kern_time.c revision 1.110
1/*	$NetBSD: kern_time.c,v 1.110 2006/11/01 10:17:58 yamt Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.110 2006/11/01 10:17:58 yamt Exp $");
72
73#include "fs_nfs.h"
74#include "opt_nfs.h"
75#include "opt_nfsserver.h"
76
77#include <sys/param.h>
78#include <sys/resourcevar.h>
79#include <sys/kernel.h>
80#include <sys/systm.h>
81#include <sys/proc.h>
82#include <sys/sa.h>
83#include <sys/savar.h>
84#include <sys/vnode.h>
85#include <sys/signalvar.h>
86#include <sys/syslog.h>
87#ifdef __HAVE_TIMECOUNTER
88#include <sys/timetc.h>
89#else /* !__HAVE_TIMECOUNTER */
90#include <sys/timevar.h>
91#endif /* !__HAVE_TIMECOUNTER */
92#include <sys/kauth.h>
93
94#include <sys/mount.h>
95#include <sys/syscallargs.h>
96
97#include <uvm/uvm_extern.h>
98
99#if defined(NFS) || defined(NFSSERVER)
100#include <nfs/rpcv2.h>
101#include <nfs/nfsproto.h>
102#include <nfs/nfs.h>
103#include <nfs/nfs_var.h>
104#endif
105
106#include <machine/cpu.h>
107
108POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
109    &pool_allocator_nointr);
110POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
111    &pool_allocator_nointr);
112
113static void timerupcall(struct lwp *, void *);
114#ifdef __HAVE_TIMECOUNTER
115static int itimespecfix(struct timespec *);		/* XXX move itimerfix to timespecs */
116#endif /* __HAVE_TIMECOUNTER */
117
118/* Time of day and interval timer support.
119 *
120 * These routines provide the kernel entry points to get and set
121 * the time-of-day and per-process interval timers.  Subroutines
122 * here provide support for adding and subtracting timeval structures
123 * and decrementing interval timers, optionally reloading the interval
124 * timers when they expire.
125 */
126
127/* This function is used by clock_settime and settimeofday */
128int
129settime(struct proc *p, struct timespec *ts)
130{
131	struct timeval delta, tv;
132#ifdef __HAVE_TIMECOUNTER
133	struct timeval now;
134	struct timespec ts1;
135#endif /* !__HAVE_TIMECOUNTER */
136	struct cpu_info *ci;
137	int s;
138
139	/*
140	 * Don't allow the time to be set forward so far it will wrap
141	 * and become negative, thus allowing an attacker to bypass
142	 * the next check below.  The cutoff is 1 year before rollover
143	 * occurs, so even if the attacker uses adjtime(2) to move
144	 * the time past the cutoff, it will take a very long time
145	 * to get to the wrap point.
146	 *
147	 * XXX: we check against INT_MAX since on 64-bit
148	 *	platforms, sizeof(int) != sizeof(long) and
149	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
150	 */
151	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
152		struct proc *pp = p->p_pptr;
153		log(LOG_WARNING, "pid %d (%s) "
154		    "invoked by uid %d ppid %d (%s) "
155		    "tried to set clock forward to %ld\n",
156		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
157		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
158		return (EPERM);
159	}
160	TIMESPEC_TO_TIMEVAL(&tv, ts);
161
162	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
163	s = splclock();
164#ifdef __HAVE_TIMECOUNTER
165	microtime(&now);
166	timersub(&tv, &now, &delta);
167#else /* !__HAVE_TIMECOUNTER */
168	timersub(&tv, &time, &delta);
169#endif /* !__HAVE_TIMECOUNTER */
170	if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
171	    kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
172	    KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
173		splx(s);
174		return (EPERM);
175	}
176#ifdef notyet
177	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
178		splx(s);
179		return (EPERM);
180	}
181#endif
182
183#ifdef __HAVE_TIMECOUNTER
184	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
185	tc_setclock(&ts1);
186#else /* !__HAVE_TIMECOUNTER */
187	time = tv;
188#endif /* !__HAVE_TIMECOUNTER */
189
190	(void) spllowersoftclock();
191
192	timeradd(&boottime, &delta, &boottime);
193
194	/*
195	 * XXXSMP
196	 * This is wrong.  We should traverse a list of all
197	 * CPUs and add the delta to the runtime of those
198	 * CPUs which have a process on them.
199	 */
200	ci = curcpu();
201	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
202	    &ci->ci_schedstate.spc_runtime);
203#if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
204	nqnfs_lease_updatetime(delta.tv_sec);
205#endif
206	splx(s);
207	resettodr();
208	return (0);
209}
210
211/* ARGSUSED */
212int
213sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
214{
215	struct sys_clock_gettime_args /* {
216		syscallarg(clockid_t) clock_id;
217		syscallarg(struct timespec *) tp;
218	} */ *uap = v;
219	clockid_t clock_id;
220	struct timespec ats;
221
222	clock_id = SCARG(uap, clock_id);
223	switch (clock_id) {
224	case CLOCK_REALTIME:
225		nanotime(&ats);
226		break;
227	case CLOCK_MONOTONIC:
228#ifdef __HAVE_TIMECOUNTER
229		nanouptime(&ats);
230#else /* !__HAVE_TIMECOUNTER */
231		{
232		int s;
233
234		/* XXX "hz" granularity */
235		s = splclock();
236		TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
237		splx(s);
238		}
239#endif /* !__HAVE_TIMECOUNTER */
240		break;
241	default:
242		return (EINVAL);
243	}
244
245	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
246}
247
248/* ARGSUSED */
249int
250sys_clock_settime(struct lwp *l, void *v, register_t *retval)
251{
252	struct sys_clock_settime_args /* {
253		syscallarg(clockid_t) clock_id;
254		syscallarg(const struct timespec *) tp;
255	} */ *uap = v;
256	int error;
257
258	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
259	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
260		return (error);
261
262	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
263}
264
265
266int
267clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
268{
269	struct timespec ats;
270	int error;
271
272	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
273		return (error);
274
275	switch (clock_id) {
276	case CLOCK_REALTIME:
277		if ((error = settime(p, &ats)) != 0)
278			return (error);
279		break;
280	case CLOCK_MONOTONIC:
281		return (EINVAL);	/* read-only clock */
282	default:
283		return (EINVAL);
284	}
285
286	return 0;
287}
288
289int
290sys_clock_getres(struct lwp *l, void *v, register_t *retval)
291{
292	struct sys_clock_getres_args /* {
293		syscallarg(clockid_t) clock_id;
294		syscallarg(struct timespec *) tp;
295	} */ *uap = v;
296	clockid_t clock_id;
297	struct timespec ts;
298	int error = 0;
299
300	clock_id = SCARG(uap, clock_id);
301	switch (clock_id) {
302	case CLOCK_REALTIME:
303	case CLOCK_MONOTONIC:
304		ts.tv_sec = 0;
305#ifdef __HAVE_TIMECOUNTER
306		if (tc_getfrequency() > 1000000000)
307			ts.tv_nsec = 1;
308		else
309			ts.tv_nsec = 1000000000 / tc_getfrequency();
310#else /* !__HAVE_TIMECOUNTER */
311		ts.tv_nsec = 1000000000 / hz;
312#endif /* !__HAVE_TIMECOUNTER */
313		break;
314	default:
315		return (EINVAL);
316	}
317
318	if (SCARG(uap, tp))
319		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
320
321	return error;
322}
323
324/* ARGSUSED */
325int
326sys_nanosleep(struct lwp *l, void *v, register_t *retval)
327{
328#ifdef __HAVE_TIMECOUNTER
329	static int nanowait;
330	struct sys_nanosleep_args/* {
331		syscallarg(struct timespec *) rqtp;
332		syscallarg(struct timespec *) rmtp;
333	} */ *uap = v;
334	struct timespec rmt, rqt;
335	int error, timo;
336
337	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
338	if (error)
339		return (error);
340
341	if (itimespecfix(&rqt))
342		return (EINVAL);
343
344	timo = tstohz(&rqt);
345	/*
346	 * Avoid inadvertantly sleeping forever
347	 */
348	if (timo == 0)
349		timo = 1;
350
351	getnanouptime(&rmt);
352
353	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
354	if (error == ERESTART)
355		error = EINTR;
356	if (error == EWOULDBLOCK)
357		error = 0;
358
359	if (SCARG(uap, rmtp)) {
360		int error1;
361		struct timespec rmtend;
362
363		getnanouptime(&rmtend);
364
365		timespecsub(&rmtend, &rmt, &rmt);
366		timespecsub(&rqt, &rmt, &rmt);
367		if (rmt.tv_sec < 0)
368			timespecclear(&rmt);
369
370		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
371			sizeof(rmt));
372		if (error1)
373			return (error1);
374	}
375
376	return error;
377#else /* !__HAVE_TIMECOUNTER */
378	static int nanowait;
379	struct sys_nanosleep_args/* {
380		syscallarg(struct timespec *) rqtp;
381		syscallarg(struct timespec *) rmtp;
382	} */ *uap = v;
383	struct timespec rqt;
384	struct timespec rmt;
385	struct timeval atv, utv;
386	int error, s, timo;
387
388	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
389	if (error)
390		return (error);
391
392	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
393	if (itimerfix(&atv))
394		return (EINVAL);
395
396	s = splclock();
397	timeradd(&atv,&time,&atv);
398	timo = hzto(&atv);
399	/*
400	 * Avoid inadvertantly sleeping forever
401	 */
402	if (timo == 0)
403		timo = 1;
404	splx(s);
405
406	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
407	if (error == ERESTART)
408		error = EINTR;
409	if (error == EWOULDBLOCK)
410		error = 0;
411
412	if (SCARG(uap, rmtp)) {
413		int error1;
414
415		s = splclock();
416		utv = time;
417		splx(s);
418
419		timersub(&atv, &utv, &utv);
420		if (utv.tv_sec < 0)
421			timerclear(&utv);
422
423		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
424		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
425			sizeof(rmt));
426		if (error1)
427			return (error1);
428	}
429
430	return error;
431#endif /* !__HAVE_TIMECOUNTER */
432}
433
434/* ARGSUSED */
435int
436sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
437{
438	struct sys_gettimeofday_args /* {
439		syscallarg(struct timeval *) tp;
440		syscallarg(void *) tzp;		really "struct timezone *"
441	} */ *uap = v;
442	struct timeval atv;
443	int error = 0;
444	struct timezone tzfake;
445
446	if (SCARG(uap, tp)) {
447		microtime(&atv);
448		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
449		if (error)
450			return (error);
451	}
452	if (SCARG(uap, tzp)) {
453		/*
454		 * NetBSD has no kernel notion of time zone, so we just
455		 * fake up a timezone struct and return it if demanded.
456		 */
457		tzfake.tz_minuteswest = 0;
458		tzfake.tz_dsttime = 0;
459		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
460	}
461	return (error);
462}
463
464/* ARGSUSED */
465int
466sys_settimeofday(struct lwp *l, void *v, register_t *retval)
467{
468	struct sys_settimeofday_args /* {
469		syscallarg(const struct timeval *) tv;
470		syscallarg(const void *) tzp;	really "const struct timezone *"
471	} */ *uap = v;
472	int error;
473
474	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
475	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
476		return (error);
477
478	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
479}
480
481int
482settimeofday1(const struct timeval *utv, const struct timezone *utzp,
483    struct proc *p)
484{
485	struct timeval atv;
486	struct timespec ts;
487	int error;
488
489	/* Verify all parameters before changing time. */
490	/*
491	 * NetBSD has no kernel notion of time zone, and only an
492	 * obsolete program would try to set it, so we log a warning.
493	 */
494	if (utzp)
495		log(LOG_WARNING, "pid %d attempted to set the "
496		    "(obsolete) kernel time zone\n", p->p_pid);
497
498	if (utv == NULL)
499		return 0;
500
501	if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
502		return error;
503	TIMEVAL_TO_TIMESPEC(&atv, &ts);
504	return settime(p, &ts);
505}
506
507#ifndef __HAVE_TIMECOUNTER
508int	tickdelta;			/* current clock skew, us. per tick */
509long	timedelta;			/* unapplied time correction, us. */
510long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
511#endif
512
513int	time_adjusted;			/* set if an adjustment is made */
514
515/* ARGSUSED */
516int
517sys_adjtime(struct lwp *l, void *v, register_t *retval)
518{
519	struct sys_adjtime_args /* {
520		syscallarg(const struct timeval *) delta;
521		syscallarg(struct timeval *) olddelta;
522	} */ *uap = v;
523	int error;
524
525	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
526	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
527		return (error);
528
529	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
530}
531
532int
533adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
534{
535	struct timeval atv;
536	int error = 0;
537
538#ifdef __HAVE_TIMECOUNTER
539	extern int64_t time_adjtime;  /* in kern_ntptime.c */
540#else /* !__HAVE_TIMECOUNTER */
541	long ndelta, ntickdelta, odelta;
542	int s;
543#endif /* !__HAVE_TIMECOUNTER */
544
545#ifdef __HAVE_TIMECOUNTER
546	if (olddelta) {
547		atv.tv_sec = time_adjtime / 1000000;
548		atv.tv_usec = time_adjtime % 1000000;
549		if (atv.tv_usec < 0) {
550			atv.tv_usec += 1000000;
551			atv.tv_sec--;
552		}
553		error = copyout(&atv, olddelta, sizeof(struct timeval));
554		if (error)
555			return (error);
556	}
557
558	if (delta) {
559		error = copyin(delta, &atv, sizeof(struct timeval));
560		if (error)
561			return (error);
562
563		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
564			atv.tv_usec;
565
566		if (time_adjtime)
567			/* We need to save the system time during shutdown */
568			time_adjusted |= 1;
569	}
570#else /* !__HAVE_TIMECOUNTER */
571	error = copyin(delta, &atv, sizeof(struct timeval));
572	if (error)
573		return (error);
574
575	/*
576	 * Compute the total correction and the rate at which to apply it.
577	 * Round the adjustment down to a whole multiple of the per-tick
578	 * delta, so that after some number of incremental changes in
579	 * hardclock(), tickdelta will become zero, lest the correction
580	 * overshoot and start taking us away from the desired final time.
581	 */
582	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
583	if (ndelta > bigadj || ndelta < -bigadj)
584		ntickdelta = 10 * tickadj;
585	else
586		ntickdelta = tickadj;
587	if (ndelta % ntickdelta)
588		ndelta = ndelta / ntickdelta * ntickdelta;
589
590	/*
591	 * To make hardclock()'s job easier, make the per-tick delta negative
592	 * if we want time to run slower; then hardclock can simply compute
593	 * tick + tickdelta, and subtract tickdelta from timedelta.
594	 */
595	if (ndelta < 0)
596		ntickdelta = -ntickdelta;
597	if (ndelta != 0)
598		/* We need to save the system clock time during shutdown */
599		time_adjusted |= 1;
600	s = splclock();
601	odelta = timedelta;
602	timedelta = ndelta;
603	tickdelta = ntickdelta;
604	splx(s);
605
606	if (olddelta) {
607		atv.tv_sec = odelta / 1000000;
608		atv.tv_usec = odelta % 1000000;
609		error = copyout(&atv, olddelta, sizeof(struct timeval));
610	}
611#endif /* __HAVE_TIMECOUNTER */
612
613	return error;
614}
615
616/*
617 * Interval timer support. Both the BSD getitimer() family and the POSIX
618 * timer_*() family of routines are supported.
619 *
620 * All timers are kept in an array pointed to by p_timers, which is
621 * allocated on demand - many processes don't use timers at all. The
622 * first three elements in this array are reserved for the BSD timers:
623 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
624 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
625 * syscall.
626 *
627 * Realtime timers are kept in the ptimer structure as an absolute
628 * time; virtual time timers are kept as a linked list of deltas.
629 * Virtual time timers are processed in the hardclock() routine of
630 * kern_clock.c.  The real time timer is processed by a callout
631 * routine, called from the softclock() routine.  Since a callout may
632 * be delayed in real time due to interrupt processing in the system,
633 * it is possible for the real time timeout routine (realtimeexpire,
634 * given below), to be delayed in real time past when it is supposed
635 * to occur.  It does not suffice, therefore, to reload the real timer
636 * .it_value from the real time timers .it_interval.  Rather, we
637 * compute the next time in absolute time the timer should go off.  */
638
639/* Allocate a POSIX realtime timer. */
640int
641sys_timer_create(struct lwp *l, void *v, register_t *retval)
642{
643	struct sys_timer_create_args /* {
644		syscallarg(clockid_t) clock_id;
645		syscallarg(struct sigevent *) evp;
646		syscallarg(timer_t *) timerid;
647	} */ *uap = v;
648
649	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
650	    SCARG(uap, evp), copyin, l);
651}
652
653int
654timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
655    copyin_t fetch_event, struct lwp *l)
656{
657	int error;
658	timer_t timerid;
659	struct ptimer *pt;
660	struct proc *p;
661
662	p = l->l_proc;
663
664	if (id < CLOCK_REALTIME ||
665	    id > CLOCK_PROF)
666		return (EINVAL);
667
668	if (p->p_timers == NULL)
669		timers_alloc(p);
670
671	/* Find a free timer slot, skipping those reserved for setitimer(). */
672	for (timerid = 3; timerid < TIMER_MAX; timerid++)
673		if (p->p_timers->pts_timers[timerid] == NULL)
674			break;
675
676	if (timerid == TIMER_MAX)
677		return EAGAIN;
678
679	pt = pool_get(&ptimer_pool, PR_WAITOK);
680	if (evp) {
681		if (((error =
682		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
683		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
684			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
685			pool_put(&ptimer_pool, pt);
686			return (error ? error : EINVAL);
687		}
688	} else {
689		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
690		switch (id) {
691		case CLOCK_REALTIME:
692			pt->pt_ev.sigev_signo = SIGALRM;
693			break;
694		case CLOCK_VIRTUAL:
695			pt->pt_ev.sigev_signo = SIGVTALRM;
696			break;
697		case CLOCK_PROF:
698			pt->pt_ev.sigev_signo = SIGPROF;
699			break;
700		}
701		pt->pt_ev.sigev_value.sival_int = timerid;
702	}
703	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
704	pt->pt_info.ksi_errno = 0;
705	pt->pt_info.ksi_code = 0;
706	pt->pt_info.ksi_pid = p->p_pid;
707	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
708	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
709
710	pt->pt_type = id;
711	pt->pt_proc = p;
712	pt->pt_overruns = 0;
713	pt->pt_poverruns = 0;
714	pt->pt_entry = timerid;
715	timerclear(&pt->pt_time.it_value);
716	if (id == CLOCK_REALTIME)
717		callout_init(&pt->pt_ch);
718	else
719		pt->pt_active = 0;
720
721	p->p_timers->pts_timers[timerid] = pt;
722
723	return copyout(&timerid, tid, sizeof(timerid));
724}
725
726/* Delete a POSIX realtime timer */
727int
728sys_timer_delete(struct lwp *l, void *v, register_t *retval)
729{
730	struct sys_timer_delete_args /*  {
731		syscallarg(timer_t) timerid;
732	} */ *uap = v;
733	struct proc *p = l->l_proc;
734	timer_t timerid;
735	struct ptimer *pt, *ptn;
736	int s;
737
738	timerid = SCARG(uap, timerid);
739
740	if ((p->p_timers == NULL) ||
741	    (timerid < 2) || (timerid >= TIMER_MAX) ||
742	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
743		return (EINVAL);
744
745	if (pt->pt_type == CLOCK_REALTIME)
746		callout_stop(&pt->pt_ch);
747	else if (pt->pt_active) {
748		s = splclock();
749		ptn = LIST_NEXT(pt, pt_list);
750		LIST_REMOVE(pt, pt_list);
751		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
752			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
753			    &ptn->pt_time.it_value);
754		splx(s);
755	}
756
757	p->p_timers->pts_timers[timerid] = NULL;
758	pool_put(&ptimer_pool, pt);
759
760	return (0);
761}
762
763/*
764 * Set up the given timer. The value in pt->pt_time.it_value is taken
765 * to be an absolute time for CLOCK_REALTIME timers and a relative
766 * time for virtual timers.
767 * Must be called at splclock().
768 */
769void
770timer_settime(struct ptimer *pt)
771{
772	struct ptimer *ptn, *pptn;
773	struct ptlist *ptl;
774
775	if (pt->pt_type == CLOCK_REALTIME) {
776		callout_stop(&pt->pt_ch);
777		if (timerisset(&pt->pt_time.it_value)) {
778			/*
779			 * Don't need to check hzto() return value, here.
780			 * callout_reset() does it for us.
781			 */
782			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
783			    realtimerexpire, pt);
784		}
785	} else {
786		if (pt->pt_active) {
787			ptn = LIST_NEXT(pt, pt_list);
788			LIST_REMOVE(pt, pt_list);
789			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
790				timeradd(&pt->pt_time.it_value,
791				    &ptn->pt_time.it_value,
792				    &ptn->pt_time.it_value);
793		}
794		if (timerisset(&pt->pt_time.it_value)) {
795			if (pt->pt_type == CLOCK_VIRTUAL)
796				ptl = &pt->pt_proc->p_timers->pts_virtual;
797			else
798				ptl = &pt->pt_proc->p_timers->pts_prof;
799
800			for (ptn = LIST_FIRST(ptl), pptn = NULL;
801			     ptn && timercmp(&pt->pt_time.it_value,
802				 &ptn->pt_time.it_value, >);
803			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
804				timersub(&pt->pt_time.it_value,
805				    &ptn->pt_time.it_value,
806				    &pt->pt_time.it_value);
807
808			if (pptn)
809				LIST_INSERT_AFTER(pptn, pt, pt_list);
810			else
811				LIST_INSERT_HEAD(ptl, pt, pt_list);
812
813			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
814				timersub(&ptn->pt_time.it_value,
815				    &pt->pt_time.it_value,
816				    &ptn->pt_time.it_value);
817
818			pt->pt_active = 1;
819		} else
820			pt->pt_active = 0;
821	}
822}
823
824void
825timer_gettime(struct ptimer *pt, struct itimerval *aitv)
826{
827#ifdef __HAVE_TIMECOUNTER
828	struct timeval now;
829#endif
830	struct ptimer *ptn;
831
832	*aitv = pt->pt_time;
833	if (pt->pt_type == CLOCK_REALTIME) {
834		/*
835		 * Convert from absolute to relative time in .it_value
836		 * part of real time timer.  If time for real time
837		 * timer has passed return 0, else return difference
838		 * between current time and time for the timer to go
839		 * off.
840		 */
841		if (timerisset(&aitv->it_value)) {
842#ifdef __HAVE_TIMECOUNTER
843			getmicrotime(&now);
844			if (timercmp(&aitv->it_value, &now, <))
845				timerclear(&aitv->it_value);
846			else
847				timersub(&aitv->it_value, &now,
848				    &aitv->it_value);
849#else /* !__HAVE_TIMECOUNTER */
850			if (timercmp(&aitv->it_value, &time, <))
851				timerclear(&aitv->it_value);
852			else
853				timersub(&aitv->it_value, &time,
854				    &aitv->it_value);
855#endif /* !__HAVE_TIMECOUNTER */
856		}
857	} else if (pt->pt_active) {
858		if (pt->pt_type == CLOCK_VIRTUAL)
859			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
860		else
861			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
862		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
863			timeradd(&aitv->it_value,
864			    &ptn->pt_time.it_value, &aitv->it_value);
865		KASSERT(ptn != NULL); /* pt should be findable on the list */
866	} else
867		timerclear(&aitv->it_value);
868}
869
870
871
872/* Set and arm a POSIX realtime timer */
873int
874sys_timer_settime(struct lwp *l, void *v, register_t *retval)
875{
876	struct sys_timer_settime_args /* {
877		syscallarg(timer_t) timerid;
878		syscallarg(int) flags;
879		syscallarg(const struct itimerspec *) value;
880		syscallarg(struct itimerspec *) ovalue;
881	} */ *uap = v;
882	int error;
883	struct itimerspec value, ovalue, *ovp = NULL;
884
885	if ((error = copyin(SCARG(uap, value), &value,
886	    sizeof(struct itimerspec))) != 0)
887		return (error);
888
889	if (SCARG(uap, ovalue))
890		ovp = &ovalue;
891
892	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
893	    SCARG(uap, flags), l->l_proc)) != 0)
894		return error;
895
896	if (ovp)
897		return copyout(&ovalue, SCARG(uap, ovalue),
898		    sizeof(struct itimerspec));
899	return 0;
900}
901
902int
903dotimer_settime(int timerid, struct itimerspec *value,
904    struct itimerspec *ovalue, int flags, struct proc *p)
905{
906#ifdef __HAVE_TIMECOUNTER
907	struct timeval now;
908#endif
909	struct itimerval val, oval;
910	struct ptimer *pt;
911	int s;
912
913	if ((p->p_timers == NULL) ||
914	    (timerid < 2) || (timerid >= TIMER_MAX) ||
915	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
916		return (EINVAL);
917
918	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
919	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
920	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
921		return (EINVAL);
922
923	oval = pt->pt_time;
924	pt->pt_time = val;
925
926	s = splclock();
927	/*
928	 * If we've been passed a relative time for a realtime timer,
929	 * convert it to absolute; if an absolute time for a virtual
930	 * timer, convert it to relative and make sure we don't set it
931	 * to zero, which would cancel the timer, or let it go
932	 * negative, which would confuse the comparison tests.
933	 */
934	if (timerisset(&pt->pt_time.it_value)) {
935		if (pt->pt_type == CLOCK_REALTIME) {
936#ifdef __HAVE_TIMECOUNTER
937			if ((flags & TIMER_ABSTIME) == 0) {
938				getmicrotime(&now);
939				timeradd(&pt->pt_time.it_value, &now,
940				    &pt->pt_time.it_value);
941			}
942#else /* !__HAVE_TIMECOUNTER */
943			if ((flags & TIMER_ABSTIME) == 0)
944				timeradd(&pt->pt_time.it_value, &time,
945				    &pt->pt_time.it_value);
946#endif /* !__HAVE_TIMECOUNTER */
947		} else {
948			if ((flags & TIMER_ABSTIME) != 0) {
949#ifdef __HAVE_TIMECOUNTER
950				getmicrotime(&now);
951				timersub(&pt->pt_time.it_value, &now,
952				    &pt->pt_time.it_value);
953#else /* !__HAVE_TIMECOUNTER */
954				timersub(&pt->pt_time.it_value, &time,
955				    &pt->pt_time.it_value);
956#endif /* !__HAVE_TIMECOUNTER */
957				if (!timerisset(&pt->pt_time.it_value) ||
958				    pt->pt_time.it_value.tv_sec < 0) {
959					pt->pt_time.it_value.tv_sec = 0;
960					pt->pt_time.it_value.tv_usec = 1;
961				}
962			}
963		}
964	}
965
966	timer_settime(pt);
967	splx(s);
968
969	if (ovalue) {
970		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
971		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
972	}
973
974	return (0);
975}
976
977/* Return the time remaining until a POSIX timer fires. */
978int
979sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
980{
981	struct sys_timer_gettime_args /* {
982		syscallarg(timer_t) timerid;
983		syscallarg(struct itimerspec *) value;
984	} */ *uap = v;
985	struct itimerspec its;
986	int error;
987
988	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
989	    &its)) != 0)
990		return error;
991
992	return copyout(&its, SCARG(uap, value), sizeof(its));
993}
994
995int
996dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
997{
998	int s;
999	struct ptimer *pt;
1000	struct itimerval aitv;
1001
1002	if ((p->p_timers == NULL) ||
1003	    (timerid < 2) || (timerid >= TIMER_MAX) ||
1004	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1005		return (EINVAL);
1006
1007	s = splclock();
1008	timer_gettime(pt, &aitv);
1009	splx(s);
1010
1011	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
1012	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1013
1014	return 0;
1015}
1016
1017/*
1018 * Return the count of the number of times a periodic timer expired
1019 * while a notification was already pending. The counter is reset when
1020 * a timer expires and a notification can be posted.
1021 */
1022int
1023sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1024{
1025	struct sys_timer_getoverrun_args /* {
1026		syscallarg(timer_t) timerid;
1027	} */ *uap = v;
1028	struct proc *p = l->l_proc;
1029	int timerid;
1030	struct ptimer *pt;
1031
1032	timerid = SCARG(uap, timerid);
1033
1034	if ((p->p_timers == NULL) ||
1035	    (timerid < 2) || (timerid >= TIMER_MAX) ||
1036	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1037		return (EINVAL);
1038
1039	*retval = pt->pt_poverruns;
1040
1041	return (0);
1042}
1043
1044/* Glue function that triggers an upcall; called from userret(). */
1045static void
1046timerupcall(struct lwp *l, void *arg)
1047{
1048	struct ptimers *pt = (struct ptimers *)arg;
1049	unsigned int i, fired, done;
1050
1051	KDASSERT(l->l_proc->p_sa);
1052	/* Bail out if we do not own the virtual processor */
1053	if (l->l_savp->savp_lwp != l)
1054		return ;
1055
1056	KERNEL_PROC_LOCK(l);
1057
1058	fired = pt->pts_fired;
1059	done = 0;
1060	while ((i = ffs(fired)) != 0) {
1061		siginfo_t *si;
1062		int mask = 1 << --i;
1063		int f;
1064
1065		f = l->l_flag & L_SA;
1066		l->l_flag &= ~L_SA;
1067		si = siginfo_alloc(PR_WAITOK);
1068		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1069		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1070		    sizeof(*si), si, siginfo_free) != 0) {
1071			siginfo_free(si);
1072			/* XXX What do we do here?? */
1073		} else
1074			done |= mask;
1075		fired &= ~mask;
1076		l->l_flag |= f;
1077	}
1078	pt->pts_fired &= ~done;
1079	if (pt->pts_fired == 0)
1080		l->l_proc->p_userret = NULL;
1081
1082	KERNEL_PROC_UNLOCK(l);
1083}
1084
1085/*
1086 * Real interval timer expired:
1087 * send process whose timer expired an alarm signal.
1088 * If time is not set up to reload, then just return.
1089 * Else compute next time timer should go off which is > current time.
1090 * This is where delay in processing this timeout causes multiple
1091 * SIGALRM calls to be compressed into one.
1092 */
1093void
1094realtimerexpire(void *arg)
1095{
1096#ifdef __HAVE_TIMECOUNTER
1097	struct timeval now;
1098#endif
1099	struct ptimer *pt;
1100	int s;
1101
1102	pt = (struct ptimer *)arg;
1103
1104	itimerfire(pt);
1105
1106	if (!timerisset(&pt->pt_time.it_interval)) {
1107		timerclear(&pt->pt_time.it_value);
1108		return;
1109	}
1110#ifdef __HAVE_TIMECOUNTER
1111	for (;;) {
1112		s = splclock();	/* XXX need spl now? */
1113		timeradd(&pt->pt_time.it_value,
1114		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1115		getmicrotime(&now);
1116		if (timercmp(&pt->pt_time.it_value, &now, >)) {
1117			/*
1118			 * Don't need to check hzto() return value, here.
1119			 * callout_reset() does it for us.
1120			 */
1121			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1122			    realtimerexpire, pt);
1123			splx(s);
1124			return;
1125		}
1126		splx(s);
1127		pt->pt_overruns++;
1128	}
1129#else /* !__HAVE_TIMECOUNTER */
1130	for (;;) {
1131		s = splclock();
1132		timeradd(&pt->pt_time.it_value,
1133		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1134		if (timercmp(&pt->pt_time.it_value, &time, >)) {
1135			/*
1136			 * Don't need to check hzto() return value, here.
1137			 * callout_reset() does it for us.
1138			 */
1139			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1140			    realtimerexpire, pt);
1141			splx(s);
1142			return;
1143		}
1144		splx(s);
1145		pt->pt_overruns++;
1146	}
1147#endif /* !__HAVE_TIMECOUNTER */
1148}
1149
1150/* BSD routine to get the value of an interval timer. */
1151/* ARGSUSED */
1152int
1153sys_getitimer(struct lwp *l, void *v, register_t *retval)
1154{
1155	struct sys_getitimer_args /* {
1156		syscallarg(int) which;
1157		syscallarg(struct itimerval *) itv;
1158	} */ *uap = v;
1159	struct proc *p = l->l_proc;
1160	struct itimerval aitv;
1161	int error;
1162
1163	error = dogetitimer(p, SCARG(uap, which), &aitv);
1164	if (error)
1165		return error;
1166	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1167}
1168
1169int
1170dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1171{
1172	int s;
1173
1174	if ((u_int)which > ITIMER_PROF)
1175		return (EINVAL);
1176
1177	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1178		timerclear(&itvp->it_value);
1179		timerclear(&itvp->it_interval);
1180	} else {
1181		s = splclock();
1182		timer_gettime(p->p_timers->pts_timers[which], itvp);
1183		splx(s);
1184	}
1185
1186	return 0;
1187}
1188
1189/* BSD routine to set/arm an interval timer. */
1190/* ARGSUSED */
1191int
1192sys_setitimer(struct lwp *l, void *v, register_t *retval)
1193{
1194	struct sys_setitimer_args /* {
1195		syscallarg(int) which;
1196		syscallarg(const struct itimerval *) itv;
1197		syscallarg(struct itimerval *) oitv;
1198	} */ *uap = v;
1199	struct proc *p = l->l_proc;
1200	int which = SCARG(uap, which);
1201	struct sys_getitimer_args getargs;
1202	const struct itimerval *itvp;
1203	struct itimerval aitv;
1204	int error;
1205
1206	if ((u_int)which > ITIMER_PROF)
1207		return (EINVAL);
1208	itvp = SCARG(uap, itv);
1209	if (itvp &&
1210	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1211		return (error);
1212	if (SCARG(uap, oitv) != NULL) {
1213		SCARG(&getargs, which) = which;
1214		SCARG(&getargs, itv) = SCARG(uap, oitv);
1215		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1216			return (error);
1217	}
1218	if (itvp == 0)
1219		return (0);
1220
1221	return dosetitimer(p, which, &aitv);
1222}
1223
1224int
1225dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1226{
1227#ifdef __HAVE_TIMECOUNTER
1228	struct timeval now;
1229#endif
1230	struct ptimer *pt;
1231	int s;
1232
1233	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1234		return (EINVAL);
1235
1236	/*
1237	 * Don't bother allocating data structures if the process just
1238	 * wants to clear the timer.
1239	 */
1240	if (!timerisset(&itvp->it_value) &&
1241	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1242		return (0);
1243
1244	if (p->p_timers == NULL)
1245		timers_alloc(p);
1246	if (p->p_timers->pts_timers[which] == NULL) {
1247		pt = pool_get(&ptimer_pool, PR_WAITOK);
1248		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1249		pt->pt_ev.sigev_value.sival_int = which;
1250		pt->pt_overruns = 0;
1251		pt->pt_proc = p;
1252		pt->pt_type = which;
1253		pt->pt_entry = which;
1254		switch (which) {
1255		case ITIMER_REAL:
1256			callout_init(&pt->pt_ch);
1257			pt->pt_ev.sigev_signo = SIGALRM;
1258			break;
1259		case ITIMER_VIRTUAL:
1260			pt->pt_active = 0;
1261			pt->pt_ev.sigev_signo = SIGVTALRM;
1262			break;
1263		case ITIMER_PROF:
1264			pt->pt_active = 0;
1265			pt->pt_ev.sigev_signo = SIGPROF;
1266			break;
1267		}
1268	} else
1269		pt = p->p_timers->pts_timers[which];
1270
1271	pt->pt_time = *itvp;
1272	p->p_timers->pts_timers[which] = pt;
1273
1274	s = splclock();
1275	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1276		/* Convert to absolute time */
1277#ifdef __HAVE_TIMECOUNTER
1278		/* XXX need to wrap in splclock for timecounters case? */
1279		getmicrotime(&now);
1280		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1281#else /* !__HAVE_TIMECOUNTER */
1282		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1283#endif /* !__HAVE_TIMECOUNTER */
1284	}
1285	timer_settime(pt);
1286	splx(s);
1287
1288	return (0);
1289}
1290
1291/* Utility routines to manage the array of pointers to timers. */
1292void
1293timers_alloc(struct proc *p)
1294{
1295	int i;
1296	struct ptimers *pts;
1297
1298	pts = pool_get(&ptimers_pool, PR_WAITOK);
1299	LIST_INIT(&pts->pts_virtual);
1300	LIST_INIT(&pts->pts_prof);
1301	for (i = 0; i < TIMER_MAX; i++)
1302		pts->pts_timers[i] = NULL;
1303	pts->pts_fired = 0;
1304	p->p_timers = pts;
1305}
1306
1307/*
1308 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1309 * then clean up all timers and free all the data structures. If
1310 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1311 * by timer_create(), not the BSD setitimer() timers, and only free the
1312 * structure if none of those remain.
1313 */
1314void
1315timers_free(struct proc *p, int which)
1316{
1317	int i, s;
1318	struct ptimers *pts;
1319	struct ptimer *pt, *ptn;
1320	struct timeval tv;
1321
1322	if (p->p_timers) {
1323		pts = p->p_timers;
1324		if (which == TIMERS_ALL)
1325			i = 0;
1326		else {
1327			s = splclock();
1328			timerclear(&tv);
1329			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1330			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1331			     ptn = LIST_NEXT(ptn, pt_list))
1332				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1333			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1334			if (ptn) {
1335				timeradd(&tv, &ptn->pt_time.it_value,
1336				    &ptn->pt_time.it_value);
1337				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1338				    ptn, pt_list);
1339			}
1340
1341			timerclear(&tv);
1342			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1343			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1344			     ptn = LIST_NEXT(ptn, pt_list))
1345				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1346			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1347			if (ptn) {
1348				timeradd(&tv, &ptn->pt_time.it_value,
1349				    &ptn->pt_time.it_value);
1350				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1351				    pt_list);
1352			}
1353			splx(s);
1354			i = 3;
1355		}
1356		for ( ; i < TIMER_MAX; i++)
1357			if ((pt = pts->pts_timers[i]) != NULL) {
1358				if (pt->pt_type == CLOCK_REALTIME)
1359					callout_stop(&pt->pt_ch);
1360				pts->pts_timers[i] = NULL;
1361				pool_put(&ptimer_pool, pt);
1362			}
1363		if ((pts->pts_timers[0] == NULL) &&
1364		    (pts->pts_timers[1] == NULL) &&
1365		    (pts->pts_timers[2] == NULL)) {
1366			p->p_timers = NULL;
1367			pool_put(&ptimers_pool, pts);
1368		}
1369	}
1370}
1371
1372/*
1373 * Check that a proposed value to load into the .it_value or
1374 * .it_interval part of an interval timer is acceptable, and
1375 * fix it to have at least minimal value (i.e. if it is less
1376 * than the resolution of the clock, round it up.)
1377 */
1378int
1379itimerfix(struct timeval *tv)
1380{
1381
1382	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1383		return (EINVAL);
1384	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1385		tv->tv_usec = tick;
1386	return (0);
1387}
1388
1389#ifdef __HAVE_TIMECOUNTER
1390int
1391itimespecfix(struct timespec *ts)
1392{
1393
1394	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1395		return (EINVAL);
1396	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1397		ts->tv_nsec = tick * 1000;
1398	return (0);
1399}
1400#endif /* __HAVE_TIMECOUNTER */
1401
1402/*
1403 * Decrement an interval timer by a specified number
1404 * of microseconds, which must be less than a second,
1405 * i.e. < 1000000.  If the timer expires, then reload
1406 * it.  In this case, carry over (usec - old value) to
1407 * reduce the value reloaded into the timer so that
1408 * the timer does not drift.  This routine assumes
1409 * that it is called in a context where the timers
1410 * on which it is operating cannot change in value.
1411 */
1412int
1413itimerdecr(struct ptimer *pt, int usec)
1414{
1415	struct itimerval *itp;
1416
1417	itp = &pt->pt_time;
1418	if (itp->it_value.tv_usec < usec) {
1419		if (itp->it_value.tv_sec == 0) {
1420			/* expired, and already in next interval */
1421			usec -= itp->it_value.tv_usec;
1422			goto expire;
1423		}
1424		itp->it_value.tv_usec += 1000000;
1425		itp->it_value.tv_sec--;
1426	}
1427	itp->it_value.tv_usec -= usec;
1428	usec = 0;
1429	if (timerisset(&itp->it_value))
1430		return (1);
1431	/* expired, exactly at end of interval */
1432expire:
1433	if (timerisset(&itp->it_interval)) {
1434		itp->it_value = itp->it_interval;
1435		itp->it_value.tv_usec -= usec;
1436		if (itp->it_value.tv_usec < 0) {
1437			itp->it_value.tv_usec += 1000000;
1438			itp->it_value.tv_sec--;
1439		}
1440		timer_settime(pt);
1441	} else
1442		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1443	return (0);
1444}
1445
1446void
1447itimerfire(struct ptimer *pt)
1448{
1449	struct proc *p = pt->pt_proc;
1450	struct sadata_vp *vp;
1451	int s;
1452	unsigned int i;
1453
1454	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1455		/*
1456		 * No RT signal infrastructure exists at this time;
1457		 * just post the signal number and throw away the
1458		 * value.
1459		 */
1460		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1461			pt->pt_overruns++;
1462		else {
1463			ksiginfo_t ksi;
1464			(void)memset(&ksi, 0, sizeof(ksi));
1465			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1466			ksi.ksi_code = SI_TIMER;
1467			ksi.ksi_sigval = pt->pt_ev.sigev_value;
1468			pt->pt_poverruns = pt->pt_overruns;
1469			pt->pt_overruns = 0;
1470			kpsignal(p, &ksi, NULL);
1471		}
1472	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1473		/* Cause the process to generate an upcall when it returns. */
1474		signotify(p);
1475		if (p->p_userret == NULL) {
1476			/*
1477			 * XXX stop signals can be processed inside tsleep,
1478			 * which can be inside sa_yield's inner loop, which
1479			 * makes testing for sa_idle alone insuffucent to
1480			 * determine if we really should call setrunnable.
1481			 */
1482			pt->pt_poverruns = pt->pt_overruns;
1483			pt->pt_overruns = 0;
1484			i = 1 << pt->pt_entry;
1485			p->p_timers->pts_fired = i;
1486			p->p_userret = timerupcall;
1487			p->p_userret_arg = p->p_timers;
1488
1489			SCHED_LOCK(s);
1490			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1491				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1492					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1493					sched_wakeup(vp->savp_lwp);
1494					break;
1495				}
1496			}
1497			SCHED_UNLOCK(s);
1498		} else if (p->p_userret == timerupcall) {
1499			i = 1 << pt->pt_entry;
1500			if ((p->p_timers->pts_fired & i) == 0) {
1501				pt->pt_poverruns = pt->pt_overruns;
1502				pt->pt_overruns = 0;
1503				p->p_timers->pts_fired |= i;
1504			} else
1505				pt->pt_overruns++;
1506		} else {
1507			pt->pt_overruns++;
1508			if ((p->p_flag & P_WEXIT) == 0)
1509				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1510				    p->p_pid, pt->pt_overruns,
1511				    pt->pt_ev.sigev_value.sival_int,
1512				    p->p_userret);
1513		}
1514	}
1515
1516}
1517
1518/*
1519 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1520 * for usage and rationale.
1521 */
1522int
1523ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1524{
1525	struct timeval tv, delta;
1526	int rv = 0;
1527#ifndef __HAVE_TIMECOUNTER
1528	int s;
1529#endif
1530
1531#ifdef __HAVE_TIMECOUNTER
1532	getmicrouptime(&tv);
1533#else /* !__HAVE_TIMECOUNTER */
1534	s = splclock();
1535	tv = mono_time;
1536	splx(s);
1537#endif /* !__HAVE_TIMECOUNTER */
1538	timersub(&tv, lasttime, &delta);
1539
1540	/*
1541	 * check for 0,0 is so that the message will be seen at least once,
1542	 * even if interval is huge.
1543	 */
1544	if (timercmp(&delta, mininterval, >=) ||
1545	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1546		*lasttime = tv;
1547		rv = 1;
1548	}
1549
1550	return (rv);
1551}
1552
1553/*
1554 * ppsratecheck(): packets (or events) per second limitation.
1555 */
1556int
1557ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1558{
1559	struct timeval tv, delta;
1560	int rv;
1561#ifndef __HAVE_TIMECOUNTER
1562	int s;
1563#endif
1564
1565#ifdef __HAVE_TIMECOUNTER
1566	getmicrouptime(&tv);
1567#else /* !__HAVE_TIMECOUNTER */
1568	s = splclock();
1569	tv = mono_time;
1570	splx(s);
1571#endif /* !__HAVE_TIMECOUNTER */
1572	timersub(&tv, lasttime, &delta);
1573
1574	/*
1575	 * check for 0,0 is so that the message will be seen at least once.
1576	 * if more than one second have passed since the last update of
1577	 * lasttime, reset the counter.
1578	 *
1579	 * we do increment *curpps even in *curpps < maxpps case, as some may
1580	 * try to use *curpps for stat purposes as well.
1581	 */
1582	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1583	    delta.tv_sec >= 1) {
1584		*lasttime = tv;
1585		*curpps = 0;
1586	}
1587	if (maxpps < 0)
1588		rv = 1;
1589	else if (*curpps < maxpps)
1590		rv = 1;
1591	else
1592		rv = 0;
1593
1594#if 1 /*DIAGNOSTIC?*/
1595	/* be careful about wrap-around */
1596	if (*curpps + 1 > *curpps)
1597		*curpps = *curpps + 1;
1598#else
1599	/*
1600	 * assume that there's not too many calls to this function.
1601	 * not sure if the assumption holds, as it depends on *caller's*
1602	 * behavior, not the behavior of this function.
1603	 * IMHO it is wrong to make assumption on the caller's behavior,
1604	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1605	 */
1606	*curpps = *curpps + 1;
1607#endif
1608
1609	return (rv);
1610}
1611