kern_time.c revision 1.130
1/*	$NetBSD: kern_time.c,v 1.130 2007/10/19 12:16:43 ad Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.130 2007/10/19 12:16:43 ad Exp $");
72
73#include <sys/param.h>
74#include <sys/resourcevar.h>
75#include <sys/kernel.h>
76#include <sys/systm.h>
77#include <sys/proc.h>
78#include <sys/vnode.h>
79#include <sys/signalvar.h>
80#include <sys/syslog.h>
81#include <sys/timetc.h>
82#ifndef __HAVE_TIMECOUNTER
83#include <sys/timevar.h>
84#endif /* !__HAVE_TIMECOUNTER */
85#include <sys/kauth.h>
86
87#include <sys/mount.h>
88#include <sys/syscallargs.h>
89
90#include <uvm/uvm_extern.h>
91
92#include <sys/cpu.h>
93
94POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
95    &pool_allocator_nointr, IPL_NONE);
96POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
97    &pool_allocator_nointr, IPL_NONE);
98
99/* Time of day and interval timer support.
100 *
101 * These routines provide the kernel entry points to get and set
102 * the time-of-day and per-process interval timers.  Subroutines
103 * here provide support for adding and subtracting timeval structures
104 * and decrementing interval timers, optionally reloading the interval
105 * timers when they expire.
106 */
107
108/* This function is used by clock_settime and settimeofday */
109int
110settime(struct proc *p, struct timespec *ts)
111{
112	struct timeval delta, tv;
113#ifdef __HAVE_TIMECOUNTER
114	struct timeval now;
115	struct timespec ts1;
116#endif /* !__HAVE_TIMECOUNTER */
117	lwp_t *l;
118	int s;
119
120	/*
121	 * Don't allow the time to be set forward so far it will wrap
122	 * and become negative, thus allowing an attacker to bypass
123	 * the next check below.  The cutoff is 1 year before rollover
124	 * occurs, so even if the attacker uses adjtime(2) to move
125	 * the time past the cutoff, it will take a very long time
126	 * to get to the wrap point.
127	 *
128	 * XXX: we check against INT_MAX since on 64-bit
129	 *	platforms, sizeof(int) != sizeof(long) and
130	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
131	 */
132	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
133		struct proc *pp;
134
135		mutex_enter(&proclist_lock);
136		pp = p->p_pptr;
137		mutex_enter(&pp->p_mutex);
138		log(LOG_WARNING, "pid %d (%s) "
139		    "invoked by uid %d ppid %d (%s) "
140		    "tried to set clock forward to %ld\n",
141		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
142		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
143		mutex_exit(&pp->p_mutex);
144		mutex_exit(&proclist_lock);
145		return (EPERM);
146	}
147	TIMESPEC_TO_TIMEVAL(&tv, ts);
148
149	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
150	s = splclock();
151#ifdef __HAVE_TIMECOUNTER
152	microtime(&now);
153	timersub(&tv, &now, &delta);
154#else /* !__HAVE_TIMECOUNTER */
155	timersub(&tv, &time, &delta);
156#endif /* !__HAVE_TIMECOUNTER */
157	if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
158	    kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
159	    KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
160		splx(s);
161		return (EPERM);
162	}
163#ifdef notyet
164	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
165		splx(s);
166		return (EPERM);
167	}
168#endif
169
170#ifdef __HAVE_TIMECOUNTER
171	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
172	tc_setclock(&ts1);
173#else /* !__HAVE_TIMECOUNTER */
174	time = tv;
175#endif /* !__HAVE_TIMECOUNTER */
176
177	timeradd(&boottime, &delta, &boottime);
178
179	/*
180	 * XXXSMP: There is a short race between setting the time above
181	 * and adjusting LWP's run times.  Fixing this properly means
182	 * pausing all CPUs while we adjust the clock.
183	 */
184	mutex_enter(&proclist_lock);
185	LIST_FOREACH(l, &alllwp, l_list) {
186		lwp_lock(l);
187		timeradd(&l->l_stime, &delta, &l->l_stime);
188		lwp_unlock(l);
189	}
190	mutex_exit(&proclist_lock);
191	resettodr();
192	splx(s);
193
194	return (0);
195}
196
197/* ARGSUSED */
198int
199sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
200{
201	struct sys_clock_gettime_args /* {
202		syscallarg(clockid_t) clock_id;
203		syscallarg(struct timespec *) tp;
204	} */ *uap = v;
205	clockid_t clock_id;
206	struct timespec ats;
207
208	clock_id = SCARG(uap, clock_id);
209	switch (clock_id) {
210	case CLOCK_REALTIME:
211		nanotime(&ats);
212		break;
213	case CLOCK_MONOTONIC:
214		nanouptime(&ats);
215		break;
216	default:
217		return (EINVAL);
218	}
219
220	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
221}
222
223/* ARGSUSED */
224int
225sys_clock_settime(struct lwp *l, void *v, register_t *retval)
226{
227	struct sys_clock_settime_args /* {
228		syscallarg(clockid_t) clock_id;
229		syscallarg(const struct timespec *) tp;
230	} */ *uap = v;
231	int error;
232
233	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
234	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
235		return (error);
236
237	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
238}
239
240
241int
242clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
243{
244	struct timespec ats;
245	int error;
246
247	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
248		return (error);
249
250	switch (clock_id) {
251	case CLOCK_REALTIME:
252		if ((error = settime(p, &ats)) != 0)
253			return (error);
254		break;
255	case CLOCK_MONOTONIC:
256		return (EINVAL);	/* read-only clock */
257	default:
258		return (EINVAL);
259	}
260
261	return 0;
262}
263
264int
265sys_clock_getres(struct lwp *l, void *v, register_t *retval)
266{
267	struct sys_clock_getres_args /* {
268		syscallarg(clockid_t) clock_id;
269		syscallarg(struct timespec *) tp;
270	} */ *uap = v;
271	clockid_t clock_id;
272	struct timespec ts;
273	int error = 0;
274
275	clock_id = SCARG(uap, clock_id);
276	switch (clock_id) {
277	case CLOCK_REALTIME:
278	case CLOCK_MONOTONIC:
279		ts.tv_sec = 0;
280		if (tc_getfrequency() > 1000000000)
281			ts.tv_nsec = 1;
282		else
283			ts.tv_nsec = 1000000000 / tc_getfrequency();
284		break;
285	default:
286		return (EINVAL);
287	}
288
289	if (SCARG(uap, tp))
290		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
291
292	return error;
293}
294
295/* ARGSUSED */
296int
297sys_nanosleep(struct lwp *l, void *v, register_t *retval)
298{
299	struct sys_nanosleep_args/* {
300		syscallarg(struct timespec *) rqtp;
301		syscallarg(struct timespec *) rmtp;
302	} */ *uap = v;
303	struct timespec rmt, rqt;
304	int error, error1;
305
306	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
307	if (error)
308		return (error);
309
310	error = nanosleep1(l, &rqt, SCARG(uap, rmtp) ? &rmt : NULL);
311	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
312		return error;
313
314	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
315	return error1 ? error1 : error;
316}
317
318int
319nanosleep1(struct lwp *l, struct timespec *rqt, struct timespec *rmt)
320{
321#ifdef __HAVE_TIMECOUNTER
322	int error, timo;
323
324	if (itimespecfix(rqt))
325		return (EINVAL);
326
327	timo = tstohz(rqt);
328	/*
329	 * Avoid inadvertantly sleeping forever
330	 */
331	if (timo == 0)
332		timo = 1;
333
334	if (rmt != NULL)
335		getnanouptime(rmt);
336
337	error = kpause("nanoslp", true, timo, NULL);
338	if (error == ERESTART)
339		error = EINTR;
340	if (error == EWOULDBLOCK)
341		error = 0;
342
343	if (rmt!= NULL) {
344		struct timespec rmtend;
345
346		getnanouptime(&rmtend);
347
348		timespecsub(&rmtend, rmt, rmt);
349		timespecsub(rqt, rmt, rmt);
350		if (rmt->tv_sec < 0)
351			timespecclear(rmt);
352	}
353
354	return error;
355#else /* !__HAVE_TIMECOUNTER */
356	struct timeval atv, utv;
357	int error, s, timo;
358
359	TIMESPEC_TO_TIMEVAL(&atv, rqt);
360	if (itimerfix(&atv))
361		return (EINVAL);
362
363	s = splclock();
364	timeradd(&atv,&time,&atv);
365	timo = hzto(&atv);
366	/*
367	 * Avoid inadvertantly sleeping forever
368	 */
369	if (timo == 0)
370		timo = 1;
371	splx(s);
372
373	error = kpause("nanoslp", true, timo, NULL);
374	if (error == ERESTART)
375		error = EINTR;
376	if (error == EWOULDBLOCK)
377		error = 0;
378
379	if (rmt != NULL) {
380		s = splclock();
381		utv = time;
382		splx(s);
383
384		timersub(&atv, &utv, &utv);
385		if (utv.tv_sec < 0)
386			timerclear(&utv);
387
388		TIMEVAL_TO_TIMESPEC(&utv, rmt);
389	}
390
391	return error;
392#endif /* !__HAVE_TIMECOUNTER */
393}
394
395/* ARGSUSED */
396int
397sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
398{
399	struct sys_gettimeofday_args /* {
400		syscallarg(struct timeval *) tp;
401		syscallarg(void *) tzp;		really "struct timezone *"
402	} */ *uap = v;
403	struct timeval atv;
404	int error = 0;
405	struct timezone tzfake;
406
407	if (SCARG(uap, tp)) {
408		microtime(&atv);
409		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
410		if (error)
411			return (error);
412	}
413	if (SCARG(uap, tzp)) {
414		/*
415		 * NetBSD has no kernel notion of time zone, so we just
416		 * fake up a timezone struct and return it if demanded.
417		 */
418		tzfake.tz_minuteswest = 0;
419		tzfake.tz_dsttime = 0;
420		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
421	}
422	return (error);
423}
424
425/* ARGSUSED */
426int
427sys_settimeofday(struct lwp *l, void *v, register_t *retval)
428{
429	struct sys_settimeofday_args /* {
430		syscallarg(const struct timeval *) tv;
431		syscallarg(const void *) tzp;	really "const struct timezone *"
432	} */ *uap = v;
433
434	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
435}
436
437int
438settimeofday1(const struct timeval *utv, bool userspace,
439    const void *utzp, struct lwp *l, bool check_kauth)
440{
441	struct timeval atv;
442	struct timespec ts;
443	int error;
444
445	/* Verify all parameters before changing time. */
446
447	if (check_kauth) {
448		error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
449		    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL);
450		if (error != 0)
451			return (error);
452	}
453
454	/*
455	 * NetBSD has no kernel notion of time zone, and only an
456	 * obsolete program would try to set it, so we log a warning.
457	 */
458	if (utzp)
459		log(LOG_WARNING, "pid %d attempted to set the "
460		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
461
462	if (utv == NULL)
463		return 0;
464
465	if (userspace) {
466		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
467			return error;
468		utv = &atv;
469	}
470
471	TIMEVAL_TO_TIMESPEC(utv, &ts);
472	return settime(l->l_proc, &ts);
473}
474
475#ifndef __HAVE_TIMECOUNTER
476int	tickdelta;			/* current clock skew, us. per tick */
477long	timedelta;			/* unapplied time correction, us. */
478long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
479#endif
480
481int	time_adjusted;			/* set if an adjustment is made */
482
483/* ARGSUSED */
484int
485sys_adjtime(struct lwp *l, void *v, register_t *retval)
486{
487	struct sys_adjtime_args /* {
488		syscallarg(const struct timeval *) delta;
489		syscallarg(struct timeval *) olddelta;
490	} */ *uap = v;
491	int error;
492
493	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
494	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
495		return (error);
496
497	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
498}
499
500int
501adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
502{
503	struct timeval atv;
504	int error = 0;
505
506#ifdef __HAVE_TIMECOUNTER
507	extern int64_t time_adjtime;  /* in kern_ntptime.c */
508#else /* !__HAVE_TIMECOUNTER */
509	long ndelta, ntickdelta, odelta;
510	int s;
511#endif /* !__HAVE_TIMECOUNTER */
512
513#ifdef __HAVE_TIMECOUNTER
514	if (olddelta) {
515		atv.tv_sec = time_adjtime / 1000000;
516		atv.tv_usec = time_adjtime % 1000000;
517		if (atv.tv_usec < 0) {
518			atv.tv_usec += 1000000;
519			atv.tv_sec--;
520		}
521		error = copyout(&atv, olddelta, sizeof(struct timeval));
522		if (error)
523			return (error);
524	}
525
526	if (delta) {
527		error = copyin(delta, &atv, sizeof(struct timeval));
528		if (error)
529			return (error);
530
531		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
532			atv.tv_usec;
533
534		if (time_adjtime)
535			/* We need to save the system time during shutdown */
536			time_adjusted |= 1;
537	}
538#else /* !__HAVE_TIMECOUNTER */
539	error = copyin(delta, &atv, sizeof(struct timeval));
540	if (error)
541		return (error);
542
543	/*
544	 * Compute the total correction and the rate at which to apply it.
545	 * Round the adjustment down to a whole multiple of the per-tick
546	 * delta, so that after some number of incremental changes in
547	 * hardclock(), tickdelta will become zero, lest the correction
548	 * overshoot and start taking us away from the desired final time.
549	 */
550	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
551	if (ndelta > bigadj || ndelta < -bigadj)
552		ntickdelta = 10 * tickadj;
553	else
554		ntickdelta = tickadj;
555	if (ndelta % ntickdelta)
556		ndelta = ndelta / ntickdelta * ntickdelta;
557
558	/*
559	 * To make hardclock()'s job easier, make the per-tick delta negative
560	 * if we want time to run slower; then hardclock can simply compute
561	 * tick + tickdelta, and subtract tickdelta from timedelta.
562	 */
563	if (ndelta < 0)
564		ntickdelta = -ntickdelta;
565	if (ndelta != 0)
566		/* We need to save the system clock time during shutdown */
567		time_adjusted |= 1;
568	s = splclock();
569	odelta = timedelta;
570	timedelta = ndelta;
571	tickdelta = ntickdelta;
572	splx(s);
573
574	if (olddelta) {
575		atv.tv_sec = odelta / 1000000;
576		atv.tv_usec = odelta % 1000000;
577		error = copyout(&atv, olddelta, sizeof(struct timeval));
578	}
579#endif /* __HAVE_TIMECOUNTER */
580
581	return error;
582}
583
584/*
585 * Interval timer support. Both the BSD getitimer() family and the POSIX
586 * timer_*() family of routines are supported.
587 *
588 * All timers are kept in an array pointed to by p_timers, which is
589 * allocated on demand - many processes don't use timers at all. The
590 * first three elements in this array are reserved for the BSD timers:
591 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
592 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
593 * syscall.
594 *
595 * Realtime timers are kept in the ptimer structure as an absolute
596 * time; virtual time timers are kept as a linked list of deltas.
597 * Virtual time timers are processed in the hardclock() routine of
598 * kern_clock.c.  The real time timer is processed by a callout
599 * routine, called from the softclock() routine.  Since a callout may
600 * be delayed in real time due to interrupt processing in the system,
601 * it is possible for the real time timeout routine (realtimeexpire,
602 * given below), to be delayed in real time past when it is supposed
603 * to occur.  It does not suffice, therefore, to reload the real timer
604 * .it_value from the real time timers .it_interval.  Rather, we
605 * compute the next time in absolute time the timer should go off.  */
606
607/* Allocate a POSIX realtime timer. */
608int
609sys_timer_create(struct lwp *l, void *v, register_t *retval)
610{
611	struct sys_timer_create_args /* {
612		syscallarg(clockid_t) clock_id;
613		syscallarg(struct sigevent *) evp;
614		syscallarg(timer_t *) timerid;
615	} */ *uap = v;
616
617	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
618	    SCARG(uap, evp), copyin, l);
619}
620
621int
622timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
623    copyin_t fetch_event, struct lwp *l)
624{
625	int error;
626	timer_t timerid;
627	struct ptimer *pt;
628	struct proc *p;
629
630	p = l->l_proc;
631
632	if (id < CLOCK_REALTIME ||
633	    id > CLOCK_PROF)
634		return (EINVAL);
635
636	if (p->p_timers == NULL)
637		timers_alloc(p);
638
639	/* Find a free timer slot, skipping those reserved for setitimer(). */
640	for (timerid = 3; timerid < TIMER_MAX; timerid++)
641		if (p->p_timers->pts_timers[timerid] == NULL)
642			break;
643
644	if (timerid == TIMER_MAX)
645		return EAGAIN;
646
647	pt = pool_get(&ptimer_pool, PR_WAITOK);
648	if (evp) {
649		if (((error =
650		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
651		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
652			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
653			pool_put(&ptimer_pool, pt);
654			return (error ? error : EINVAL);
655		}
656	} else {
657		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
658		switch (id) {
659		case CLOCK_REALTIME:
660			pt->pt_ev.sigev_signo = SIGALRM;
661			break;
662		case CLOCK_VIRTUAL:
663			pt->pt_ev.sigev_signo = SIGVTALRM;
664			break;
665		case CLOCK_PROF:
666			pt->pt_ev.sigev_signo = SIGPROF;
667			break;
668		}
669		pt->pt_ev.sigev_value.sival_int = timerid;
670	}
671	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
672	pt->pt_info.ksi_errno = 0;
673	pt->pt_info.ksi_code = 0;
674	pt->pt_info.ksi_pid = p->p_pid;
675	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
676	pt->pt_info.ksi_value = pt->pt_ev.sigev_value;
677
678	pt->pt_type = id;
679	pt->pt_proc = p;
680	pt->pt_overruns = 0;
681	pt->pt_poverruns = 0;
682	pt->pt_entry = timerid;
683	timerclear(&pt->pt_time.it_value);
684	if (id == CLOCK_REALTIME)
685		callout_init(&pt->pt_ch, 0);
686	else
687		pt->pt_active = 0;
688
689	p->p_timers->pts_timers[timerid] = pt;
690
691	return copyout(&timerid, tid, sizeof(timerid));
692}
693
694/* Delete a POSIX realtime timer */
695int
696sys_timer_delete(struct lwp *l, void *v, register_t *retval)
697{
698	struct sys_timer_delete_args /*  {
699		syscallarg(timer_t) timerid;
700	} */ *uap = v;
701	struct proc *p = l->l_proc;
702	timer_t timerid;
703	struct ptimer *pt, *ptn;
704	int s;
705
706	timerid = SCARG(uap, timerid);
707
708	if ((p->p_timers == NULL) ||
709	    (timerid < 2) || (timerid >= TIMER_MAX) ||
710	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
711		return (EINVAL);
712
713	if (pt->pt_type == CLOCK_REALTIME) {
714		callout_stop(&pt->pt_ch);
715		callout_destroy(&pt->pt_ch);
716	} else if (pt->pt_active) {
717		s = splclock();
718		ptn = LIST_NEXT(pt, pt_list);
719		LIST_REMOVE(pt, pt_list);
720		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
721			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
722			    &ptn->pt_time.it_value);
723		splx(s);
724	}
725
726	p->p_timers->pts_timers[timerid] = NULL;
727	pool_put(&ptimer_pool, pt);
728
729	return (0);
730}
731
732/*
733 * Set up the given timer. The value in pt->pt_time.it_value is taken
734 * to be an absolute time for CLOCK_REALTIME timers and a relative
735 * time for virtual timers.
736 * Must be called at splclock().
737 */
738void
739timer_settime(struct ptimer *pt)
740{
741	struct ptimer *ptn, *pptn;
742	struct ptlist *ptl;
743
744	if (pt->pt_type == CLOCK_REALTIME) {
745		callout_stop(&pt->pt_ch);
746		if (timerisset(&pt->pt_time.it_value)) {
747			/*
748			 * Don't need to check hzto() return value, here.
749			 * callout_reset() does it for us.
750			 */
751			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
752			    realtimerexpire, pt);
753		}
754	} else {
755		if (pt->pt_active) {
756			ptn = LIST_NEXT(pt, pt_list);
757			LIST_REMOVE(pt, pt_list);
758			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
759				timeradd(&pt->pt_time.it_value,
760				    &ptn->pt_time.it_value,
761				    &ptn->pt_time.it_value);
762		}
763		if (timerisset(&pt->pt_time.it_value)) {
764			if (pt->pt_type == CLOCK_VIRTUAL)
765				ptl = &pt->pt_proc->p_timers->pts_virtual;
766			else
767				ptl = &pt->pt_proc->p_timers->pts_prof;
768
769			for (ptn = LIST_FIRST(ptl), pptn = NULL;
770			     ptn && timercmp(&pt->pt_time.it_value,
771				 &ptn->pt_time.it_value, >);
772			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
773				timersub(&pt->pt_time.it_value,
774				    &ptn->pt_time.it_value,
775				    &pt->pt_time.it_value);
776
777			if (pptn)
778				LIST_INSERT_AFTER(pptn, pt, pt_list);
779			else
780				LIST_INSERT_HEAD(ptl, pt, pt_list);
781
782			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
783				timersub(&ptn->pt_time.it_value,
784				    &pt->pt_time.it_value,
785				    &ptn->pt_time.it_value);
786
787			pt->pt_active = 1;
788		} else
789			pt->pt_active = 0;
790	}
791}
792
793void
794timer_gettime(struct ptimer *pt, struct itimerval *aitv)
795{
796#ifdef __HAVE_TIMECOUNTER
797	struct timeval now;
798#endif
799	struct ptimer *ptn;
800
801	*aitv = pt->pt_time;
802	if (pt->pt_type == CLOCK_REALTIME) {
803		/*
804		 * Convert from absolute to relative time in .it_value
805		 * part of real time timer.  If time for real time
806		 * timer has passed return 0, else return difference
807		 * between current time and time for the timer to go
808		 * off.
809		 */
810		if (timerisset(&aitv->it_value)) {
811#ifdef __HAVE_TIMECOUNTER
812			getmicrotime(&now);
813			if (timercmp(&aitv->it_value, &now, <))
814				timerclear(&aitv->it_value);
815			else
816				timersub(&aitv->it_value, &now,
817				    &aitv->it_value);
818#else /* !__HAVE_TIMECOUNTER */
819			if (timercmp(&aitv->it_value, &time, <))
820				timerclear(&aitv->it_value);
821			else
822				timersub(&aitv->it_value, &time,
823				    &aitv->it_value);
824#endif /* !__HAVE_TIMECOUNTER */
825		}
826	} else if (pt->pt_active) {
827		if (pt->pt_type == CLOCK_VIRTUAL)
828			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
829		else
830			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
831		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
832			timeradd(&aitv->it_value,
833			    &ptn->pt_time.it_value, &aitv->it_value);
834		KASSERT(ptn != NULL); /* pt should be findable on the list */
835	} else
836		timerclear(&aitv->it_value);
837}
838
839
840
841/* Set and arm a POSIX realtime timer */
842int
843sys_timer_settime(struct lwp *l, void *v, register_t *retval)
844{
845	struct sys_timer_settime_args /* {
846		syscallarg(timer_t) timerid;
847		syscallarg(int) flags;
848		syscallarg(const struct itimerspec *) value;
849		syscallarg(struct itimerspec *) ovalue;
850	} */ *uap = v;
851	int error;
852	struct itimerspec value, ovalue, *ovp = NULL;
853
854	if ((error = copyin(SCARG(uap, value), &value,
855	    sizeof(struct itimerspec))) != 0)
856		return (error);
857
858	if (SCARG(uap, ovalue))
859		ovp = &ovalue;
860
861	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
862	    SCARG(uap, flags), l->l_proc)) != 0)
863		return error;
864
865	if (ovp)
866		return copyout(&ovalue, SCARG(uap, ovalue),
867		    sizeof(struct itimerspec));
868	return 0;
869}
870
871int
872dotimer_settime(int timerid, struct itimerspec *value,
873    struct itimerspec *ovalue, int flags, struct proc *p)
874{
875#ifdef __HAVE_TIMECOUNTER
876	struct timeval now;
877#endif
878	struct itimerval val, oval;
879	struct ptimer *pt;
880	int s;
881
882	if ((p->p_timers == NULL) ||
883	    (timerid < 2) || (timerid >= TIMER_MAX) ||
884	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
885		return (EINVAL);
886
887	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
888	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
889	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
890		return (EINVAL);
891
892	oval = pt->pt_time;
893	pt->pt_time = val;
894
895	s = splclock();
896	/*
897	 * If we've been passed a relative time for a realtime timer,
898	 * convert it to absolute; if an absolute time for a virtual
899	 * timer, convert it to relative and make sure we don't set it
900	 * to zero, which would cancel the timer, or let it go
901	 * negative, which would confuse the comparison tests.
902	 */
903	if (timerisset(&pt->pt_time.it_value)) {
904		if (pt->pt_type == CLOCK_REALTIME) {
905#ifdef __HAVE_TIMECOUNTER
906			if ((flags & TIMER_ABSTIME) == 0) {
907				getmicrotime(&now);
908				timeradd(&pt->pt_time.it_value, &now,
909				    &pt->pt_time.it_value);
910			}
911#else /* !__HAVE_TIMECOUNTER */
912			if ((flags & TIMER_ABSTIME) == 0)
913				timeradd(&pt->pt_time.it_value, &time,
914				    &pt->pt_time.it_value);
915#endif /* !__HAVE_TIMECOUNTER */
916		} else {
917			if ((flags & TIMER_ABSTIME) != 0) {
918#ifdef __HAVE_TIMECOUNTER
919				getmicrotime(&now);
920				timersub(&pt->pt_time.it_value, &now,
921				    &pt->pt_time.it_value);
922#else /* !__HAVE_TIMECOUNTER */
923				timersub(&pt->pt_time.it_value, &time,
924				    &pt->pt_time.it_value);
925#endif /* !__HAVE_TIMECOUNTER */
926				if (!timerisset(&pt->pt_time.it_value) ||
927				    pt->pt_time.it_value.tv_sec < 0) {
928					pt->pt_time.it_value.tv_sec = 0;
929					pt->pt_time.it_value.tv_usec = 1;
930				}
931			}
932		}
933	}
934
935	timer_settime(pt);
936	splx(s);
937
938	if (ovalue) {
939		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
940		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
941	}
942
943	return (0);
944}
945
946/* Return the time remaining until a POSIX timer fires. */
947int
948sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
949{
950	struct sys_timer_gettime_args /* {
951		syscallarg(timer_t) timerid;
952		syscallarg(struct itimerspec *) value;
953	} */ *uap = v;
954	struct itimerspec its;
955	int error;
956
957	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
958	    &its)) != 0)
959		return error;
960
961	return copyout(&its, SCARG(uap, value), sizeof(its));
962}
963
964int
965dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
966{
967	int s;
968	struct ptimer *pt;
969	struct itimerval aitv;
970
971	if ((p->p_timers == NULL) ||
972	    (timerid < 2) || (timerid >= TIMER_MAX) ||
973	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
974		return (EINVAL);
975
976	s = splclock();
977	timer_gettime(pt, &aitv);
978	splx(s);
979
980	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
981	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
982
983	return 0;
984}
985
986/*
987 * Return the count of the number of times a periodic timer expired
988 * while a notification was already pending. The counter is reset when
989 * a timer expires and a notification can be posted.
990 */
991int
992sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
993{
994	struct sys_timer_getoverrun_args /* {
995		syscallarg(timer_t) timerid;
996	} */ *uap = v;
997	struct proc *p = l->l_proc;
998	int timerid;
999	struct ptimer *pt;
1000
1001	timerid = SCARG(uap, timerid);
1002
1003	if ((p->p_timers == NULL) ||
1004	    (timerid < 2) || (timerid >= TIMER_MAX) ||
1005	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1006		return (EINVAL);
1007
1008	*retval = pt->pt_poverruns;
1009
1010	return (0);
1011}
1012
1013/*
1014 * Real interval timer expired:
1015 * send process whose timer expired an alarm signal.
1016 * If time is not set up to reload, then just return.
1017 * Else compute next time timer should go off which is > current time.
1018 * This is where delay in processing this timeout causes multiple
1019 * SIGALRM calls to be compressed into one.
1020 */
1021void
1022realtimerexpire(void *arg)
1023{
1024#ifdef __HAVE_TIMECOUNTER
1025	struct timeval now;
1026#endif
1027	struct ptimer *pt;
1028	int s;
1029
1030	pt = (struct ptimer *)arg;
1031
1032	itimerfire(pt);
1033
1034	if (!timerisset(&pt->pt_time.it_interval)) {
1035		timerclear(&pt->pt_time.it_value);
1036		return;
1037	}
1038#ifdef __HAVE_TIMECOUNTER
1039	for (;;) {
1040		s = splclock();	/* XXX need spl now? */
1041		timeradd(&pt->pt_time.it_value,
1042		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1043		getmicrotime(&now);
1044		if (timercmp(&pt->pt_time.it_value, &now, >)) {
1045			/*
1046			 * Don't need to check hzto() return value, here.
1047			 * callout_reset() does it for us.
1048			 */
1049			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1050			    realtimerexpire, pt);
1051			splx(s);
1052			return;
1053		}
1054		splx(s);
1055		pt->pt_overruns++;
1056	}
1057#else /* !__HAVE_TIMECOUNTER */
1058	for (;;) {
1059		s = splclock();
1060		timeradd(&pt->pt_time.it_value,
1061		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1062		if (timercmp(&pt->pt_time.it_value, &time, >)) {
1063			/*
1064			 * Don't need to check hzto() return value, here.
1065			 * callout_reset() does it for us.
1066			 */
1067			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1068			    realtimerexpire, pt);
1069			splx(s);
1070			return;
1071		}
1072		splx(s);
1073		pt->pt_overruns++;
1074	}
1075#endif /* !__HAVE_TIMECOUNTER */
1076}
1077
1078/* BSD routine to get the value of an interval timer. */
1079/* ARGSUSED */
1080int
1081sys_getitimer(struct lwp *l, void *v, register_t *retval)
1082{
1083	struct sys_getitimer_args /* {
1084		syscallarg(int) which;
1085		syscallarg(struct itimerval *) itv;
1086	} */ *uap = v;
1087	struct proc *p = l->l_proc;
1088	struct itimerval aitv;
1089	int error;
1090
1091	error = dogetitimer(p, SCARG(uap, which), &aitv);
1092	if (error)
1093		return error;
1094	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1095}
1096
1097int
1098dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1099{
1100	int s;
1101
1102	if ((u_int)which > ITIMER_PROF)
1103		return (EINVAL);
1104
1105	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1106		timerclear(&itvp->it_value);
1107		timerclear(&itvp->it_interval);
1108	} else {
1109		s = splclock();
1110		timer_gettime(p->p_timers->pts_timers[which], itvp);
1111		splx(s);
1112	}
1113
1114	return 0;
1115}
1116
1117/* BSD routine to set/arm an interval timer. */
1118/* ARGSUSED */
1119int
1120sys_setitimer(struct lwp *l, void *v, register_t *retval)
1121{
1122	struct sys_setitimer_args /* {
1123		syscallarg(int) which;
1124		syscallarg(const struct itimerval *) itv;
1125		syscallarg(struct itimerval *) oitv;
1126	} */ *uap = v;
1127	struct proc *p = l->l_proc;
1128	int which = SCARG(uap, which);
1129	struct sys_getitimer_args getargs;
1130	const struct itimerval *itvp;
1131	struct itimerval aitv;
1132	int error;
1133
1134	if ((u_int)which > ITIMER_PROF)
1135		return (EINVAL);
1136	itvp = SCARG(uap, itv);
1137	if (itvp &&
1138	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1139		return (error);
1140	if (SCARG(uap, oitv) != NULL) {
1141		SCARG(&getargs, which) = which;
1142		SCARG(&getargs, itv) = SCARG(uap, oitv);
1143		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1144			return (error);
1145	}
1146	if (itvp == 0)
1147		return (0);
1148
1149	return dosetitimer(p, which, &aitv);
1150}
1151
1152int
1153dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1154{
1155#ifdef __HAVE_TIMECOUNTER
1156	struct timeval now;
1157#endif
1158	struct ptimer *pt;
1159	int s;
1160
1161	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1162		return (EINVAL);
1163
1164	/*
1165	 * Don't bother allocating data structures if the process just
1166	 * wants to clear the timer.
1167	 */
1168	if (!timerisset(&itvp->it_value) &&
1169	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1170		return (0);
1171
1172	if (p->p_timers == NULL)
1173		timers_alloc(p);
1174	if (p->p_timers->pts_timers[which] == NULL) {
1175		pt = pool_get(&ptimer_pool, PR_WAITOK);
1176		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1177		pt->pt_ev.sigev_value.sival_int = which;
1178		pt->pt_overruns = 0;
1179		pt->pt_proc = p;
1180		pt->pt_type = which;
1181		pt->pt_entry = which;
1182		switch (which) {
1183		case ITIMER_REAL:
1184			callout_init(&pt->pt_ch, 0);
1185			pt->pt_ev.sigev_signo = SIGALRM;
1186			break;
1187		case ITIMER_VIRTUAL:
1188			pt->pt_active = 0;
1189			pt->pt_ev.sigev_signo = SIGVTALRM;
1190			break;
1191		case ITIMER_PROF:
1192			pt->pt_active = 0;
1193			pt->pt_ev.sigev_signo = SIGPROF;
1194			break;
1195		}
1196	} else
1197		pt = p->p_timers->pts_timers[which];
1198
1199	pt->pt_time = *itvp;
1200	p->p_timers->pts_timers[which] = pt;
1201
1202	s = splclock();
1203	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1204		/* Convert to absolute time */
1205#ifdef __HAVE_TIMECOUNTER
1206		/* XXX need to wrap in splclock for timecounters case? */
1207		getmicrotime(&now);
1208		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1209#else /* !__HAVE_TIMECOUNTER */
1210		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1211#endif /* !__HAVE_TIMECOUNTER */
1212	}
1213	timer_settime(pt);
1214	splx(s);
1215
1216	return (0);
1217}
1218
1219/* Utility routines to manage the array of pointers to timers. */
1220void
1221timers_alloc(struct proc *p)
1222{
1223	int i;
1224	struct ptimers *pts;
1225
1226	pts = pool_get(&ptimers_pool, PR_WAITOK);
1227	LIST_INIT(&pts->pts_virtual);
1228	LIST_INIT(&pts->pts_prof);
1229	for (i = 0; i < TIMER_MAX; i++)
1230		pts->pts_timers[i] = NULL;
1231	pts->pts_fired = 0;
1232	p->p_timers = pts;
1233}
1234
1235/*
1236 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1237 * then clean up all timers and free all the data structures. If
1238 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1239 * by timer_create(), not the BSD setitimer() timers, and only free the
1240 * structure if none of those remain.
1241 */
1242void
1243timers_free(struct proc *p, int which)
1244{
1245	int i, s;
1246	struct ptimers *pts;
1247	struct ptimer *pt, *ptn;
1248	struct timeval tv;
1249
1250	if (p->p_timers) {
1251		pts = p->p_timers;
1252		if (which == TIMERS_ALL)
1253			i = 0;
1254		else {
1255			s = splclock();
1256			timerclear(&tv);
1257			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1258			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1259			     ptn = LIST_NEXT(ptn, pt_list))
1260				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1261			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1262			if (ptn) {
1263				timeradd(&tv, &ptn->pt_time.it_value,
1264				    &ptn->pt_time.it_value);
1265				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1266				    ptn, pt_list);
1267			}
1268
1269			timerclear(&tv);
1270			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1271			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1272			     ptn = LIST_NEXT(ptn, pt_list))
1273				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1274			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1275			if (ptn) {
1276				timeradd(&tv, &ptn->pt_time.it_value,
1277				    &ptn->pt_time.it_value);
1278				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1279				    pt_list);
1280			}
1281			splx(s);
1282			i = 3;
1283		}
1284		for ( ; i < TIMER_MAX; i++)
1285			if ((pt = pts->pts_timers[i]) != NULL) {
1286				if (pt->pt_type == CLOCK_REALTIME) {
1287					callout_stop(&pt->pt_ch);
1288					callout_destroy(&pt->pt_ch);
1289				}
1290				pts->pts_timers[i] = NULL;
1291				pool_put(&ptimer_pool, pt);
1292			}
1293		if ((pts->pts_timers[0] == NULL) &&
1294		    (pts->pts_timers[1] == NULL) &&
1295		    (pts->pts_timers[2] == NULL)) {
1296			p->p_timers = NULL;
1297			pool_put(&ptimers_pool, pts);
1298		}
1299	}
1300}
1301
1302/*
1303 * Decrement an interval timer by a specified number
1304 * of microseconds, which must be less than a second,
1305 * i.e. < 1000000.  If the timer expires, then reload
1306 * it.  In this case, carry over (usec - old value) to
1307 * reduce the value reloaded into the timer so that
1308 * the timer does not drift.  This routine assumes
1309 * that it is called in a context where the timers
1310 * on which it is operating cannot change in value.
1311 */
1312int
1313itimerdecr(struct ptimer *pt, int usec)
1314{
1315	struct itimerval *itp;
1316
1317	itp = &pt->pt_time;
1318	if (itp->it_value.tv_usec < usec) {
1319		if (itp->it_value.tv_sec == 0) {
1320			/* expired, and already in next interval */
1321			usec -= itp->it_value.tv_usec;
1322			goto expire;
1323		}
1324		itp->it_value.tv_usec += 1000000;
1325		itp->it_value.tv_sec--;
1326	}
1327	itp->it_value.tv_usec -= usec;
1328	usec = 0;
1329	if (timerisset(&itp->it_value))
1330		return (1);
1331	/* expired, exactly at end of interval */
1332expire:
1333	if (timerisset(&itp->it_interval)) {
1334		itp->it_value = itp->it_interval;
1335		itp->it_value.tv_usec -= usec;
1336		if (itp->it_value.tv_usec < 0) {
1337			itp->it_value.tv_usec += 1000000;
1338			itp->it_value.tv_sec--;
1339		}
1340		timer_settime(pt);
1341	} else
1342		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1343	return (0);
1344}
1345
1346void
1347itimerfire(struct ptimer *pt)
1348{
1349	struct proc *p = pt->pt_proc;
1350
1351	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1352		/*
1353		 * No RT signal infrastructure exists at this time;
1354		 * just post the signal number and throw away the
1355		 * value.
1356		 */
1357		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1358			pt->pt_overruns++;
1359		else {
1360			ksiginfo_t ksi;
1361			KSI_INIT(&ksi);
1362			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1363			ksi.ksi_code = SI_TIMER;
1364			ksi.ksi_value = pt->pt_ev.sigev_value;
1365			pt->pt_poverruns = pt->pt_overruns;
1366			pt->pt_overruns = 0;
1367			mutex_enter(&proclist_mutex);
1368			kpsignal(p, &ksi, NULL);
1369			mutex_exit(&proclist_mutex);
1370		}
1371	}
1372}
1373
1374/*
1375 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1376 * for usage and rationale.
1377 */
1378int
1379ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1380{
1381	struct timeval tv, delta;
1382	int rv = 0;
1383#ifndef __HAVE_TIMECOUNTER
1384	int s;
1385#endif
1386
1387#ifdef __HAVE_TIMECOUNTER
1388	getmicrouptime(&tv);
1389#else /* !__HAVE_TIMECOUNTER */
1390	s = splclock();
1391	tv = mono_time;
1392	splx(s);
1393#endif /* !__HAVE_TIMECOUNTER */
1394	timersub(&tv, lasttime, &delta);
1395
1396	/*
1397	 * check for 0,0 is so that the message will be seen at least once,
1398	 * even if interval is huge.
1399	 */
1400	if (timercmp(&delta, mininterval, >=) ||
1401	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1402		*lasttime = tv;
1403		rv = 1;
1404	}
1405
1406	return (rv);
1407}
1408
1409/*
1410 * ppsratecheck(): packets (or events) per second limitation.
1411 */
1412int
1413ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1414{
1415	struct timeval tv, delta;
1416	int rv;
1417#ifndef __HAVE_TIMECOUNTER
1418	int s;
1419#endif
1420
1421#ifdef __HAVE_TIMECOUNTER
1422	getmicrouptime(&tv);
1423#else /* !__HAVE_TIMECOUNTER */
1424	s = splclock();
1425	tv = mono_time;
1426	splx(s);
1427#endif /* !__HAVE_TIMECOUNTER */
1428	timersub(&tv, lasttime, &delta);
1429
1430	/*
1431	 * check for 0,0 is so that the message will be seen at least once.
1432	 * if more than one second have passed since the last update of
1433	 * lasttime, reset the counter.
1434	 *
1435	 * we do increment *curpps even in *curpps < maxpps case, as some may
1436	 * try to use *curpps for stat purposes as well.
1437	 */
1438	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1439	    delta.tv_sec >= 1) {
1440		*lasttime = tv;
1441		*curpps = 0;
1442	}
1443	if (maxpps < 0)
1444		rv = 1;
1445	else if (*curpps < maxpps)
1446		rv = 1;
1447	else
1448		rv = 0;
1449
1450#if 1 /*DIAGNOSTIC?*/
1451	/* be careful about wrap-around */
1452	if (*curpps + 1 > *curpps)
1453		*curpps = *curpps + 1;
1454#else
1455	/*
1456	 * assume that there's not too many calls to this function.
1457	 * not sure if the assumption holds, as it depends on *caller's*
1458	 * behavior, not the behavior of this function.
1459	 * IMHO it is wrong to make assumption on the caller's behavior,
1460	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1461	 */
1462	*curpps = *curpps + 1;
1463#endif
1464
1465	return (rv);
1466}
1467