kern_time.c revision 1.133
1/*	$NetBSD: kern_time.c,v 1.133 2007/11/25 08:43:11 elad Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.133 2007/11/25 08:43:11 elad Exp $");
72
73#include <sys/param.h>
74#include <sys/resourcevar.h>
75#include <sys/kernel.h>
76#include <sys/systm.h>
77#include <sys/proc.h>
78#include <sys/vnode.h>
79#include <sys/signalvar.h>
80#include <sys/syslog.h>
81#include <sys/timetc.h>
82#ifndef __HAVE_TIMECOUNTER
83#include <sys/timevar.h>
84#endif /* !__HAVE_TIMECOUNTER */
85#include <sys/kauth.h>
86
87#include <sys/mount.h>
88#include <sys/syscallargs.h>
89
90#include <uvm/uvm_extern.h>
91
92#include <sys/cpu.h>
93
94kmutex_t	time_lock;
95
96POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
97    &pool_allocator_nointr, IPL_NONE);
98POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
99    &pool_allocator_nointr, IPL_NONE);
100
101/*
102 * Initialize timekeeping.
103 */
104void
105time_init(void)
106{
107
108	mutex_init(&time_lock, MUTEX_DEFAULT, IPL_NONE);
109}
110
111/* Time of day and interval timer support.
112 *
113 * These routines provide the kernel entry points to get and set
114 * the time-of-day and per-process interval timers.  Subroutines
115 * here provide support for adding and subtracting timeval structures
116 * and decrementing interval timers, optionally reloading the interval
117 * timers when they expire.
118 */
119
120/* This function is used by clock_settime and settimeofday */
121static int
122settime1(struct proc *p, struct timespec *ts, bool check_kauth)
123{
124	struct timeval delta, tv;
125#ifdef __HAVE_TIMECOUNTER
126	struct timeval now;
127	struct timespec ts1;
128#endif /* !__HAVE_TIMECOUNTER */
129	lwp_t *l;
130	int s;
131
132	TIMESPEC_TO_TIMEVAL(&tv, ts);
133
134	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
135	s = splclock();
136#ifdef __HAVE_TIMECOUNTER
137	microtime(&now);
138	timersub(&tv, &now, &delta);
139#else /* !__HAVE_TIMECOUNTER */
140	timersub(&tv, &time, &delta);
141#endif /* !__HAVE_TIMECOUNTER */
142
143	if (check_kauth && kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
144	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, ts, &delta,
145	    KAUTH_ARG(check_kauth ? false : true)) != 0) {
146		splx(s);
147		return (EPERM);
148	}
149
150#ifdef notyet
151	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
152		splx(s);
153		return (EPERM);
154	}
155#endif
156
157#ifdef __HAVE_TIMECOUNTER
158	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
159	tc_setclock(&ts1);
160#else /* !__HAVE_TIMECOUNTER */
161	time = tv;
162#endif /* !__HAVE_TIMECOUNTER */
163
164	timeradd(&boottime, &delta, &boottime);
165
166	/*
167	 * XXXSMP: There is a short race between setting the time above
168	 * and adjusting LWP's run times.  Fixing this properly means
169	 * pausing all CPUs while we adjust the clock.
170	 */
171	mutex_enter(&proclist_lock);
172	LIST_FOREACH(l, &alllwp, l_list) {
173		lwp_lock(l);
174		timeradd(&l->l_stime, &delta, &l->l_stime);
175		lwp_unlock(l);
176	}
177	mutex_exit(&proclist_lock);
178	resettodr();
179	splx(s);
180
181	return (0);
182}
183
184int
185settime(struct proc *p, struct timespec *ts)
186{
187	return (settime1(p, ts, true));
188}
189
190/* ARGSUSED */
191int
192sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
193{
194	struct sys_clock_gettime_args /* {
195		syscallarg(clockid_t) clock_id;
196		syscallarg(struct timespec *) tp;
197	} */ *uap = v;
198	clockid_t clock_id;
199	struct timespec ats;
200
201	clock_id = SCARG(uap, clock_id);
202	switch (clock_id) {
203	case CLOCK_REALTIME:
204		nanotime(&ats);
205		break;
206	case CLOCK_MONOTONIC:
207		nanouptime(&ats);
208		break;
209	default:
210		return (EINVAL);
211	}
212
213	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
214}
215
216/* ARGSUSED */
217int
218sys_clock_settime(struct lwp *l, void *v, register_t *retval)
219{
220	struct sys_clock_settime_args /* {
221		syscallarg(clockid_t) clock_id;
222		syscallarg(const struct timespec *) tp;
223	} */ *uap = v;
224
225	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp),
226	    true);
227}
228
229
230int
231clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
232    bool check_kauth)
233{
234	struct timespec ats;
235	int error;
236
237	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
238		return (error);
239
240	switch (clock_id) {
241	case CLOCK_REALTIME:
242		if ((error = settime1(p, &ats, check_kauth)) != 0)
243			return (error);
244		break;
245	case CLOCK_MONOTONIC:
246		return (EINVAL);	/* read-only clock */
247	default:
248		return (EINVAL);
249	}
250
251	return 0;
252}
253
254int
255sys_clock_getres(struct lwp *l, void *v, register_t *retval)
256{
257	struct sys_clock_getres_args /* {
258		syscallarg(clockid_t) clock_id;
259		syscallarg(struct timespec *) tp;
260	} */ *uap = v;
261	clockid_t clock_id;
262	struct timespec ts;
263	int error = 0;
264
265	clock_id = SCARG(uap, clock_id);
266	switch (clock_id) {
267	case CLOCK_REALTIME:
268	case CLOCK_MONOTONIC:
269		ts.tv_sec = 0;
270		if (tc_getfrequency() > 1000000000)
271			ts.tv_nsec = 1;
272		else
273			ts.tv_nsec = 1000000000 / tc_getfrequency();
274		break;
275	default:
276		return (EINVAL);
277	}
278
279	if (SCARG(uap, tp))
280		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
281
282	return error;
283}
284
285/* ARGSUSED */
286int
287sys_nanosleep(struct lwp *l, void *v, register_t *retval)
288{
289	struct sys_nanosleep_args/* {
290		syscallarg(struct timespec *) rqtp;
291		syscallarg(struct timespec *) rmtp;
292	} */ *uap = v;
293	struct timespec rmt, rqt;
294	int error, error1;
295
296	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
297	if (error)
298		return (error);
299
300	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
301	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
302		return error;
303
304	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
305	return error1 ? error1 : error;
306}
307
308int
309nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
310{
311#ifdef __HAVE_TIMECOUNTER
312	int error, timo;
313
314	if (itimespecfix(rqt))
315		return (EINVAL);
316
317	timo = tstohz(rqt);
318	/*
319	 * Avoid inadvertantly sleeping forever
320	 */
321	if (timo == 0)
322		timo = 1;
323
324	if (rmt != NULL)
325		getnanouptime(rmt);
326
327	error = kpause("nanoslp", true, timo, NULL);
328	if (error == ERESTART)
329		error = EINTR;
330	if (error == EWOULDBLOCK)
331		error = 0;
332
333	if (rmt!= NULL) {
334		struct timespec rmtend;
335
336		getnanouptime(&rmtend);
337
338		timespecsub(&rmtend, rmt, rmt);
339		timespecsub(rqt, rmt, rmt);
340		if (rmt->tv_sec < 0)
341			timespecclear(rmt);
342	}
343
344	return error;
345#else /* !__HAVE_TIMECOUNTER */
346	struct timeval atv, utv;
347	int error, s, timo;
348
349	TIMESPEC_TO_TIMEVAL(&atv, rqt);
350	if (itimerfix(&atv))
351		return (EINVAL);
352
353	s = splclock();
354	timeradd(&atv,&time,&atv);
355	timo = hzto(&atv);
356	/*
357	 * Avoid inadvertantly sleeping forever
358	 */
359	if (timo == 0)
360		timo = 1;
361	splx(s);
362
363	error = kpause("nanoslp", true, timo, NULL);
364	if (error == ERESTART)
365		error = EINTR;
366	if (error == EWOULDBLOCK)
367		error = 0;
368
369	if (rmt != NULL) {
370		s = splclock();
371		utv = time;
372		splx(s);
373
374		timersub(&atv, &utv, &utv);
375		if (utv.tv_sec < 0)
376			timerclear(&utv);
377
378		TIMEVAL_TO_TIMESPEC(&utv, rmt);
379	}
380
381	return error;
382#endif /* !__HAVE_TIMECOUNTER */
383}
384
385/* ARGSUSED */
386int
387sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
388{
389	struct sys_gettimeofday_args /* {
390		syscallarg(struct timeval *) tp;
391		syscallarg(void *) tzp;		really "struct timezone *"
392	} */ *uap = v;
393	struct timeval atv;
394	int error = 0;
395	struct timezone tzfake;
396
397	if (SCARG(uap, tp)) {
398		microtime(&atv);
399		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
400		if (error)
401			return (error);
402	}
403	if (SCARG(uap, tzp)) {
404		/*
405		 * NetBSD has no kernel notion of time zone, so we just
406		 * fake up a timezone struct and return it if demanded.
407		 */
408		tzfake.tz_minuteswest = 0;
409		tzfake.tz_dsttime = 0;
410		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
411	}
412	return (error);
413}
414
415/* ARGSUSED */
416int
417sys_settimeofday(struct lwp *l, void *v, register_t *retval)
418{
419	struct sys_settimeofday_args /* {
420		syscallarg(const struct timeval *) tv;
421		syscallarg(const void *) tzp;	really "const struct timezone *"
422	} */ *uap = v;
423
424	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
425}
426
427int
428settimeofday1(const struct timeval *utv, bool userspace,
429    const void *utzp, struct lwp *l, bool check_kauth)
430{
431	struct timeval atv;
432	struct timespec ts;
433	int error;
434
435	/* Verify all parameters before changing time. */
436
437	/*
438	 * NetBSD has no kernel notion of time zone, and only an
439	 * obsolete program would try to set it, so we log a warning.
440	 */
441	if (utzp)
442		log(LOG_WARNING, "pid %d attempted to set the "
443		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
444
445	if (utv == NULL)
446		return 0;
447
448	if (userspace) {
449		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
450			return error;
451		utv = &atv;
452	}
453
454	TIMEVAL_TO_TIMESPEC(utv, &ts);
455	return settime1(l->l_proc, &ts, check_kauth);
456}
457
458#ifndef __HAVE_TIMECOUNTER
459int	tickdelta;			/* current clock skew, us. per tick */
460long	timedelta;			/* unapplied time correction, us. */
461long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
462#endif
463
464int	time_adjusted;			/* set if an adjustment is made */
465
466/* ARGSUSED */
467int
468sys_adjtime(struct lwp *l, void *v, register_t *retval)
469{
470	struct sys_adjtime_args /* {
471		syscallarg(const struct timeval *) delta;
472		syscallarg(struct timeval *) olddelta;
473	} */ *uap = v;
474	int error;
475
476	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
477	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
478		return (error);
479
480	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
481}
482
483int
484adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
485{
486	struct timeval atv;
487	int error = 0;
488
489#ifdef __HAVE_TIMECOUNTER
490	extern int64_t time_adjtime;  /* in kern_ntptime.c */
491#else /* !__HAVE_TIMECOUNTER */
492	long ndelta, ntickdelta, odelta;
493	int s;
494#endif /* !__HAVE_TIMECOUNTER */
495
496#ifdef __HAVE_TIMECOUNTER
497	if (olddelta) {
498		atv.tv_sec = time_adjtime / 1000000;
499		atv.tv_usec = time_adjtime % 1000000;
500		if (atv.tv_usec < 0) {
501			atv.tv_usec += 1000000;
502			atv.tv_sec--;
503		}
504		error = copyout(&atv, olddelta, sizeof(struct timeval));
505		if (error)
506			return (error);
507	}
508
509	if (delta) {
510		error = copyin(delta, &atv, sizeof(struct timeval));
511		if (error)
512			return (error);
513
514		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
515			atv.tv_usec;
516
517		if (time_adjtime)
518			/* We need to save the system time during shutdown */
519			time_adjusted |= 1;
520	}
521#else /* !__HAVE_TIMECOUNTER */
522	error = copyin(delta, &atv, sizeof(struct timeval));
523	if (error)
524		return (error);
525
526	/*
527	 * Compute the total correction and the rate at which to apply it.
528	 * Round the adjustment down to a whole multiple of the per-tick
529	 * delta, so that after some number of incremental changes in
530	 * hardclock(), tickdelta will become zero, lest the correction
531	 * overshoot and start taking us away from the desired final time.
532	 */
533	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
534	if (ndelta > bigadj || ndelta < -bigadj)
535		ntickdelta = 10 * tickadj;
536	else
537		ntickdelta = tickadj;
538	if (ndelta % ntickdelta)
539		ndelta = ndelta / ntickdelta * ntickdelta;
540
541	/*
542	 * To make hardclock()'s job easier, make the per-tick delta negative
543	 * if we want time to run slower; then hardclock can simply compute
544	 * tick + tickdelta, and subtract tickdelta from timedelta.
545	 */
546	if (ndelta < 0)
547		ntickdelta = -ntickdelta;
548	if (ndelta != 0)
549		/* We need to save the system clock time during shutdown */
550		time_adjusted |= 1;
551	s = splclock();
552	odelta = timedelta;
553	timedelta = ndelta;
554	tickdelta = ntickdelta;
555	splx(s);
556
557	if (olddelta) {
558		atv.tv_sec = odelta / 1000000;
559		atv.tv_usec = odelta % 1000000;
560		error = copyout(&atv, olddelta, sizeof(struct timeval));
561	}
562#endif /* __HAVE_TIMECOUNTER */
563
564	return error;
565}
566
567/*
568 * Interval timer support. Both the BSD getitimer() family and the POSIX
569 * timer_*() family of routines are supported.
570 *
571 * All timers are kept in an array pointed to by p_timers, which is
572 * allocated on demand - many processes don't use timers at all. The
573 * first three elements in this array are reserved for the BSD timers:
574 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
575 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
576 * syscall.
577 *
578 * Realtime timers are kept in the ptimer structure as an absolute
579 * time; virtual time timers are kept as a linked list of deltas.
580 * Virtual time timers are processed in the hardclock() routine of
581 * kern_clock.c.  The real time timer is processed by a callout
582 * routine, called from the softclock() routine.  Since a callout may
583 * be delayed in real time due to interrupt processing in the system,
584 * it is possible for the real time timeout routine (realtimeexpire,
585 * given below), to be delayed in real time past when it is supposed
586 * to occur.  It does not suffice, therefore, to reload the real timer
587 * .it_value from the real time timers .it_interval.  Rather, we
588 * compute the next time in absolute time the timer should go off.  */
589
590/* Allocate a POSIX realtime timer. */
591int
592sys_timer_create(struct lwp *l, void *v, register_t *retval)
593{
594	struct sys_timer_create_args /* {
595		syscallarg(clockid_t) clock_id;
596		syscallarg(struct sigevent *) evp;
597		syscallarg(timer_t *) timerid;
598	} */ *uap = v;
599
600	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
601	    SCARG(uap, evp), copyin, l);
602}
603
604int
605timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
606    copyin_t fetch_event, struct lwp *l)
607{
608	int error;
609	timer_t timerid;
610	struct ptimer *pt;
611	struct proc *p;
612
613	p = l->l_proc;
614
615	if (id < CLOCK_REALTIME ||
616	    id > CLOCK_PROF)
617		return (EINVAL);
618
619	if (p->p_timers == NULL)
620		timers_alloc(p);
621
622	/* Find a free timer slot, skipping those reserved for setitimer(). */
623	for (timerid = 3; timerid < TIMER_MAX; timerid++)
624		if (p->p_timers->pts_timers[timerid] == NULL)
625			break;
626
627	if (timerid == TIMER_MAX)
628		return EAGAIN;
629
630	pt = pool_get(&ptimer_pool, PR_WAITOK);
631	if (evp) {
632		if (((error =
633		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
634		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
635			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
636			pool_put(&ptimer_pool, pt);
637			return (error ? error : EINVAL);
638		}
639	} else {
640		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
641		switch (id) {
642		case CLOCK_REALTIME:
643			pt->pt_ev.sigev_signo = SIGALRM;
644			break;
645		case CLOCK_VIRTUAL:
646			pt->pt_ev.sigev_signo = SIGVTALRM;
647			break;
648		case CLOCK_PROF:
649			pt->pt_ev.sigev_signo = SIGPROF;
650			break;
651		}
652		pt->pt_ev.sigev_value.sival_int = timerid;
653	}
654	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
655	pt->pt_info.ksi_errno = 0;
656	pt->pt_info.ksi_code = 0;
657	pt->pt_info.ksi_pid = p->p_pid;
658	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
659	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
660
661	pt->pt_type = id;
662	pt->pt_proc = p;
663	pt->pt_overruns = 0;
664	pt->pt_poverruns = 0;
665	pt->pt_entry = timerid;
666	timerclear(&pt->pt_time.it_value);
667	if (id == CLOCK_REALTIME)
668		callout_init(&pt->pt_ch, 0);
669	else
670		pt->pt_active = 0;
671
672	p->p_timers->pts_timers[timerid] = pt;
673
674	return copyout(&timerid, tid, sizeof(timerid));
675}
676
677/* Delete a POSIX realtime timer */
678int
679sys_timer_delete(struct lwp *l, void *v, register_t *retval)
680{
681	struct sys_timer_delete_args /*  {
682		syscallarg(timer_t) timerid;
683	} */ *uap = v;
684	struct proc *p = l->l_proc;
685	timer_t timerid;
686	struct ptimer *pt, *ptn;
687	int s;
688
689	timerid = SCARG(uap, timerid);
690
691	if ((p->p_timers == NULL) ||
692	    (timerid < 2) || (timerid >= TIMER_MAX) ||
693	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
694		return (EINVAL);
695
696	if (pt->pt_type == CLOCK_REALTIME) {
697		callout_stop(&pt->pt_ch);
698		callout_destroy(&pt->pt_ch);
699	} else if (pt->pt_active) {
700		s = splclock();
701		ptn = LIST_NEXT(pt, pt_list);
702		LIST_REMOVE(pt, pt_list);
703		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
704			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
705			    &ptn->pt_time.it_value);
706		splx(s);
707	}
708
709	p->p_timers->pts_timers[timerid] = NULL;
710	pool_put(&ptimer_pool, pt);
711
712	return (0);
713}
714
715/*
716 * Set up the given timer. The value in pt->pt_time.it_value is taken
717 * to be an absolute time for CLOCK_REALTIME timers and a relative
718 * time for virtual timers.
719 * Must be called at splclock().
720 */
721void
722timer_settime(struct ptimer *pt)
723{
724	struct ptimer *ptn, *pptn;
725	struct ptlist *ptl;
726
727	if (pt->pt_type == CLOCK_REALTIME) {
728		callout_stop(&pt->pt_ch);
729		if (timerisset(&pt->pt_time.it_value)) {
730			/*
731			 * Don't need to check hzto() return value, here.
732			 * callout_reset() does it for us.
733			 */
734			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
735			    realtimerexpire, pt);
736		}
737	} else {
738		if (pt->pt_active) {
739			ptn = LIST_NEXT(pt, pt_list);
740			LIST_REMOVE(pt, pt_list);
741			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
742				timeradd(&pt->pt_time.it_value,
743				    &ptn->pt_time.it_value,
744				    &ptn->pt_time.it_value);
745		}
746		if (timerisset(&pt->pt_time.it_value)) {
747			if (pt->pt_type == CLOCK_VIRTUAL)
748				ptl = &pt->pt_proc->p_timers->pts_virtual;
749			else
750				ptl = &pt->pt_proc->p_timers->pts_prof;
751
752			for (ptn = LIST_FIRST(ptl), pptn = NULL;
753			     ptn && timercmp(&pt->pt_time.it_value,
754				 &ptn->pt_time.it_value, >);
755			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
756				timersub(&pt->pt_time.it_value,
757				    &ptn->pt_time.it_value,
758				    &pt->pt_time.it_value);
759
760			if (pptn)
761				LIST_INSERT_AFTER(pptn, pt, pt_list);
762			else
763				LIST_INSERT_HEAD(ptl, pt, pt_list);
764
765			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
766				timersub(&ptn->pt_time.it_value,
767				    &pt->pt_time.it_value,
768				    &ptn->pt_time.it_value);
769
770			pt->pt_active = 1;
771		} else
772			pt->pt_active = 0;
773	}
774}
775
776void
777timer_gettime(struct ptimer *pt, struct itimerval *aitv)
778{
779#ifdef __HAVE_TIMECOUNTER
780	struct timeval now;
781#endif
782	struct ptimer *ptn;
783
784	*aitv = pt->pt_time;
785	if (pt->pt_type == CLOCK_REALTIME) {
786		/*
787		 * Convert from absolute to relative time in .it_value
788		 * part of real time timer.  If time for real time
789		 * timer has passed return 0, else return difference
790		 * between current time and time for the timer to go
791		 * off.
792		 */
793		if (timerisset(&aitv->it_value)) {
794#ifdef __HAVE_TIMECOUNTER
795			getmicrotime(&now);
796			if (timercmp(&aitv->it_value, &now, <))
797				timerclear(&aitv->it_value);
798			else
799				timersub(&aitv->it_value, &now,
800				    &aitv->it_value);
801#else /* !__HAVE_TIMECOUNTER */
802			if (timercmp(&aitv->it_value, &time, <))
803				timerclear(&aitv->it_value);
804			else
805				timersub(&aitv->it_value, &time,
806				    &aitv->it_value);
807#endif /* !__HAVE_TIMECOUNTER */
808		}
809	} else if (pt->pt_active) {
810		if (pt->pt_type == CLOCK_VIRTUAL)
811			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
812		else
813			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
814		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
815			timeradd(&aitv->it_value,
816			    &ptn->pt_time.it_value, &aitv->it_value);
817		KASSERT(ptn != NULL); /* pt should be findable on the list */
818	} else
819		timerclear(&aitv->it_value);
820}
821
822
823
824/* Set and arm a POSIX realtime timer */
825int
826sys_timer_settime(struct lwp *l, void *v, register_t *retval)
827{
828	struct sys_timer_settime_args /* {
829		syscallarg(timer_t) timerid;
830		syscallarg(int) flags;
831		syscallarg(const struct itimerspec *) value;
832		syscallarg(struct itimerspec *) ovalue;
833	} */ *uap = v;
834	int error;
835	struct itimerspec value, ovalue, *ovp = NULL;
836
837	if ((error = copyin(SCARG(uap, value), &value,
838	    sizeof(struct itimerspec))) != 0)
839		return (error);
840
841	if (SCARG(uap, ovalue))
842		ovp = &ovalue;
843
844	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
845	    SCARG(uap, flags), l->l_proc)) != 0)
846		return error;
847
848	if (ovp)
849		return copyout(&ovalue, SCARG(uap, ovalue),
850		    sizeof(struct itimerspec));
851	return 0;
852}
853
854int
855dotimer_settime(int timerid, struct itimerspec *value,
856    struct itimerspec *ovalue, int flags, struct proc *p)
857{
858#ifdef __HAVE_TIMECOUNTER
859	struct timeval now;
860#endif
861	struct itimerval val, oval;
862	struct ptimer *pt;
863	int s;
864
865	if ((p->p_timers == NULL) ||
866	    (timerid < 2) || (timerid >= TIMER_MAX) ||
867	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
868		return (EINVAL);
869
870	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
871	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
872	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
873		return (EINVAL);
874
875	oval = pt->pt_time;
876	pt->pt_time = val;
877
878	s = splclock();
879	/*
880	 * If we've been passed a relative time for a realtime timer,
881	 * convert it to absolute; if an absolute time for a virtual
882	 * timer, convert it to relative and make sure we don't set it
883	 * to zero, which would cancel the timer, or let it go
884	 * negative, which would confuse the comparison tests.
885	 */
886	if (timerisset(&pt->pt_time.it_value)) {
887		if (pt->pt_type == CLOCK_REALTIME) {
888#ifdef __HAVE_TIMECOUNTER
889			if ((flags & TIMER_ABSTIME) == 0) {
890				getmicrotime(&now);
891				timeradd(&pt->pt_time.it_value, &now,
892				    &pt->pt_time.it_value);
893			}
894#else /* !__HAVE_TIMECOUNTER */
895			if ((flags & TIMER_ABSTIME) == 0)
896				timeradd(&pt->pt_time.it_value, &time,
897				    &pt->pt_time.it_value);
898#endif /* !__HAVE_TIMECOUNTER */
899		} else {
900			if ((flags & TIMER_ABSTIME) != 0) {
901#ifdef __HAVE_TIMECOUNTER
902				getmicrotime(&now);
903				timersub(&pt->pt_time.it_value, &now,
904				    &pt->pt_time.it_value);
905#else /* !__HAVE_TIMECOUNTER */
906				timersub(&pt->pt_time.it_value, &time,
907				    &pt->pt_time.it_value);
908#endif /* !__HAVE_TIMECOUNTER */
909				if (!timerisset(&pt->pt_time.it_value) ||
910				    pt->pt_time.it_value.tv_sec < 0) {
911					pt->pt_time.it_value.tv_sec = 0;
912					pt->pt_time.it_value.tv_usec = 1;
913				}
914			}
915		}
916	}
917
918	timer_settime(pt);
919	splx(s);
920
921	if (ovalue) {
922		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
923		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
924	}
925
926	return (0);
927}
928
929/* Return the time remaining until a POSIX timer fires. */
930int
931sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
932{
933	struct sys_timer_gettime_args /* {
934		syscallarg(timer_t) timerid;
935		syscallarg(struct itimerspec *) value;
936	} */ *uap = v;
937	struct itimerspec its;
938	int error;
939
940	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
941	    &its)) != 0)
942		return error;
943
944	return copyout(&its, SCARG(uap, value), sizeof(its));
945}
946
947int
948dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
949{
950	int s;
951	struct ptimer *pt;
952	struct itimerval aitv;
953
954	if ((p->p_timers == NULL) ||
955	    (timerid < 2) || (timerid >= TIMER_MAX) ||
956	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
957		return (EINVAL);
958
959	s = splclock();
960	timer_gettime(pt, &aitv);
961	splx(s);
962
963	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
964	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
965
966	return 0;
967}
968
969/*
970 * Return the count of the number of times a periodic timer expired
971 * while a notification was already pending. The counter is reset when
972 * a timer expires and a notification can be posted.
973 */
974int
975sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
976{
977	struct sys_timer_getoverrun_args /* {
978		syscallarg(timer_t) timerid;
979	} */ *uap = v;
980	struct proc *p = l->l_proc;
981	int timerid;
982	struct ptimer *pt;
983
984	timerid = SCARG(uap, timerid);
985
986	if ((p->p_timers == NULL) ||
987	    (timerid < 2) || (timerid >= TIMER_MAX) ||
988	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
989		return (EINVAL);
990
991	*retval = pt->pt_poverruns;
992
993	return (0);
994}
995
996/*
997 * Real interval timer expired:
998 * send process whose timer expired an alarm signal.
999 * If time is not set up to reload, then just return.
1000 * Else compute next time timer should go off which is > current time.
1001 * This is where delay in processing this timeout causes multiple
1002 * SIGALRM calls to be compressed into one.
1003 */
1004void
1005realtimerexpire(void *arg)
1006{
1007#ifdef __HAVE_TIMECOUNTER
1008	struct timeval now;
1009#endif
1010	struct ptimer *pt;
1011	int s;
1012
1013	pt = (struct ptimer *)arg;
1014
1015	itimerfire(pt);
1016
1017	if (!timerisset(&pt->pt_time.it_interval)) {
1018		timerclear(&pt->pt_time.it_value);
1019		return;
1020	}
1021#ifdef __HAVE_TIMECOUNTER
1022	for (;;) {
1023		s = splclock();	/* XXX need spl now? */
1024		timeradd(&pt->pt_time.it_value,
1025		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1026		getmicrotime(&now);
1027		if (timercmp(&pt->pt_time.it_value, &now, >)) {
1028			/*
1029			 * Don't need to check hzto() return value, here.
1030			 * callout_reset() does it for us.
1031			 */
1032			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1033			    realtimerexpire, pt);
1034			splx(s);
1035			return;
1036		}
1037		splx(s);
1038		pt->pt_overruns++;
1039	}
1040#else /* !__HAVE_TIMECOUNTER */
1041	for (;;) {
1042		s = splclock();
1043		timeradd(&pt->pt_time.it_value,
1044		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1045		if (timercmp(&pt->pt_time.it_value, &time, >)) {
1046			/*
1047			 * Don't need to check hzto() return value, here.
1048			 * callout_reset() does it for us.
1049			 */
1050			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1051			    realtimerexpire, pt);
1052			splx(s);
1053			return;
1054		}
1055		splx(s);
1056		pt->pt_overruns++;
1057	}
1058#endif /* !__HAVE_TIMECOUNTER */
1059}
1060
1061/* BSD routine to get the value of an interval timer. */
1062/* ARGSUSED */
1063int
1064sys_getitimer(struct lwp *l, void *v, register_t *retval)
1065{
1066	struct sys_getitimer_args /* {
1067		syscallarg(int) which;
1068		syscallarg(struct itimerval *) itv;
1069	} */ *uap = v;
1070	struct proc *p = l->l_proc;
1071	struct itimerval aitv;
1072	int error;
1073
1074	error = dogetitimer(p, SCARG(uap, which), &aitv);
1075	if (error)
1076		return error;
1077	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1078}
1079
1080int
1081dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1082{
1083	int s;
1084
1085	if ((u_int)which > ITIMER_PROF)
1086		return (EINVAL);
1087
1088	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1089		timerclear(&itvp->it_value);
1090		timerclear(&itvp->it_interval);
1091	} else {
1092		s = splclock();
1093		timer_gettime(p->p_timers->pts_timers[which], itvp);
1094		splx(s);
1095	}
1096
1097	return 0;
1098}
1099
1100/* BSD routine to set/arm an interval timer. */
1101/* ARGSUSED */
1102int
1103sys_setitimer(struct lwp *l, void *v, register_t *retval)
1104{
1105	struct sys_setitimer_args /* {
1106		syscallarg(int) which;
1107		syscallarg(const struct itimerval *) itv;
1108		syscallarg(struct itimerval *) oitv;
1109	} */ *uap = v;
1110	struct proc *p = l->l_proc;
1111	int which = SCARG(uap, which);
1112	struct sys_getitimer_args getargs;
1113	const struct itimerval *itvp;
1114	struct itimerval aitv;
1115	int error;
1116
1117	if ((u_int)which > ITIMER_PROF)
1118		return (EINVAL);
1119	itvp = SCARG(uap, itv);
1120	if (itvp &&
1121	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1122		return (error);
1123	if (SCARG(uap, oitv) != NULL) {
1124		SCARG(&getargs, which) = which;
1125		SCARG(&getargs, itv) = SCARG(uap, oitv);
1126		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1127			return (error);
1128	}
1129	if (itvp == 0)
1130		return (0);
1131
1132	return dosetitimer(p, which, &aitv);
1133}
1134
1135int
1136dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1137{
1138#ifdef __HAVE_TIMECOUNTER
1139	struct timeval now;
1140#endif
1141	struct ptimer *pt;
1142	int s;
1143
1144	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1145		return (EINVAL);
1146
1147	/*
1148	 * Don't bother allocating data structures if the process just
1149	 * wants to clear the timer.
1150	 */
1151	if (!timerisset(&itvp->it_value) &&
1152	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1153		return (0);
1154
1155	if (p->p_timers == NULL)
1156		timers_alloc(p);
1157	if (p->p_timers->pts_timers[which] == NULL) {
1158		pt = pool_get(&ptimer_pool, PR_WAITOK);
1159		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1160		pt->pt_ev.sigev_value.sival_int = which;
1161		pt->pt_overruns = 0;
1162		pt->pt_proc = p;
1163		pt->pt_type = which;
1164		pt->pt_entry = which;
1165		switch (which) {
1166		case ITIMER_REAL:
1167			callout_init(&pt->pt_ch, 0);
1168			pt->pt_ev.sigev_signo = SIGALRM;
1169			break;
1170		case ITIMER_VIRTUAL:
1171			pt->pt_active = 0;
1172			pt->pt_ev.sigev_signo = SIGVTALRM;
1173			break;
1174		case ITIMER_PROF:
1175			pt->pt_active = 0;
1176			pt->pt_ev.sigev_signo = SIGPROF;
1177			break;
1178		}
1179	} else
1180		pt = p->p_timers->pts_timers[which];
1181
1182	pt->pt_time = *itvp;
1183	p->p_timers->pts_timers[which] = pt;
1184
1185	s = splclock();
1186	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1187		/* Convert to absolute time */
1188#ifdef __HAVE_TIMECOUNTER
1189		/* XXX need to wrap in splclock for timecounters case? */
1190		getmicrotime(&now);
1191		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1192#else /* !__HAVE_TIMECOUNTER */
1193		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1194#endif /* !__HAVE_TIMECOUNTER */
1195	}
1196	timer_settime(pt);
1197	splx(s);
1198
1199	return (0);
1200}
1201
1202/* Utility routines to manage the array of pointers to timers. */
1203void
1204timers_alloc(struct proc *p)
1205{
1206	int i;
1207	struct ptimers *pts;
1208
1209	pts = pool_get(&ptimers_pool, PR_WAITOK);
1210	LIST_INIT(&pts->pts_virtual);
1211	LIST_INIT(&pts->pts_prof);
1212	for (i = 0; i < TIMER_MAX; i++)
1213		pts->pts_timers[i] = NULL;
1214	pts->pts_fired = 0;
1215	p->p_timers = pts;
1216}
1217
1218/*
1219 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1220 * then clean up all timers and free all the data structures. If
1221 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1222 * by timer_create(), not the BSD setitimer() timers, and only free the
1223 * structure if none of those remain.
1224 */
1225void
1226timers_free(struct proc *p, int which)
1227{
1228	int i, s;
1229	struct ptimers *pts;
1230	struct ptimer *pt, *ptn;
1231	struct timeval tv;
1232
1233	if (p->p_timers) {
1234		pts = p->p_timers;
1235		if (which == TIMERS_ALL)
1236			i = 0;
1237		else {
1238			s = splclock();
1239			timerclear(&tv);
1240			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1241			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1242			     ptn = LIST_NEXT(ptn, pt_list))
1243				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1244			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1245			if (ptn) {
1246				timeradd(&tv, &ptn->pt_time.it_value,
1247				    &ptn->pt_time.it_value);
1248				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1249				    ptn, pt_list);
1250			}
1251
1252			timerclear(&tv);
1253			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1254			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1255			     ptn = LIST_NEXT(ptn, pt_list))
1256				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1257			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1258			if (ptn) {
1259				timeradd(&tv, &ptn->pt_time.it_value,
1260				    &ptn->pt_time.it_value);
1261				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1262				    pt_list);
1263			}
1264			splx(s);
1265			i = 3;
1266		}
1267		for ( ; i < TIMER_MAX; i++)
1268			if ((pt = pts->pts_timers[i]) != NULL) {
1269				if (pt->pt_type == CLOCK_REALTIME) {
1270					callout_stop(&pt->pt_ch);
1271					callout_destroy(&pt->pt_ch);
1272				}
1273				pts->pts_timers[i] = NULL;
1274				pool_put(&ptimer_pool, pt);
1275			}
1276		if ((pts->pts_timers[0] == NULL) &&
1277		    (pts->pts_timers[1] == NULL) &&
1278		    (pts->pts_timers[2] == NULL)) {
1279			p->p_timers = NULL;
1280			pool_put(&ptimers_pool, pts);
1281		}
1282	}
1283}
1284
1285/*
1286 * Decrement an interval timer by a specified number
1287 * of microseconds, which must be less than a second,
1288 * i.e. < 1000000.  If the timer expires, then reload
1289 * it.  In this case, carry over (usec - old value) to
1290 * reduce the value reloaded into the timer so that
1291 * the timer does not drift.  This routine assumes
1292 * that it is called in a context where the timers
1293 * on which it is operating cannot change in value.
1294 */
1295int
1296itimerdecr(struct ptimer *pt, int usec)
1297{
1298	struct itimerval *itp;
1299
1300	itp = &pt->pt_time;
1301	if (itp->it_value.tv_usec < usec) {
1302		if (itp->it_value.tv_sec == 0) {
1303			/* expired, and already in next interval */
1304			usec -= itp->it_value.tv_usec;
1305			goto expire;
1306		}
1307		itp->it_value.tv_usec += 1000000;
1308		itp->it_value.tv_sec--;
1309	}
1310	itp->it_value.tv_usec -= usec;
1311	usec = 0;
1312	if (timerisset(&itp->it_value))
1313		return (1);
1314	/* expired, exactly at end of interval */
1315expire:
1316	if (timerisset(&itp->it_interval)) {
1317		itp->it_value = itp->it_interval;
1318		itp->it_value.tv_usec -= usec;
1319		if (itp->it_value.tv_usec < 0) {
1320			itp->it_value.tv_usec += 1000000;
1321			itp->it_value.tv_sec--;
1322		}
1323		timer_settime(pt);
1324	} else
1325		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1326	return (0);
1327}
1328
1329void
1330itimerfire(struct ptimer *pt)
1331{
1332	struct proc *p = pt->pt_proc;
1333
1334	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1335		/*
1336		 * No RT signal infrastructure exists at this time;
1337		 * just post the signal number and throw away the
1338		 * value.
1339		 */
1340		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1341			pt->pt_overruns++;
1342		else {
1343			ksiginfo_t ksi;
1344			KSI_INIT(&ksi);
1345			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1346			ksi.ksi_code = SI_TIMER;
1347			ksi.ksi_value = pt->pt_ev.sigev_value;
1348			pt->pt_poverruns = pt->pt_overruns;
1349			pt->pt_overruns = 0;
1350			mutex_enter(&proclist_mutex);
1351			kpsignal(p, &ksi, NULL);
1352			mutex_exit(&proclist_mutex);
1353		}
1354	}
1355}
1356
1357/*
1358 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1359 * for usage and rationale.
1360 */
1361int
1362ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1363{
1364	struct timeval tv, delta;
1365	int rv = 0;
1366#ifndef __HAVE_TIMECOUNTER
1367	int s;
1368#endif
1369
1370#ifdef __HAVE_TIMECOUNTER
1371	getmicrouptime(&tv);
1372#else /* !__HAVE_TIMECOUNTER */
1373	s = splclock();
1374	tv = mono_time;
1375	splx(s);
1376#endif /* !__HAVE_TIMECOUNTER */
1377	timersub(&tv, lasttime, &delta);
1378
1379	/*
1380	 * check for 0,0 is so that the message will be seen at least once,
1381	 * even if interval is huge.
1382	 */
1383	if (timercmp(&delta, mininterval, >=) ||
1384	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1385		*lasttime = tv;
1386		rv = 1;
1387	}
1388
1389	return (rv);
1390}
1391
1392/*
1393 * ppsratecheck(): packets (or events) per second limitation.
1394 */
1395int
1396ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1397{
1398	struct timeval tv, delta;
1399	int rv;
1400#ifndef __HAVE_TIMECOUNTER
1401	int s;
1402#endif
1403
1404#ifdef __HAVE_TIMECOUNTER
1405	getmicrouptime(&tv);
1406#else /* !__HAVE_TIMECOUNTER */
1407	s = splclock();
1408	tv = mono_time;
1409	splx(s);
1410#endif /* !__HAVE_TIMECOUNTER */
1411	timersub(&tv, lasttime, &delta);
1412
1413	/*
1414	 * check for 0,0 is so that the message will be seen at least once.
1415	 * if more than one second have passed since the last update of
1416	 * lasttime, reset the counter.
1417	 *
1418	 * we do increment *curpps even in *curpps < maxpps case, as some may
1419	 * try to use *curpps for stat purposes as well.
1420	 */
1421	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1422	    delta.tv_sec >= 1) {
1423		*lasttime = tv;
1424		*curpps = 0;
1425	}
1426	if (maxpps < 0)
1427		rv = 1;
1428	else if (*curpps < maxpps)
1429		rv = 1;
1430	else
1431		rv = 0;
1432
1433#if 1 /*DIAGNOSTIC?*/
1434	/* be careful about wrap-around */
1435	if (*curpps + 1 > *curpps)
1436		*curpps = *curpps + 1;
1437#else
1438	/*
1439	 * assume that there's not too many calls to this function.
1440	 * not sure if the assumption holds, as it depends on *caller's*
1441	 * behavior, not the behavior of this function.
1442	 * IMHO it is wrong to make assumption on the caller's behavior,
1443	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1444	 */
1445	*curpps = *curpps + 1;
1446#endif
1447
1448	return (rv);
1449}
1450