		return (error);
147	if (error = copyin((caddr_t)SCARG(uap, delta), (caddr_t)&atv,
148	    sizeof(struct timeval)))
149		return (error);
150
151	/*
152	 * Compute the total correction and the rate at which to apply it.
153	 * Round the adjustment down to a whole multiple of the per-tick
154	 * delta, so that after some number of incremental changes in
155	 * hardclock(), tickdelta will become zero, lest the correction
156	 * overshoot and start taking us away from the desired final time.
157	 */
158	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
159	if (ndelta > bigadj)
160		ntickdelta = 10 * tickadj;
161	else
162		ntickdelta = tickadj;
163	if (ndelta % ntickdelta)
164		ndelta = ndelta / ntickdelta * ntickdelta;
165
166	/*
167	 * To make hardclock()'s job easier, make the per-tick delta negative
168	 * if we want time to run slower; then hardclock can simply compute
169	 * tick + tickdelta, and subtract tickdelta from timedelta.
170	 */
171	if (ndelta < 0)
172		ntickdelta = -ntickdelta;
173	s = splclock();
174	odelta = timedelta;
175	timedelta = ndelta;
176	tickdelta = ntickdelta;
177	splx(s);
178
179	if (SCARG(uap, olddelta)) {
180		atv.tv_sec = odelta / 1000000;
181		atv.tv_usec = odelta % 1000000;
182		(void) copyout((caddr_t)&atv, (caddr_t)SCARG(uap, olddelta),
183		    sizeof(struct timeval));
184	}
185	return (0);
186}
187
188/*
189 * Get value of an interval timer.  The process virtual and
190 * profiling virtual time timers are kept in the p_stats area, since
191 * they can be swapped out.  These are kept internally in the
192 * way they are specified externally: in time until they expire.
193 *
194 * The real time interval timer is kept in the process table slot
195 * for the process, and its value (it_value) is kept as an
196 * absolute time rather than as a delta, so that it is easy to keep
197 * periodic real-time signals from drifting.
198 *
199 * Virtual time timers are processed in the hardclock() routine of
200 * kern_clock.c.  The real time timer is processed by a timeout
201 * routine, called from the softclock() routine.  Since a callout
202 * may be delayed in real time due to interrupt processing in the system,
203 * it is possible for the real time timeout routine (realitexpire, given below),
204 * to be delayed in real time past when it is supposed to occur.  It
205 * does not suffice, therefore, to reload the real timer .it_value from the
206 * real time timers .it_interval.  Rather, we compute the next time in
207 * absolute time the timer should go off.
208 */
209/* ARGSUSED */
210int
211getitimer(p, uap, retval)
212	struct proc *p;
213	register struct getitimer_args /* {
214		syscallarg(u_int) which;
215		syscallarg(struct itimerval *) itv;
216	} */ *uap;
217	register_t *retval;
218{
219	struct itimerval aitv;
220	int s;
221
222	if (SCARG(uap, which) > ITIMER_PROF)
223		return (EINVAL);
224	s = splclock();
225	if (SCARG(uap, which) == ITIMER_REAL) {
226		/*
227		 * Convert from absolute to relative time in .it_value
228		 * part of real time timer.  If time for real time timer
229		 * has passed return 0, else return difference between
230		 * current time and time for the timer to go off.
231		 */
232		aitv = p->p_realtimer;
233		if (timerisset(&aitv.it_value))
234			if (timercmp(&aitv.it_value, &time, <))
235				timerclear(&aitv.it_value);
236			else
237				timersub(&aitv.it_value, &time, &aitv.it_value);
238	} else
239		aitv = p->p_stats->p_timer[SCARG(uap, which)];
240	splx(s);
241	return (copyout((caddr_t)&aitv, (caddr_t)SCARG(uap, itv),
242	    sizeof (struct itimerval)));
243}
244
245/* ARGSUSED */
246int
247setitimer(p, uap, retval)
248	struct proc *p;
249	register struct setitimer_args /* {
250		syscallarg(u_int) which;
251		syscallarg(struct itimerval *) itv;
252		syscallarg(struct itimerval *) oitv;
253	} */ *uap;
254	register_t *retval;
255{
256	struct itimerval aitv;
257	register struct itimerval *itvp;
258	int s, error;
259
260	if (SCARG(uap, which) > ITIMER_PROF)
261		return (EINVAL);
262	itvp = SCARG(uap, itv);
263	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
264	    sizeof(struct itimerval))))
265		return (error);
266	if ((SCARG(uap, itv) = SCARG(uap, oitv)) &&
267	    (error = getitimer(p, uap, retval)))
268		return (error);
269	if (itvp == 0)
270		return (0);
271	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
272		return (EINVAL);
273	s = splclock();
274	if (SCARG(uap, which) == ITIMER_REAL) {
275		untimeout(realitexpire, p);
276		if (timerisset(&aitv.it_value)) {
277			timeradd(&aitv.it_value, &time, &aitv.it_value);
278			timeout(realitexpire, p, hzto(&aitv.it_value));
279		}
280		p->p_realtimer = aitv;
281	} else
282		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
283	splx(s);
284	return (0);
285}
286
287/*
288 * Real interval timer expired:
289 * send process whose timer expired an alarm signal.
290 * If time is not set up to reload, then just return.
291 * Else compute next time timer should go off which is > current time.
292 * This is where delay in processing this timeout causes multiple
293 * SIGALRM calls to be compressed into one.
294 */
295void
296realitexpire(arg)
297	void *arg;
298{
299	register struct proc *p;
300	int s;
301
302	p = (struct proc *)arg;
303	psignal(p, SIGALRM);
304	if (!timerisset(&p->p_realtimer.it_interval)) {
305		timerclear(&p->p_realtimer.it_value);
306		return;
307	}
308	for (;;) {
309		s = splclock();
310		timeradd(&p->p_realtimer.it_value,
311		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
312		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
313			timeout(realitexpire, p,
314			    hzto(&p->p_realtimer.it_value));
315			splx(s);
316			return;
317		}
318		splx(s);
319	}
320}
321
322/*
323 * Check that a proposed value to load into the .it_value or
324 * .it_interval part of an interval timer is acceptable, and
325 * fix it to have at least minimal value (i.e. if it is less
326 * than the resolution of the clock, round it up.)
327 */
328int
329itimerfix(tv)
330	struct timeval *tv;
331{
332
333	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
334	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
335		return (EINVAL);
336	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
337		tv->tv_usec = tick;
338	return (0);
339}
340
341/*
342 * Decrement an interval timer by a specified number
343 * of microseconds, which must be less than a second,
344 * i.e. < 1000000.  If the timer expires, then reload
345 * it.  In this case, carry over (usec - old value) to
346 * reduce the value reloaded into the timer so that
347 * the timer does not drift.  This routine assumes
348 * that it is called in a context where the timers
349 * on which it is operating cannot change in value.
350 */
351int
352itimerdecr(itp, usec)
353	register struct itimerval *itp;
354	int usec;
355{
356
357	if (itp->it_value.tv_usec < usec) {
358		if (itp->it_value.tv_sec == 0) {
359			/* expired, and already in next interval */
360			usec -= itp->it_value.tv_usec;
361			goto expire;
362		}
363		itp->it_value.tv_usec += 1000000;
364		itp->it_value.tv_sec--;
365	}
366	itp->it_value.tv_usec -= usec;
367	usec = 0;
368	if (timerisset(&itp->it_value))
369		return (1);
370	/* expired, exactly at end of interval */
371expire:
372	if (timerisset(&itp->it_interval)) {
373		itp->it_value = itp->it_interval;
374		itp->it_value.tv_usec -= usec;
375		if (itp->it_value.tv_usec < 0) {
376			itp->it_value.tv_usec += 1000000;
377			itp->it_value.tv_sec--;
378		}
379	} else
380		itp->it_value.tv_usec = 0;		/* sec is already 0 */
381	return (0);
382}
383