kern_time.c revision 1.114
1/*	$NetBSD: kern_time.c,v 1.114 2007/02/16 02:53:43 ad Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.114 2007/02/16 02:53:43 ad Exp $");
72
73#include <sys/param.h>
74#include <sys/resourcevar.h>
75#include <sys/kernel.h>
76#include <sys/systm.h>
77#include <sys/proc.h>
78#include <sys/vnode.h>
79#include <sys/signalvar.h>
80#include <sys/syslog.h>
81#ifdef __HAVE_TIMECOUNTER
82#include <sys/timetc.h>
83#else /* !__HAVE_TIMECOUNTER */
84#include <sys/timevar.h>
85#endif /* !__HAVE_TIMECOUNTER */
86#include <sys/kauth.h>
87
88#include <sys/mount.h>
89#include <sys/syscallargs.h>
90
91#include <uvm/uvm_extern.h>
92
93#include <machine/cpu.h>
94
95POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
96    &pool_allocator_nointr);
97POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
98    &pool_allocator_nointr);
99
100#ifdef __HAVE_TIMECOUNTER
101static int itimespecfix(struct timespec *);		/* XXX move itimerfix to timespecs */
102#endif /* __HAVE_TIMECOUNTER */
103
104/* Time of day and interval timer support.
105 *
106 * These routines provide the kernel entry points to get and set
107 * the time-of-day and per-process interval timers.  Subroutines
108 * here provide support for adding and subtracting timeval structures
109 * and decrementing interval timers, optionally reloading the interval
110 * timers when they expire.
111 */
112
113/* This function is used by clock_settime and settimeofday */
114int
115settime(struct proc *p, struct timespec *ts)
116{
117	struct timeval delta, tv;
118#ifdef __HAVE_TIMECOUNTER
119	struct timeval now;
120	struct timespec ts1;
121#endif /* !__HAVE_TIMECOUNTER */
122	struct cpu_info *ci;
123	int s1, s2;
124
125	/*
126	 * Don't allow the time to be set forward so far it will wrap
127	 * and become negative, thus allowing an attacker to bypass
128	 * the next check below.  The cutoff is 1 year before rollover
129	 * occurs, so even if the attacker uses adjtime(2) to move
130	 * the time past the cutoff, it will take a very long time
131	 * to get to the wrap point.
132	 *
133	 * XXX: we check against INT_MAX since on 64-bit
134	 *	platforms, sizeof(int) != sizeof(long) and
135	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
136	 */
137	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
138		struct proc *pp;
139
140		rw_enter(&proclist_lock, RW_READER);
141		pp = p->p_pptr;
142		mutex_enter(&pp->p_mutex);
143		log(LOG_WARNING, "pid %d (%s) "
144		    "invoked by uid %d ppid %d (%s) "
145		    "tried to set clock forward to %ld\n",
146		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
147		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
148		mutex_exit(&pp->p_mutex);
149		rw_exit(&proclist_lock);
150		return (EPERM);
151	}
152	TIMESPEC_TO_TIMEVAL(&tv, ts);
153
154	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
155	s1 = splsoftclock();
156	s2 = splclock();
157#ifdef __HAVE_TIMECOUNTER
158	microtime(&now);
159	timersub(&tv, &now, &delta);
160#else /* !__HAVE_TIMECOUNTER */
161	timersub(&tv, &time, &delta);
162#endif /* !__HAVE_TIMECOUNTER */
163	if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
164	    kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
165	    KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
166		splx(s1);
167		return (EPERM);
168	}
169#ifdef notyet
170	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
171		splx(s1);
172		return (EPERM);
173	}
174#endif
175
176#ifdef __HAVE_TIMECOUNTER
177	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
178	tc_setclock(&ts1);
179#else /* !__HAVE_TIMECOUNTER */
180	time = tv;
181#endif /* !__HAVE_TIMECOUNTER */
182
183	splx(s2);
184
185	timeradd(&boottime, &delta, &boottime);
186
187	/*
188	 * XXXSMP
189	 * This is wrong.  We should traverse a list of all
190	 * CPUs and add the delta to the runtime of those
191	 * CPUs which have a process on them.
192	 */
193	ci = curcpu();
194	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
195	    &ci->ci_schedstate.spc_runtime);
196	splx(s1);
197	resettodr();
198	return (0);
199}
200
201/* ARGSUSED */
202int
203sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
204{
205	struct sys_clock_gettime_args /* {
206		syscallarg(clockid_t) clock_id;
207		syscallarg(struct timespec *) tp;
208	} */ *uap = v;
209	clockid_t clock_id;
210	struct timespec ats;
211
212	clock_id = SCARG(uap, clock_id);
213	switch (clock_id) {
214	case CLOCK_REALTIME:
215		nanotime(&ats);
216		break;
217	case CLOCK_MONOTONIC:
218#ifdef __HAVE_TIMECOUNTER
219		nanouptime(&ats);
220#else /* !__HAVE_TIMECOUNTER */
221		{
222		int s;
223
224		/* XXX "hz" granularity */
225		s = splclock();
226		TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
227		splx(s);
228		}
229#endif /* !__HAVE_TIMECOUNTER */
230		break;
231	default:
232		return (EINVAL);
233	}
234
235	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
236}
237
238/* ARGSUSED */
239int
240sys_clock_settime(struct lwp *l, void *v, register_t *retval)
241{
242	struct sys_clock_settime_args /* {
243		syscallarg(clockid_t) clock_id;
244		syscallarg(const struct timespec *) tp;
245	} */ *uap = v;
246	int error;
247
248	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
249	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
250		return (error);
251
252	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
253}
254
255
256int
257clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
258{
259	struct timespec ats;
260	int error;
261
262	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
263		return (error);
264
265	switch (clock_id) {
266	case CLOCK_REALTIME:
267		if ((error = settime(p, &ats)) != 0)
268			return (error);
269		break;
270	case CLOCK_MONOTONIC:
271		return (EINVAL);	/* read-only clock */
272	default:
273		return (EINVAL);
274	}
275
276	return 0;
277}
278
279int
280sys_clock_getres(struct lwp *l, void *v, register_t *retval)
281{
282	struct sys_clock_getres_args /* {
283		syscallarg(clockid_t) clock_id;
284		syscallarg(struct timespec *) tp;
285	} */ *uap = v;
286	clockid_t clock_id;
287	struct timespec ts;
288	int error = 0;
289
290	clock_id = SCARG(uap, clock_id);
291	switch (clock_id) {
292	case CLOCK_REALTIME:
293	case CLOCK_MONOTONIC:
294		ts.tv_sec = 0;
295#ifdef __HAVE_TIMECOUNTER
296		if (tc_getfrequency() > 1000000000)
297			ts.tv_nsec = 1;
298		else
299			ts.tv_nsec = 1000000000 / tc_getfrequency();
300#else /* !__HAVE_TIMECOUNTER */
301		ts.tv_nsec = 1000000000 / hz;
302#endif /* !__HAVE_TIMECOUNTER */
303		break;
304	default:
305		return (EINVAL);
306	}
307
308	if (SCARG(uap, tp))
309		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
310
311	return error;
312}
313
314/* ARGSUSED */
315int
316sys_nanosleep(struct lwp *l, void *v, register_t *retval)
317{
318#ifdef __HAVE_TIMECOUNTER
319	struct sys_nanosleep_args/* {
320		syscallarg(struct timespec *) rqtp;
321		syscallarg(struct timespec *) rmtp;
322	} */ *uap = v;
323	struct timespec rmt, rqt;
324	int error, timo;
325
326	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
327	if (error)
328		return (error);
329
330	if (itimespecfix(&rqt))
331		return (EINVAL);
332
333	timo = tstohz(&rqt);
334	/*
335	 * Avoid inadvertantly sleeping forever
336	 */
337	if (timo == 0)
338		timo = 1;
339
340	getnanouptime(&rmt);
341
342	error = kpause("nanoslp", TRUE, timo, NULL);
343	if (error == ERESTART)
344		error = EINTR;
345	if (error == EWOULDBLOCK)
346		error = 0;
347
348	if (SCARG(uap, rmtp)) {
349		int error1;
350		struct timespec rmtend;
351
352		getnanouptime(&rmtend);
353
354		timespecsub(&rmtend, &rmt, &rmt);
355		timespecsub(&rqt, &rmt, &rmt);
356		if (rmt.tv_sec < 0)
357			timespecclear(&rmt);
358
359		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
360			sizeof(rmt));
361		if (error1)
362			return (error1);
363	}
364
365	return error;
366#else /* !__HAVE_TIMECOUNTER */
367	struct sys_nanosleep_args/* {
368		syscallarg(struct timespec *) rqtp;
369		syscallarg(struct timespec *) rmtp;
370	} */ *uap = v;
371	struct timespec rqt;
372	struct timespec rmt;
373	struct timeval atv, utv;
374	int error, s, timo;
375
376	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
377	if (error)
378		return (error);
379
380	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
381	if (itimerfix(&atv))
382		return (EINVAL);
383
384	s = splclock();
385	timeradd(&atv,&time,&atv);
386	timo = hzto(&atv);
387	/*
388	 * Avoid inadvertantly sleeping forever
389	 */
390	if (timo == 0)
391		timo = 1;
392	splx(s);
393
394	error = kpause("nanoslp", TRUE, timo, NULL);
395	if (error == ERESTART)
396		error = EINTR;
397	if (error == EWOULDBLOCK)
398		error = 0;
399
400	if (SCARG(uap, rmtp)) {
401		int error1;
402
403		s = splclock();
404		utv = time;
405		splx(s);
406
407		timersub(&atv, &utv, &utv);
408		if (utv.tv_sec < 0)
409			timerclear(&utv);
410
411		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
412		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
413			sizeof(rmt));
414		if (error1)
415			return (error1);
416	}
417
418	return error;
419#endif /* !__HAVE_TIMECOUNTER */
420}
421
422/* ARGSUSED */
423int
424sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
425{
426	struct sys_gettimeofday_args /* {
427		syscallarg(struct timeval *) tp;
428		syscallarg(void *) tzp;		really "struct timezone *"
429	} */ *uap = v;
430	struct timeval atv;
431	int error = 0;
432	struct timezone tzfake;
433
434	if (SCARG(uap, tp)) {
435		microtime(&atv);
436		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
437		if (error)
438			return (error);
439	}
440	if (SCARG(uap, tzp)) {
441		/*
442		 * NetBSD has no kernel notion of time zone, so we just
443		 * fake up a timezone struct and return it if demanded.
444		 */
445		tzfake.tz_minuteswest = 0;
446		tzfake.tz_dsttime = 0;
447		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
448	}
449	return (error);
450}
451
452/* ARGSUSED */
453int
454sys_settimeofday(struct lwp *l, void *v, register_t *retval)
455{
456	struct sys_settimeofday_args /* {
457		syscallarg(const struct timeval *) tv;
458		syscallarg(const void *) tzp;	really "const struct timezone *"
459	} */ *uap = v;
460	int error;
461
462	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
463	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
464		return (error);
465
466	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
467}
468
469int
470settimeofday1(const struct timeval *utv, const struct timezone *utzp,
471    struct proc *p)
472{
473	struct timeval atv;
474	struct timespec ts;
475	int error;
476
477	/* Verify all parameters before changing time. */
478	/*
479	 * NetBSD has no kernel notion of time zone, and only an
480	 * obsolete program would try to set it, so we log a warning.
481	 */
482	if (utzp)
483		log(LOG_WARNING, "pid %d attempted to set the "
484		    "(obsolete) kernel time zone\n", p->p_pid);
485
486	if (utv == NULL)
487		return 0;
488
489	if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
490		return error;
491	TIMEVAL_TO_TIMESPEC(&atv, &ts);
492	return settime(p, &ts);
493}
494
495#ifndef __HAVE_TIMECOUNTER
496int	tickdelta;			/* current clock skew, us. per tick */
497long	timedelta;			/* unapplied time correction, us. */
498long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
499#endif
500
501int	time_adjusted;			/* set if an adjustment is made */
502
503/* ARGSUSED */
504int
505sys_adjtime(struct lwp *l, void *v, register_t *retval)
506{
507	struct sys_adjtime_args /* {
508		syscallarg(const struct timeval *) delta;
509		syscallarg(struct timeval *) olddelta;
510	} */ *uap = v;
511	int error;
512
513	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
514	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
515		return (error);
516
517	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
518}
519
520int
521adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
522{
523	struct timeval atv;
524	int error = 0;
525
526#ifdef __HAVE_TIMECOUNTER
527	extern int64_t time_adjtime;  /* in kern_ntptime.c */
528#else /* !__HAVE_TIMECOUNTER */
529	long ndelta, ntickdelta, odelta;
530	int s;
531#endif /* !__HAVE_TIMECOUNTER */
532
533#ifdef __HAVE_TIMECOUNTER
534	if (olddelta) {
535		atv.tv_sec = time_adjtime / 1000000;
536		atv.tv_usec = time_adjtime % 1000000;
537		if (atv.tv_usec < 0) {
538			atv.tv_usec += 1000000;
539			atv.tv_sec--;
540		}
541		error = copyout(&atv, olddelta, sizeof(struct timeval));
542		if (error)
543			return (error);
544	}
545
546	if (delta) {
547		error = copyin(delta, &atv, sizeof(struct timeval));
548		if (error)
549			return (error);
550
551		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
552			atv.tv_usec;
553
554		if (time_adjtime)
555			/* We need to save the system time during shutdown */
556			time_adjusted |= 1;
557	}
558#else /* !__HAVE_TIMECOUNTER */
559	error = copyin(delta, &atv, sizeof(struct timeval));
560	if (error)
561		return (error);
562
563	/*
564	 * Compute the total correction and the rate at which to apply it.
565	 * Round the adjustment down to a whole multiple of the per-tick
566	 * delta, so that after some number of incremental changes in
567	 * hardclock(), tickdelta will become zero, lest the correction
568	 * overshoot and start taking us away from the desired final time.
569	 */
570	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
571	if (ndelta > bigadj || ndelta < -bigadj)
572		ntickdelta = 10 * tickadj;
573	else
574		ntickdelta = tickadj;
575	if (ndelta % ntickdelta)
576		ndelta = ndelta / ntickdelta * ntickdelta;
577
578	/*
579	 * To make hardclock()'s job easier, make the per-tick delta negative
580	 * if we want time to run slower; then hardclock can simply compute
581	 * tick + tickdelta, and subtract tickdelta from timedelta.
582	 */
583	if (ndelta < 0)
584		ntickdelta = -ntickdelta;
585	if (ndelta != 0)
586		/* We need to save the system clock time during shutdown */
587		time_adjusted |= 1;
588	s = splclock();
589	odelta = timedelta;
590	timedelta = ndelta;
591	tickdelta = ntickdelta;
592	splx(s);
593
594	if (olddelta) {
595		atv.tv_sec = odelta / 1000000;
596		atv.tv_usec = odelta % 1000000;
597		error = copyout(&atv, olddelta, sizeof(struct timeval));
598	}
599#endif /* __HAVE_TIMECOUNTER */
600
601	return error;
602}
603
604/*
605 * Interval timer support. Both the BSD getitimer() family and the POSIX
606 * timer_*() family of routines are supported.
607 *
608 * All timers are kept in an array pointed to by p_timers, which is
609 * allocated on demand - many processes don't use timers at all. The
610 * first three elements in this array are reserved for the BSD timers:
611 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
612 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
613 * syscall.
614 *
615 * Realtime timers are kept in the ptimer structure as an absolute
616 * time; virtual time timers are kept as a linked list of deltas.
617 * Virtual time timers are processed in the hardclock() routine of
618 * kern_clock.c.  The real time timer is processed by a callout
619 * routine, called from the softclock() routine.  Since a callout may
620 * be delayed in real time due to interrupt processing in the system,
621 * it is possible for the real time timeout routine (realtimeexpire,
622 * given below), to be delayed in real time past when it is supposed
623 * to occur.  It does not suffice, therefore, to reload the real timer
624 * .it_value from the real time timers .it_interval.  Rather, we
625 * compute the next time in absolute time the timer should go off.  */
626
627/* Allocate a POSIX realtime timer. */
628int
629sys_timer_create(struct lwp *l, void *v, register_t *retval)
630{
631	struct sys_timer_create_args /* {
632		syscallarg(clockid_t) clock_id;
633		syscallarg(struct sigevent *) evp;
634		syscallarg(timer_t *) timerid;
635	} */ *uap = v;
636
637	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
638	    SCARG(uap, evp), copyin, l);
639}
640
641int
642timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
643    copyin_t fetch_event, struct lwp *l)
644{
645	int error;
646	timer_t timerid;
647	struct ptimer *pt;
648	struct proc *p;
649
650	p = l->l_proc;
651
652	if (id < CLOCK_REALTIME ||
653	    id > CLOCK_PROF)
654		return (EINVAL);
655
656	if (p->p_timers == NULL)
657		timers_alloc(p);
658
659	/* Find a free timer slot, skipping those reserved for setitimer(). */
660	for (timerid = 3; timerid < TIMER_MAX; timerid++)
661		if (p->p_timers->pts_timers[timerid] == NULL)
662			break;
663
664	if (timerid == TIMER_MAX)
665		return EAGAIN;
666
667	pt = pool_get(&ptimer_pool, PR_WAITOK);
668	if (evp) {
669		if (((error =
670		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
671		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
672			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
673			pool_put(&ptimer_pool, pt);
674			return (error ? error : EINVAL);
675		}
676	} else {
677		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
678		switch (id) {
679		case CLOCK_REALTIME:
680			pt->pt_ev.sigev_signo = SIGALRM;
681			break;
682		case CLOCK_VIRTUAL:
683			pt->pt_ev.sigev_signo = SIGVTALRM;
684			break;
685		case CLOCK_PROF:
686			pt->pt_ev.sigev_signo = SIGPROF;
687			break;
688		}
689		pt->pt_ev.sigev_value.sival_int = timerid;
690	}
691	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
692	pt->pt_info.ksi_errno = 0;
693	pt->pt_info.ksi_code = 0;
694	pt->pt_info.ksi_pid = p->p_pid;
695	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
696	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
697
698	pt->pt_type = id;
699	pt->pt_proc = p;
700	pt->pt_overruns = 0;
701	pt->pt_poverruns = 0;
702	pt->pt_entry = timerid;
703	timerclear(&pt->pt_time.it_value);
704	if (id == CLOCK_REALTIME)
705		callout_init(&pt->pt_ch);
706	else
707		pt->pt_active = 0;
708
709	p->p_timers->pts_timers[timerid] = pt;
710
711	return copyout(&timerid, tid, sizeof(timerid));
712}
713
714/* Delete a POSIX realtime timer */
715int
716sys_timer_delete(struct lwp *l, void *v, register_t *retval)
717{
718	struct sys_timer_delete_args /*  {
719		syscallarg(timer_t) timerid;
720	} */ *uap = v;
721	struct proc *p = l->l_proc;
722	timer_t timerid;
723	struct ptimer *pt, *ptn;
724	int s;
725
726	timerid = SCARG(uap, timerid);
727
728	if ((p->p_timers == NULL) ||
729	    (timerid < 2) || (timerid >= TIMER_MAX) ||
730	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
731		return (EINVAL);
732
733	if (pt->pt_type == CLOCK_REALTIME)
734		callout_stop(&pt->pt_ch);
735	else if (pt->pt_active) {
736		s = splclock();
737		ptn = LIST_NEXT(pt, pt_list);
738		LIST_REMOVE(pt, pt_list);
739		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
740			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
741			    &ptn->pt_time.it_value);
742		splx(s);
743	}
744
745	p->p_timers->pts_timers[timerid] = NULL;
746	pool_put(&ptimer_pool, pt);
747
748	return (0);
749}
750
751/*
752 * Set up the given timer. The value in pt->pt_time.it_value is taken
753 * to be an absolute time for CLOCK_REALTIME timers and a relative
754 * time for virtual timers.
755 * Must be called at splclock().
756 */
757void
758timer_settime(struct ptimer *pt)
759{
760	struct ptimer *ptn, *pptn;
761	struct ptlist *ptl;
762
763	if (pt->pt_type == CLOCK_REALTIME) {
764		callout_stop(&pt->pt_ch);
765		if (timerisset(&pt->pt_time.it_value)) {
766			/*
767			 * Don't need to check hzto() return value, here.
768			 * callout_reset() does it for us.
769			 */
770			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
771			    realtimerexpire, pt);
772		}
773	} else {
774		if (pt->pt_active) {
775			ptn = LIST_NEXT(pt, pt_list);
776			LIST_REMOVE(pt, pt_list);
777			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
778				timeradd(&pt->pt_time.it_value,
779				    &ptn->pt_time.it_value,
780				    &ptn->pt_time.it_value);
781		}
782		if (timerisset(&pt->pt_time.it_value)) {
783			if (pt->pt_type == CLOCK_VIRTUAL)
784				ptl = &pt->pt_proc->p_timers->pts_virtual;
785			else
786				ptl = &pt->pt_proc->p_timers->pts_prof;
787
788			for (ptn = LIST_FIRST(ptl), pptn = NULL;
789			     ptn && timercmp(&pt->pt_time.it_value,
790				 &ptn->pt_time.it_value, >);
791			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
792				timersub(&pt->pt_time.it_value,
793				    &ptn->pt_time.it_value,
794				    &pt->pt_time.it_value);
795
796			if (pptn)
797				LIST_INSERT_AFTER(pptn, pt, pt_list);
798			else
799				LIST_INSERT_HEAD(ptl, pt, pt_list);
800
801			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
802				timersub(&ptn->pt_time.it_value,
803				    &pt->pt_time.it_value,
804				    &ptn->pt_time.it_value);
805
806			pt->pt_active = 1;
807		} else
808			pt->pt_active = 0;
809	}
810}
811
812void
813timer_gettime(struct ptimer *pt, struct itimerval *aitv)
814{
815#ifdef __HAVE_TIMECOUNTER
816	struct timeval now;
817#endif
818	struct ptimer *ptn;
819
820	*aitv = pt->pt_time;
821	if (pt->pt_type == CLOCK_REALTIME) {
822		/*
823		 * Convert from absolute to relative time in .it_value
824		 * part of real time timer.  If time for real time
825		 * timer has passed return 0, else return difference
826		 * between current time and time for the timer to go
827		 * off.
828		 */
829		if (timerisset(&aitv->it_value)) {
830#ifdef __HAVE_TIMECOUNTER
831			getmicrotime(&now);
832			if (timercmp(&aitv->it_value, &now, <))
833				timerclear(&aitv->it_value);
834			else
835				timersub(&aitv->it_value, &now,
836				    &aitv->it_value);
837#else /* !__HAVE_TIMECOUNTER */
838			if (timercmp(&aitv->it_value, &time, <))
839				timerclear(&aitv->it_value);
840			else
841				timersub(&aitv->it_value, &time,
842				    &aitv->it_value);
843#endif /* !__HAVE_TIMECOUNTER */
844		}
845	} else if (pt->pt_active) {
846		if (pt->pt_type == CLOCK_VIRTUAL)
847			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
848		else
849			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
850		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
851			timeradd(&aitv->it_value,
852			    &ptn->pt_time.it_value, &aitv->it_value);
853		KASSERT(ptn != NULL); /* pt should be findable on the list */
854	} else
855		timerclear(&aitv->it_value);
856}
857
858
859
860/* Set and arm a POSIX realtime timer */
861int
862sys_timer_settime(struct lwp *l, void *v, register_t *retval)
863{
864	struct sys_timer_settime_args /* {
865		syscallarg(timer_t) timerid;
866		syscallarg(int) flags;
867		syscallarg(const struct itimerspec *) value;
868		syscallarg(struct itimerspec *) ovalue;
869	} */ *uap = v;
870	int error;
871	struct itimerspec value, ovalue, *ovp = NULL;
872
873	if ((error = copyin(SCARG(uap, value), &value,
874	    sizeof(struct itimerspec))) != 0)
875		return (error);
876
877	if (SCARG(uap, ovalue))
878		ovp = &ovalue;
879
880	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
881	    SCARG(uap, flags), l->l_proc)) != 0)
882		return error;
883
884	if (ovp)
885		return copyout(&ovalue, SCARG(uap, ovalue),
886		    sizeof(struct itimerspec));
887	return 0;
888}
889
890int
891dotimer_settime(int timerid, struct itimerspec *value,
892    struct itimerspec *ovalue, int flags, struct proc *p)
893{
894#ifdef __HAVE_TIMECOUNTER
895	struct timeval now;
896#endif
897	struct itimerval val, oval;
898	struct ptimer *pt;
899	int s;
900
901	if ((p->p_timers == NULL) ||
902	    (timerid < 2) || (timerid >= TIMER_MAX) ||
903	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
904		return (EINVAL);
905
906	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
907	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
908	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
909		return (EINVAL);
910
911	oval = pt->pt_time;
912	pt->pt_time = val;
913
914	s = splclock();
915	/*
916	 * If we've been passed a relative time for a realtime timer,
917	 * convert it to absolute; if an absolute time for a virtual
918	 * timer, convert it to relative and make sure we don't set it
919	 * to zero, which would cancel the timer, or let it go
920	 * negative, which would confuse the comparison tests.
921	 */
922	if (timerisset(&pt->pt_time.it_value)) {
923		if (pt->pt_type == CLOCK_REALTIME) {
924#ifdef __HAVE_TIMECOUNTER
925			if ((flags & TIMER_ABSTIME) == 0) {
926				getmicrotime(&now);
927				timeradd(&pt->pt_time.it_value, &now,
928				    &pt->pt_time.it_value);
929			}
930#else /* !__HAVE_TIMECOUNTER */
931			if ((flags & TIMER_ABSTIME) == 0)
932				timeradd(&pt->pt_time.it_value, &time,
933				    &pt->pt_time.it_value);
934#endif /* !__HAVE_TIMECOUNTER */
935		} else {
936			if ((flags & TIMER_ABSTIME) != 0) {
937#ifdef __HAVE_TIMECOUNTER
938				getmicrotime(&now);
939				timersub(&pt->pt_time.it_value, &now,
940				    &pt->pt_time.it_value);
941#else /* !__HAVE_TIMECOUNTER */
942				timersub(&pt->pt_time.it_value, &time,
943				    &pt->pt_time.it_value);
944#endif /* !__HAVE_TIMECOUNTER */
945				if (!timerisset(&pt->pt_time.it_value) ||
946				    pt->pt_time.it_value.tv_sec < 0) {
947					pt->pt_time.it_value.tv_sec = 0;
948					pt->pt_time.it_value.tv_usec = 1;
949				}
950			}
951		}
952	}
953
954	timer_settime(pt);
955	splx(s);
956
957	if (ovalue) {
958		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
959		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
960	}
961
962	return (0);
963}
964
965/* Return the time remaining until a POSIX timer fires. */
966int
967sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
968{
969	struct sys_timer_gettime_args /* {
970		syscallarg(timer_t) timerid;
971		syscallarg(struct itimerspec *) value;
972	} */ *uap = v;
973	struct itimerspec its;
974	int error;
975
976	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
977	    &its)) != 0)
978		return error;
979
980	return copyout(&its, SCARG(uap, value), sizeof(its));
981}
982
983int
984dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
985{
986	int s;
987	struct ptimer *pt;
988	struct itimerval aitv;
989
990	if ((p->p_timers == NULL) ||
991	    (timerid < 2) || (timerid >= TIMER_MAX) ||
992	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
993		return (EINVAL);
994
995	s = splclock();
996	timer_gettime(pt, &aitv);
997	splx(s);
998
999	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
1000	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1001
1002	return 0;
1003}
1004
1005/*
1006 * Return the count of the number of times a periodic timer expired
1007 * while a notification was already pending. The counter is reset when
1008 * a timer expires and a notification can be posted.
1009 */
1010int
1011sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1012{
1013	struct sys_timer_getoverrun_args /* {
1014		syscallarg(timer_t) timerid;
1015	} */ *uap = v;
1016	struct proc *p = l->l_proc;
1017	int timerid;
1018	struct ptimer *pt;
1019
1020	timerid = SCARG(uap, timerid);
1021
1022	if ((p->p_timers == NULL) ||
1023	    (timerid < 2) || (timerid >= TIMER_MAX) ||
1024	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1025		return (EINVAL);
1026
1027	*retval = pt->pt_poverruns;
1028
1029	return (0);
1030}
1031
1032/*
1033 * Real interval timer expired:
1034 * send process whose timer expired an alarm signal.
1035 * If time is not set up to reload, then just return.
1036 * Else compute next time timer should go off which is > current time.
1037 * This is where delay in processing this timeout causes multiple
1038 * SIGALRM calls to be compressed into one.
1039 */
1040void
1041realtimerexpire(void *arg)
1042{
1043#ifdef __HAVE_TIMECOUNTER
1044	struct timeval now;
1045#endif
1046	struct ptimer *pt;
1047	int s;
1048
1049	pt = (struct ptimer *)arg;
1050
1051	itimerfire(pt);
1052
1053	if (!timerisset(&pt->pt_time.it_interval)) {
1054		timerclear(&pt->pt_time.it_value);
1055		return;
1056	}
1057#ifdef __HAVE_TIMECOUNTER
1058	for (;;) {
1059		s = splclock();	/* XXX need spl now? */
1060		timeradd(&pt->pt_time.it_value,
1061		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1062		getmicrotime(&now);
1063		if (timercmp(&pt->pt_time.it_value, &now, >)) {
1064			/*
1065			 * Don't need to check hzto() return value, here.
1066			 * callout_reset() does it for us.
1067			 */
1068			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1069			    realtimerexpire, pt);
1070			splx(s);
1071			return;
1072		}
1073		splx(s);
1074		pt->pt_overruns++;
1075	}
1076#else /* !__HAVE_TIMECOUNTER */
1077	for (;;) {
1078		s = splclock();
1079		timeradd(&pt->pt_time.it_value,
1080		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1081		if (timercmp(&pt->pt_time.it_value, &time, >)) {
1082			/*
1083			 * Don't need to check hzto() return value, here.
1084			 * callout_reset() does it for us.
1085			 */
1086			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1087			    realtimerexpire, pt);
1088			splx(s);
1089			return;
1090		}
1091		splx(s);
1092		pt->pt_overruns++;
1093	}
1094#endif /* !__HAVE_TIMECOUNTER */
1095}
1096
1097/* BSD routine to get the value of an interval timer. */
1098/* ARGSUSED */
1099int
1100sys_getitimer(struct lwp *l, void *v, register_t *retval)
1101{
1102	struct sys_getitimer_args /* {
1103		syscallarg(int) which;
1104		syscallarg(struct itimerval *) itv;
1105	} */ *uap = v;
1106	struct proc *p = l->l_proc;
1107	struct itimerval aitv;
1108	int error;
1109
1110	error = dogetitimer(p, SCARG(uap, which), &aitv);
1111	if (error)
1112		return error;
1113	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1114}
1115
1116int
1117dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1118{
1119	int s;
1120
1121	if ((u_int)which > ITIMER_PROF)
1122		return (EINVAL);
1123
1124	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1125		timerclear(&itvp->it_value);
1126		timerclear(&itvp->it_interval);
1127	} else {
1128		s = splclock();
1129		timer_gettime(p->p_timers->pts_timers[which], itvp);
1130		splx(s);
1131	}
1132
1133	return 0;
1134}
1135
1136/* BSD routine to set/arm an interval timer. */
1137/* ARGSUSED */
1138int
1139sys_setitimer(struct lwp *l, void *v, register_t *retval)
1140{
1141	struct sys_setitimer_args /* {
1142		syscallarg(int) which;
1143		syscallarg(const struct itimerval *) itv;
1144		syscallarg(struct itimerval *) oitv;
1145	} */ *uap = v;
1146	struct proc *p = l->l_proc;
1147	int which = SCARG(uap, which);
1148	struct sys_getitimer_args getargs;
1149	const struct itimerval *itvp;
1150	struct itimerval aitv;
1151	int error;
1152
1153	if ((u_int)which > ITIMER_PROF)
1154		return (EINVAL);
1155	itvp = SCARG(uap, itv);
1156	if (itvp &&
1157	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1158		return (error);
1159	if (SCARG(uap, oitv) != NULL) {
1160		SCARG(&getargs, which) = which;
1161		SCARG(&getargs, itv) = SCARG(uap, oitv);
1162		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1163			return (error);
1164	}
1165	if (itvp == 0)
1166		return (0);
1167
1168	return dosetitimer(p, which, &aitv);
1169}
1170
1171int
1172dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1173{
1174#ifdef __HAVE_TIMECOUNTER
1175	struct timeval now;
1176#endif
1177	struct ptimer *pt;
1178	int s;
1179
1180	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1181		return (EINVAL);
1182
1183	/*
1184	 * Don't bother allocating data structures if the process just
1185	 * wants to clear the timer.
1186	 */
1187	if (!timerisset(&itvp->it_value) &&
1188	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1189		return (0);
1190
1191	if (p->p_timers == NULL)
1192		timers_alloc(p);
1193	if (p->p_timers->pts_timers[which] == NULL) {
1194		pt = pool_get(&ptimer_pool, PR_WAITOK);
1195		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1196		pt->pt_ev.sigev_value.sival_int = which;
1197		pt->pt_overruns = 0;
1198		pt->pt_proc = p;
1199		pt->pt_type = which;
1200		pt->pt_entry = which;
1201		switch (which) {
1202		case ITIMER_REAL:
1203			callout_init(&pt->pt_ch);
1204			pt->pt_ev.sigev_signo = SIGALRM;
1205			break;
1206		case ITIMER_VIRTUAL:
1207			pt->pt_active = 0;
1208			pt->pt_ev.sigev_signo = SIGVTALRM;
1209			break;
1210		case ITIMER_PROF:
1211			pt->pt_active = 0;
1212			pt->pt_ev.sigev_signo = SIGPROF;
1213			break;
1214		}
1215	} else
1216		pt = p->p_timers->pts_timers[which];
1217
1218	pt->pt_time = *itvp;
1219	p->p_timers->pts_timers[which] = pt;
1220
1221	s = splclock();
1222	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1223		/* Convert to absolute time */
1224#ifdef __HAVE_TIMECOUNTER
1225		/* XXX need to wrap in splclock for timecounters case? */
1226		getmicrotime(&now);
1227		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1228#else /* !__HAVE_TIMECOUNTER */
1229		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1230#endif /* !__HAVE_TIMECOUNTER */
1231	}
1232	timer_settime(pt);
1233	splx(s);
1234
1235	return (0);
1236}
1237
1238/* Utility routines to manage the array of pointers to timers. */
1239void
1240timers_alloc(struct proc *p)
1241{
1242	int i;
1243	struct ptimers *pts;
1244
1245	pts = pool_get(&ptimers_pool, PR_WAITOK);
1246	LIST_INIT(&pts->pts_virtual);
1247	LIST_INIT(&pts->pts_prof);
1248	for (i = 0; i < TIMER_MAX; i++)
1249		pts->pts_timers[i] = NULL;
1250	pts->pts_fired = 0;
1251	p->p_timers = pts;
1252}
1253
1254/*
1255 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1256 * then clean up all timers and free all the data structures. If
1257 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1258 * by timer_create(), not the BSD setitimer() timers, and only free the
1259 * structure if none of those remain.
1260 */
1261void
1262timers_free(struct proc *p, int which)
1263{
1264	int i, s;
1265	struct ptimers *pts;
1266	struct ptimer *pt, *ptn;
1267	struct timeval tv;
1268
1269	if (p->p_timers) {
1270		pts = p->p_timers;
1271		if (which == TIMERS_ALL)
1272			i = 0;
1273		else {
1274			s = splclock();
1275			timerclear(&tv);
1276			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1277			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1278			     ptn = LIST_NEXT(ptn, pt_list))
1279				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1280			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1281			if (ptn) {
1282				timeradd(&tv, &ptn->pt_time.it_value,
1283				    &ptn->pt_time.it_value);
1284				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1285				    ptn, pt_list);
1286			}
1287
1288			timerclear(&tv);
1289			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1290			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1291			     ptn = LIST_NEXT(ptn, pt_list))
1292				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1293			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1294			if (ptn) {
1295				timeradd(&tv, &ptn->pt_time.it_value,
1296				    &ptn->pt_time.it_value);
1297				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1298				    pt_list);
1299			}
1300			splx(s);
1301			i = 3;
1302		}
1303		for ( ; i < TIMER_MAX; i++)
1304			if ((pt = pts->pts_timers[i]) != NULL) {
1305				if (pt->pt_type == CLOCK_REALTIME)
1306					callout_stop(&pt->pt_ch);
1307				pts->pts_timers[i] = NULL;
1308				pool_put(&ptimer_pool, pt);
1309			}
1310		if ((pts->pts_timers[0] == NULL) &&
1311		    (pts->pts_timers[1] == NULL) &&
1312		    (pts->pts_timers[2] == NULL)) {
1313			p->p_timers = NULL;
1314			pool_put(&ptimers_pool, pts);
1315		}
1316	}
1317}
1318
1319/*
1320 * Check that a proposed value to load into the .it_value or
1321 * .it_interval part of an interval timer is acceptable, and
1322 * fix it to have at least minimal value (i.e. if it is less
1323 * than the resolution of the clock, round it up.)
1324 */
1325int
1326itimerfix(struct timeval *tv)
1327{
1328
1329	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1330		return (EINVAL);
1331	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1332		tv->tv_usec = tick;
1333	return (0);
1334}
1335
1336#ifdef __HAVE_TIMECOUNTER
1337int
1338itimespecfix(struct timespec *ts)
1339{
1340
1341	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1342		return (EINVAL);
1343	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1344		ts->tv_nsec = tick * 1000;
1345	return (0);
1346}
1347#endif /* __HAVE_TIMECOUNTER */
1348
1349/*
1350 * Decrement an interval timer by a specified number
1351 * of microseconds, which must be less than a second,
1352 * i.e. < 1000000.  If the timer expires, then reload
1353 * it.  In this case, carry over (usec - old value) to
1354 * reduce the value reloaded into the timer so that
1355 * the timer does not drift.  This routine assumes
1356 * that it is called in a context where the timers
1357 * on which it is operating cannot change in value.
1358 */
1359int
1360itimerdecr(struct ptimer *pt, int usec)
1361{
1362	struct itimerval *itp;
1363
1364	itp = &pt->pt_time;
1365	if (itp->it_value.tv_usec < usec) {
1366		if (itp->it_value.tv_sec == 0) {
1367			/* expired, and already in next interval */
1368			usec -= itp->it_value.tv_usec;
1369			goto expire;
1370		}
1371		itp->it_value.tv_usec += 1000000;
1372		itp->it_value.tv_sec--;
1373	}
1374	itp->it_value.tv_usec -= usec;
1375	usec = 0;
1376	if (timerisset(&itp->it_value))
1377		return (1);
1378	/* expired, exactly at end of interval */
1379expire:
1380	if (timerisset(&itp->it_interval)) {
1381		itp->it_value = itp->it_interval;
1382		itp->it_value.tv_usec -= usec;
1383		if (itp->it_value.tv_usec < 0) {
1384			itp->it_value.tv_usec += 1000000;
1385			itp->it_value.tv_sec--;
1386		}
1387		timer_settime(pt);
1388	} else
1389		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1390	return (0);
1391}
1392
1393void
1394itimerfire(struct ptimer *pt)
1395{
1396	struct proc *p = pt->pt_proc;
1397
1398	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1399		/*
1400		 * No RT signal infrastructure exists at this time;
1401		 * just post the signal number and throw away the
1402		 * value.
1403		 */
1404		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo))
1405			pt->pt_overruns++;
1406		else {
1407			ksiginfo_t ksi;
1408			KSI_INIT(&ksi);
1409			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1410			ksi.ksi_code = SI_TIMER;
1411			ksi.ksi_sigval = pt->pt_ev.sigev_value;
1412			pt->pt_poverruns = pt->pt_overruns;
1413			pt->pt_overruns = 0;
1414			mutex_enter(&proclist_mutex);
1415			kpsignal(p, &ksi, NULL);
1416			mutex_exit(&proclist_mutex);
1417		}
1418	}
1419}
1420
1421/*
1422 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1423 * for usage and rationale.
1424 */
1425int
1426ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1427{
1428	struct timeval tv, delta;
1429	int rv = 0;
1430#ifndef __HAVE_TIMECOUNTER
1431	int s;
1432#endif
1433
1434#ifdef __HAVE_TIMECOUNTER
1435	getmicrouptime(&tv);
1436#else /* !__HAVE_TIMECOUNTER */
1437	s = splclock();
1438	tv = mono_time;
1439	splx(s);
1440#endif /* !__HAVE_TIMECOUNTER */
1441	timersub(&tv, lasttime, &delta);
1442
1443	/*
1444	 * check for 0,0 is so that the message will be seen at least once,
1445	 * even if interval is huge.
1446	 */
1447	if (timercmp(&delta, mininterval, >=) ||
1448	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1449		*lasttime = tv;
1450		rv = 1;
1451	}
1452
1453	return (rv);
1454}
1455
1456/*
1457 * ppsratecheck(): packets (or events) per second limitation.
1458 */
1459int
1460ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1461{
1462	struct timeval tv, delta;
1463	int rv;
1464#ifndef __HAVE_TIMECOUNTER
1465	int s;
1466#endif
1467
1468#ifdef __HAVE_TIMECOUNTER
1469	getmicrouptime(&tv);
1470#else /* !__HAVE_TIMECOUNTER */
1471	s = splclock();
1472	tv = mono_time;
1473	splx(s);
1474#endif /* !__HAVE_TIMECOUNTER */
1475	timersub(&tv, lasttime, &delta);
1476
1477	/*
1478	 * check for 0,0 is so that the message will be seen at least once.
1479	 * if more than one second have passed since the last update of
1480	 * lasttime, reset the counter.
1481	 *
1482	 * we do increment *curpps even in *curpps < maxpps case, as some may
1483	 * try to use *curpps for stat purposes as well.
1484	 */
1485	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1486	    delta.tv_sec >= 1) {
1487		*lasttime = tv;
1488		*curpps = 0;
1489	}
1490	if (maxpps < 0)
1491		rv = 1;
1492	else if (*curpps < maxpps)
1493		rv = 1;
1494	else
1495		rv = 0;
1496
1497#if 1 /*DIAGNOSTIC?*/
1498	/* be careful about wrap-around */
1499	if (*curpps + 1 > *curpps)
1500		*curpps = *curpps + 1;
1501#else
1502	/*
1503	 * assume that there's not too many calls to this function.
1504	 * not sure if the assumption holds, as it depends on *caller's*
1505	 * behavior, not the behavior of this function.
1506	 * IMHO it is wrong to make assumption on the caller's behavior,
1507	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1508	 */
1509	*curpps = *curpps + 1;
1510#endif
1511
1512	return (rv);
1513}
1514