kern_time.c revision 1.108
1/*	$NetBSD: kern_time.c,v 1.108 2006/10/12 01:32:17 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.108 2006/10/12 01:32:17 christos Exp $");
72
73#include "fs_nfs.h"
74#include "opt_nfs.h"
75#include "opt_nfsserver.h"
76
77#include <sys/param.h>
78#include <sys/resourcevar.h>
79#include <sys/kernel.h>
80#include <sys/systm.h>
81#include <sys/proc.h>
82#include <sys/sa.h>
83#include <sys/savar.h>
84#include <sys/vnode.h>
85#include <sys/signalvar.h>
86#include <sys/syslog.h>
87#ifdef __HAVE_TIMECOUNTER
88#include <sys/timetc.h>
89#else /* !__HAVE_TIMECOUNTER */
90#include <sys/timevar.h>
91#endif /* !__HAVE_TIMECOUNTER */
92#include <sys/kauth.h>
93
94#include <sys/mount.h>
95#include <sys/syscallargs.h>
96
97#include <uvm/uvm_extern.h>
98
99#if defined(NFS) || defined(NFSSERVER)
100#include <nfs/rpcv2.h>
101#include <nfs/nfsproto.h>
102#include <nfs/nfs.h>
103#include <nfs/nfs_var.h>
104#endif
105
106#include <machine/cpu.h>
107
108POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
109    &pool_allocator_nointr);
110POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
111    &pool_allocator_nointr);
112
113static void timerupcall(struct lwp *, void *);
114#ifdef __HAVE_TIMECOUNTER
115static int itimespecfix(struct timespec *);		/* XXX move itimerfix to timespecs */
116#endif /* __HAVE_TIMECOUNTER */
117
118/* Time of day and interval timer support.
119 *
120 * These routines provide the kernel entry points to get and set
121 * the time-of-day and per-process interval timers.  Subroutines
122 * here provide support for adding and subtracting timeval structures
123 * and decrementing interval timers, optionally reloading the interval
124 * timers when they expire.
125 */
126
127/* This function is used by clock_settime and settimeofday */
128int
129settime(struct proc *p, struct timespec *ts)
130{
131	struct timeval delta, tv;
132#ifdef __HAVE_TIMECOUNTER
133	struct timeval now;
134	struct timespec ts1;
135#endif /* !__HAVE_TIMECOUNTER */
136	struct cpu_info *ci;
137	int s;
138
139	/*
140	 * Don't allow the time to be set forward so far it will wrap
141	 * and become negative, thus allowing an attacker to bypass
142	 * the next check below.  The cutoff is 1 year before rollover
143	 * occurs, so even if the attacker uses adjtime(2) to move
144	 * the time past the cutoff, it will take a very long time
145	 * to get to the wrap point.
146	 *
147	 * XXX: we check against INT_MAX since on 64-bit
148	 *	platforms, sizeof(int) != sizeof(long) and
149	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
150	 */
151	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
152		struct proc *pp = p->p_pptr;
153		log(LOG_WARNING, "pid %d (%s) "
154		    "invoked by uid %d ppid %d (%s) "
155		    "tried to set clock forward to %ld\n",
156		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
157		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
158		return (EPERM);
159	}
160	TIMESPEC_TO_TIMEVAL(&tv, ts);
161
162	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
163	s = splclock();
164#ifdef __HAVE_TIMECOUNTER
165	microtime(&now);
166	timersub(&tv, &now, &delta);
167#else /* !__HAVE_TIMECOUNTER */
168	timersub(&tv, &time, &delta);
169#endif /* !__HAVE_TIMECOUNTER */
170	if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
171	    kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
172	    KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
173		splx(s);
174		return (EPERM);
175	}
176#ifdef notyet
177	if ((delta.tv_sec < 86400) && securelevel > 0) {
178		splx(s);
179		return (EPERM);
180	}
181#endif
182
183#ifdef __HAVE_TIMECOUNTER
184	TIMEVAL_TO_TIMESPEC(&tv, &ts1);
185	tc_setclock(&ts1);
186#else /* !__HAVE_TIMECOUNTER */
187	time = tv;
188#endif /* !__HAVE_TIMECOUNTER */
189
190	(void) spllowersoftclock();
191
192	timeradd(&boottime, &delta, &boottime);
193
194	/*
195	 * XXXSMP
196	 * This is wrong.  We should traverse a list of all
197	 * CPUs and add the delta to the runtime of those
198	 * CPUs which have a process on them.
199	 */
200	ci = curcpu();
201	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
202	    &ci->ci_schedstate.spc_runtime);
203#if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
204	nqnfs_lease_updatetime(delta.tv_sec);
205#endif
206	splx(s);
207	resettodr();
208	return (0);
209}
210
211/* ARGSUSED */
212int
213sys_clock_gettime(struct lwp *l __unused, void *v, register_t *retval __unused)
214{
215	struct sys_clock_gettime_args /* {
216		syscallarg(clockid_t) clock_id;
217		syscallarg(struct timespec *) tp;
218	} */ *uap = v;
219	clockid_t clock_id;
220	struct timespec ats;
221
222	clock_id = SCARG(uap, clock_id);
223	switch (clock_id) {
224	case CLOCK_REALTIME:
225		nanotime(&ats);
226		break;
227	case CLOCK_MONOTONIC:
228#ifdef __HAVE_TIMECOUNTER
229		nanouptime(&ats);
230#else /* !__HAVE_TIMECOUNTER */
231		{
232		int s;
233
234		/* XXX "hz" granularity */
235		s = splclock();
236		TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
237		splx(s);
238		}
239#endif /* !__HAVE_TIMECOUNTER */
240		break;
241	default:
242		return (EINVAL);
243	}
244
245	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
246}
247
248/* ARGSUSED */
249int
250sys_clock_settime(struct lwp *l, void *v, register_t *retval __unused)
251{
252	struct sys_clock_settime_args /* {
253		syscallarg(clockid_t) clock_id;
254		syscallarg(const struct timespec *) tp;
255	} */ *uap = v;
256	int error;
257
258	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
259	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
260		return (error);
261
262	return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
263}
264
265
266int
267clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
268{
269	struct timespec ats;
270	int error;
271
272	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
273		return (error);
274
275	switch (clock_id) {
276	case CLOCK_REALTIME:
277		if ((error = settime(p, &ats)) != 0)
278			return (error);
279		break;
280	case CLOCK_MONOTONIC:
281		return (EINVAL);	/* read-only clock */
282	default:
283		return (EINVAL);
284	}
285
286	return 0;
287}
288
289int
290sys_clock_getres(struct lwp *l __unused, void *v, register_t *retval __unused)
291{
292	struct sys_clock_getres_args /* {
293		syscallarg(clockid_t) clock_id;
294		syscallarg(struct timespec *) tp;
295	} */ *uap = v;
296	clockid_t clock_id;
297	struct timespec ts;
298	int error = 0;
299
300	clock_id = SCARG(uap, clock_id);
301	switch (clock_id) {
302	case CLOCK_REALTIME:
303	case CLOCK_MONOTONIC:
304		ts.tv_sec = 0;
305#ifdef __HAVE_TIMECOUNTER
306		if (tc_getfrequency() > 1000000000)
307			ts.tv_nsec = 1;
308		else
309			ts.tv_nsec = 1000000000 / tc_getfrequency();
310#else /* !__HAVE_TIMECOUNTER */
311		ts.tv_nsec = 1000000000 / hz;
312#endif /* !__HAVE_TIMECOUNTER */
313		break;
314	default:
315		return (EINVAL);
316	}
317
318	if (SCARG(uap, tp))
319		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
320
321	return error;
322}
323
324/* ARGSUSED */
325int
326sys_nanosleep(struct lwp *l __unused, void *v, register_t *retval __unused)
327{
328#ifdef __HAVE_TIMECOUNTER
329	static int nanowait;
330	struct sys_nanosleep_args/* {
331		syscallarg(struct timespec *) rqtp;
332		syscallarg(struct timespec *) rmtp;
333	} */ *uap = v;
334	struct timespec rmt, rqt;
335	int error, timo;
336
337	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
338	if (error)
339		return (error);
340
341	if (itimespecfix(&rqt))
342		return (EINVAL);
343
344	timo = tstohz(&rqt);
345	/*
346	 * Avoid inadvertantly sleeping forever
347	 */
348	if (timo == 0)
349		timo = 1;
350
351	getnanouptime(&rmt);
352
353	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
354	if (error == ERESTART)
355		error = EINTR;
356	if (error == EWOULDBLOCK)
357		error = 0;
358
359	if (SCARG(uap, rmtp)) {
360		int error1;
361		struct timespec rmtend;
362
363		getnanouptime(&rmtend);
364
365		timespecsub(&rmtend, &rmt, &rmt);
366		timespecsub(&rqt, &rmt, &rmt);
367		if (rmt.tv_sec < 0)
368			timespecclear(&rmt);
369
370		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
371			sizeof(rmt));
372		if (error1)
373			return (error1);
374	}
375
376	return error;
377#else /* !__HAVE_TIMECOUNTER */
378	static int nanowait;
379	struct sys_nanosleep_args/* {
380		syscallarg(struct timespec *) rqtp;
381		syscallarg(struct timespec *) rmtp;
382	} */ *uap = v;
383	struct timespec rqt;
384	struct timespec rmt;
385	struct timeval atv, utv;
386	int error, s, timo;
387
388	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
389	if (error)
390		return (error);
391
392	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
393	if (itimerfix(&atv))
394		return (EINVAL);
395
396	s = splclock();
397	timeradd(&atv,&time,&atv);
398	timo = hzto(&atv);
399	/*
400	 * Avoid inadvertantly sleeping forever
401	 */
402	if (timo == 0)
403		timo = 1;
404	splx(s);
405
406	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
407	if (error == ERESTART)
408		error = EINTR;
409	if (error == EWOULDBLOCK)
410		error = 0;
411
412	if (SCARG(uap, rmtp)) {
413		int error1;
414
415		s = splclock();
416		utv = time;
417		splx(s);
418
419		timersub(&atv, &utv, &utv);
420		if (utv.tv_sec < 0)
421			timerclear(&utv);
422
423		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
424		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
425			sizeof(rmt));
426		if (error1)
427			return (error1);
428	}
429
430	return error;
431#endif /* !__HAVE_TIMECOUNTER */
432}
433
434/* ARGSUSED */
435int
436sys_gettimeofday(struct lwp *l __unused, void *v, register_t *retval __unused)
437{
438	struct sys_gettimeofday_args /* {
439		syscallarg(struct timeval *) tp;
440		syscallarg(void *) tzp;		really "struct timezone *"
441	} */ *uap = v;
442	struct timeval atv;
443	int error = 0;
444	struct timezone tzfake;
445
446	if (SCARG(uap, tp)) {
447		microtime(&atv);
448		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
449		if (error)
450			return (error);
451	}
452	if (SCARG(uap, tzp)) {
453		/*
454		 * NetBSD has no kernel notion of time zone, so we just
455		 * fake up a timezone struct and return it if demanded.
456		 */
457		tzfake.tz_minuteswest = 0;
458		tzfake.tz_dsttime = 0;
459		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
460	}
461	return (error);
462}
463
464/* ARGSUSED */
465int
466sys_settimeofday(struct lwp *l, void *v, register_t *retval __unused)
467{
468	struct sys_settimeofday_args /* {
469		syscallarg(const struct timeval *) tv;
470		syscallarg(const void *) tzp;	really "const struct timezone *"
471	} */ *uap = v;
472	int error;
473
474	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
475	    KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
476		return (error);
477
478	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
479}
480
481int
482settimeofday1(const struct timeval *utv, const struct timezone *utzp,
483    struct proc *p)
484{
485	struct timeval atv;
486	struct timespec ts;
487	int error;
488
489	/* Verify all parameters before changing time. */
490	/*
491	 * NetBSD has no kernel notion of time zone, and only an
492	 * obsolete program would try to set it, so we log a warning.
493	 */
494	if (utzp)
495		log(LOG_WARNING, "pid %d attempted to set the "
496		    "(obsolete) kernel time zone\n", p->p_pid);
497
498	if (utv == NULL)
499		return 0;
500
501	if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
502		return error;
503	TIMEVAL_TO_TIMESPEC(&atv, &ts);
504	return settime(p, &ts);
505}
506
507#ifndef __HAVE_TIMECOUNTER
508int	tickdelta;			/* current clock skew, us. per tick */
509long	timedelta;			/* unapplied time correction, us. */
510long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
511#endif
512
513int	time_adjusted;			/* set if an adjustment is made */
514
515/* ARGSUSED */
516int
517sys_adjtime(struct lwp *l, void *v, register_t *retval __unused)
518{
519	struct sys_adjtime_args /* {
520		syscallarg(const struct timeval *) delta;
521		syscallarg(struct timeval *) olddelta;
522	} */ *uap = v;
523	int error;
524
525	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
526	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
527		return (error);
528
529	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
530}
531
532int
533adjtime1(const struct timeval *delta, struct timeval *olddelta,
534    struct proc *p __unused)
535{
536	struct timeval atv;
537	int error = 0;
538
539#ifdef __HAVE_TIMECOUNTER
540	extern int64_t time_adjtime;  /* in kern_ntptime.c */
541#else /* !__HAVE_TIMECOUNTER */
542	long ndelta, ntickdelta, odelta;
543	int s;
544#endif /* !__HAVE_TIMECOUNTER */
545
546#ifdef __HAVE_TIMECOUNTER
547	if (olddelta) {
548		atv.tv_sec = time_adjtime / 1000000;
549		atv.tv_usec = time_adjtime % 1000000;
550		if (atv.tv_usec < 0) {
551			atv.tv_usec += 1000000;
552			atv.tv_sec--;
553		}
554		error = copyout(&atv, olddelta, sizeof(struct timeval));
555		if (error)
556			return (error);
557	}
558
559	if (delta) {
560		error = copyin(delta, &atv, sizeof(struct timeval));
561		if (error)
562			return (error);
563
564		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
565			atv.tv_usec;
566
567		if (time_adjtime)
568			/* We need to save the system time during shutdown */
569			time_adjusted |= 1;
570	}
571#else /* !__HAVE_TIMECOUNTER */
572	error = copyin(delta, &atv, sizeof(struct timeval));
573	if (error)
574		return (error);
575
576	/*
577	 * Compute the total correction and the rate at which to apply it.
578	 * Round the adjustment down to a whole multiple of the per-tick
579	 * delta, so that after some number of incremental changes in
580	 * hardclock(), tickdelta will become zero, lest the correction
581	 * overshoot and start taking us away from the desired final time.
582	 */
583	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
584	if (ndelta > bigadj || ndelta < -bigadj)
585		ntickdelta = 10 * tickadj;
586	else
587		ntickdelta = tickadj;
588	if (ndelta % ntickdelta)
589		ndelta = ndelta / ntickdelta * ntickdelta;
590
591	/*
592	 * To make hardclock()'s job easier, make the per-tick delta negative
593	 * if we want time to run slower; then hardclock can simply compute
594	 * tick + tickdelta, and subtract tickdelta from timedelta.
595	 */
596	if (ndelta < 0)
597		ntickdelta = -ntickdelta;
598	if (ndelta != 0)
599		/* We need to save the system clock time during shutdown */
600		time_adjusted |= 1;
601	s = splclock();
602	odelta = timedelta;
603	timedelta = ndelta;
604	tickdelta = ntickdelta;
605	splx(s);
606
607	if (olddelta) {
608		atv.tv_sec = odelta / 1000000;
609		atv.tv_usec = odelta % 1000000;
610		error = copyout(&atv, olddelta, sizeof(struct timeval));
611	}
612#endif /* __HAVE_TIMECOUNTER */
613
614	return error;
615}
616
617/*
618 * Interval timer support. Both the BSD getitimer() family and the POSIX
619 * timer_*() family of routines are supported.
620 *
621 * All timers are kept in an array pointed to by p_timers, which is
622 * allocated on demand - many processes don't use timers at all. The
623 * first three elements in this array are reserved for the BSD timers:
624 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
625 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
626 * syscall.
627 *
628 * Realtime timers are kept in the ptimer structure as an absolute
629 * time; virtual time timers are kept as a linked list of deltas.
630 * Virtual time timers are processed in the hardclock() routine of
631 * kern_clock.c.  The real time timer is processed by a callout
632 * routine, called from the softclock() routine.  Since a callout may
633 * be delayed in real time due to interrupt processing in the system,
634 * it is possible for the real time timeout routine (realtimeexpire,
635 * given below), to be delayed in real time past when it is supposed
636 * to occur.  It does not suffice, therefore, to reload the real timer
637 * .it_value from the real time timers .it_interval.  Rather, we
638 * compute the next time in absolute time the timer should go off.  */
639
640/* Allocate a POSIX realtime timer. */
641int
642sys_timer_create(struct lwp *l, void *v, register_t *retval __unused)
643{
644	struct sys_timer_create_args /* {
645		syscallarg(clockid_t) clock_id;
646		syscallarg(struct sigevent *) evp;
647		syscallarg(timer_t *) timerid;
648	} */ *uap = v;
649
650	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
651	    SCARG(uap, evp), copyin, l);
652}
653
654int
655timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
656    copyin_t fetch_event, struct lwp *l)
657{
658	int error;
659	timer_t timerid;
660	struct ptimer *pt;
661	struct proc *p;
662
663	p = l->l_proc;
664
665	if (id < CLOCK_REALTIME ||
666	    id > CLOCK_PROF)
667		return (EINVAL);
668
669	if (p->p_timers == NULL)
670		timers_alloc(p);
671
672	/* Find a free timer slot, skipping those reserved for setitimer(). */
673	for (timerid = 3; timerid < TIMER_MAX; timerid++)
674		if (p->p_timers->pts_timers[timerid] == NULL)
675			break;
676
677	if (timerid == TIMER_MAX)
678		return EAGAIN;
679
680	pt = pool_get(&ptimer_pool, PR_WAITOK);
681	if (evp) {
682		if (((error =
683		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
684		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
685			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
686			pool_put(&ptimer_pool, pt);
687			return (error ? error : EINVAL);
688		}
689	} else {
690		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
691		switch (id) {
692		case CLOCK_REALTIME:
693			pt->pt_ev.sigev_signo = SIGALRM;
694			break;
695		case CLOCK_VIRTUAL:
696			pt->pt_ev.sigev_signo = SIGVTALRM;
697			break;
698		case CLOCK_PROF:
699			pt->pt_ev.sigev_signo = SIGPROF;
700			break;
701		}
702		pt->pt_ev.sigev_value.sival_int = timerid;
703	}
704	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
705	pt->pt_info.ksi_errno = 0;
706	pt->pt_info.ksi_code = 0;
707	pt->pt_info.ksi_pid = p->p_pid;
708	pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
709	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
710
711	pt->pt_type = id;
712	pt->pt_proc = p;
713	pt->pt_overruns = 0;
714	pt->pt_poverruns = 0;
715	pt->pt_entry = timerid;
716	timerclear(&pt->pt_time.it_value);
717	if (id == CLOCK_REALTIME)
718		callout_init(&pt->pt_ch);
719	else
720		pt->pt_active = 0;
721
722	p->p_timers->pts_timers[timerid] = pt;
723
724	return copyout(&timerid, tid, sizeof(timerid));
725}
726
727/* Delete a POSIX realtime timer */
728int
729sys_timer_delete(struct lwp *l, void *v, register_t *retval __unused)
730{
731	struct sys_timer_delete_args /*  {
732		syscallarg(timer_t) timerid;
733	} */ *uap = v;
734	struct proc *p = l->l_proc;
735	timer_t timerid;
736	struct ptimer *pt, *ptn;
737	int s;
738
739	timerid = SCARG(uap, timerid);
740
741	if ((p->p_timers == NULL) ||
742	    (timerid < 2) || (timerid >= TIMER_MAX) ||
743	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
744		return (EINVAL);
745
746	if (pt->pt_type == CLOCK_REALTIME)
747		callout_stop(&pt->pt_ch);
748	else if (pt->pt_active) {
749		s = splclock();
750		ptn = LIST_NEXT(pt, pt_list);
751		LIST_REMOVE(pt, pt_list);
752		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
753			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
754			    &ptn->pt_time.it_value);
755		splx(s);
756	}
757
758	p->p_timers->pts_timers[timerid] = NULL;
759	pool_put(&ptimer_pool, pt);
760
761	return (0);
762}
763
764/*
765 * Set up the given timer. The value in pt->pt_time.it_value is taken
766 * to be an absolute time for CLOCK_REALTIME timers and a relative
767 * time for virtual timers.
768 * Must be called at splclock().
769 */
770void
771timer_settime(struct ptimer *pt)
772{
773	struct ptimer *ptn, *pptn;
774	struct ptlist *ptl;
775
776	if (pt->pt_type == CLOCK_REALTIME) {
777		callout_stop(&pt->pt_ch);
778		if (timerisset(&pt->pt_time.it_value)) {
779			/*
780			 * Don't need to check hzto() return value, here.
781			 * callout_reset() does it for us.
782			 */
783			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
784			    realtimerexpire, pt);
785		}
786	} else {
787		if (pt->pt_active) {
788			ptn = LIST_NEXT(pt, pt_list);
789			LIST_REMOVE(pt, pt_list);
790			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
791				timeradd(&pt->pt_time.it_value,
792				    &ptn->pt_time.it_value,
793				    &ptn->pt_time.it_value);
794		}
795		if (timerisset(&pt->pt_time.it_value)) {
796			if (pt->pt_type == CLOCK_VIRTUAL)
797				ptl = &pt->pt_proc->p_timers->pts_virtual;
798			else
799				ptl = &pt->pt_proc->p_timers->pts_prof;
800
801			for (ptn = LIST_FIRST(ptl), pptn = NULL;
802			     ptn && timercmp(&pt->pt_time.it_value,
803				 &ptn->pt_time.it_value, >);
804			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
805				timersub(&pt->pt_time.it_value,
806				    &ptn->pt_time.it_value,
807				    &pt->pt_time.it_value);
808
809			if (pptn)
810				LIST_INSERT_AFTER(pptn, pt, pt_list);
811			else
812				LIST_INSERT_HEAD(ptl, pt, pt_list);
813
814			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
815				timersub(&ptn->pt_time.it_value,
816				    &pt->pt_time.it_value,
817				    &ptn->pt_time.it_value);
818
819			pt->pt_active = 1;
820		} else
821			pt->pt_active = 0;
822	}
823}
824
825void
826timer_gettime(struct ptimer *pt, struct itimerval *aitv)
827{
828#ifdef __HAVE_TIMECOUNTER
829	struct timeval now;
830#endif
831	struct ptimer *ptn;
832
833	*aitv = pt->pt_time;
834	if (pt->pt_type == CLOCK_REALTIME) {
835		/*
836		 * Convert from absolute to relative time in .it_value
837		 * part of real time timer.  If time for real time
838		 * timer has passed return 0, else return difference
839		 * between current time and time for the timer to go
840		 * off.
841		 */
842		if (timerisset(&aitv->it_value)) {
843#ifdef __HAVE_TIMECOUNTER
844			getmicrotime(&now);
845			if (timercmp(&aitv->it_value, &now, <))
846				timerclear(&aitv->it_value);
847			else
848				timersub(&aitv->it_value, &now,
849				    &aitv->it_value);
850#else /* !__HAVE_TIMECOUNTER */
851			if (timercmp(&aitv->it_value, &time, <))
852				timerclear(&aitv->it_value);
853			else
854				timersub(&aitv->it_value, &time,
855				    &aitv->it_value);
856#endif /* !__HAVE_TIMECOUNTER */
857		}
858	} else if (pt->pt_active) {
859		if (pt->pt_type == CLOCK_VIRTUAL)
860			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
861		else
862			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
863		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
864			timeradd(&aitv->it_value,
865			    &ptn->pt_time.it_value, &aitv->it_value);
866		KASSERT(ptn != NULL); /* pt should be findable on the list */
867	} else
868		timerclear(&aitv->it_value);
869}
870
871
872
873/* Set and arm a POSIX realtime timer */
874int
875sys_timer_settime(struct lwp *l, void *v, register_t *retval __unused)
876{
877	struct sys_timer_settime_args /* {
878		syscallarg(timer_t) timerid;
879		syscallarg(int) flags;
880		syscallarg(const struct itimerspec *) value;
881		syscallarg(struct itimerspec *) ovalue;
882	} */ *uap = v;
883	int error;
884	struct itimerspec value, ovalue, *ovp = NULL;
885
886	if ((error = copyin(SCARG(uap, value), &value,
887	    sizeof(struct itimerspec))) != 0)
888		return (error);
889
890	if (SCARG(uap, ovalue))
891		ovp = &ovalue;
892
893	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
894	    SCARG(uap, flags), l->l_proc)) != 0)
895		return error;
896
897	if (ovp)
898		return copyout(&ovalue, SCARG(uap, ovalue),
899		    sizeof(struct itimerspec));
900	return 0;
901}
902
903int
904dotimer_settime(int timerid, struct itimerspec *value,
905    struct itimerspec *ovalue, int flags, struct proc *p)
906{
907#ifdef __HAVE_TIMECOUNTER
908	struct timeval now;
909#endif
910	struct itimerval val, oval;
911	struct ptimer *pt;
912	int s;
913
914	if ((p->p_timers == NULL) ||
915	    (timerid < 2) || (timerid >= TIMER_MAX) ||
916	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
917		return (EINVAL);
918
919	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
920	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
921	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
922		return (EINVAL);
923
924	oval = pt->pt_time;
925	pt->pt_time = val;
926
927	s = splclock();
928	/*
929	 * If we've been passed a relative time for a realtime timer,
930	 * convert it to absolute; if an absolute time for a virtual
931	 * timer, convert it to relative and make sure we don't set it
932	 * to zero, which would cancel the timer, or let it go
933	 * negative, which would confuse the comparison tests.
934	 */
935	if (timerisset(&pt->pt_time.it_value)) {
936		if (pt->pt_type == CLOCK_REALTIME) {
937#ifdef __HAVE_TIMECOUNTER
938			if ((flags & TIMER_ABSTIME) == 0) {
939				getmicrotime(&now);
940				timeradd(&pt->pt_time.it_value, &now,
941				    &pt->pt_time.it_value);
942			}
943#else /* !__HAVE_TIMECOUNTER */
944			if ((flags & TIMER_ABSTIME) == 0)
945				timeradd(&pt->pt_time.it_value, &time,
946				    &pt->pt_time.it_value);
947#endif /* !__HAVE_TIMECOUNTER */
948		} else {
949			if ((flags & TIMER_ABSTIME) != 0) {
950#ifdef __HAVE_TIMECOUNTER
951				getmicrotime(&now);
952				timersub(&pt->pt_time.it_value, &now,
953				    &pt->pt_time.it_value);
954#else /* !__HAVE_TIMECOUNTER */
955				timersub(&pt->pt_time.it_value, &time,
956				    &pt->pt_time.it_value);
957#endif /* !__HAVE_TIMECOUNTER */
958				if (!timerisset(&pt->pt_time.it_value) ||
959				    pt->pt_time.it_value.tv_sec < 0) {
960					pt->pt_time.it_value.tv_sec = 0;
961					pt->pt_time.it_value.tv_usec = 1;
962				}
963			}
964		}
965	}
966
967	timer_settime(pt);
968	splx(s);
969
970	if (ovalue) {
971		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
972		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
973	}
974
975	return (0);
976}
977
978/* Return the time remaining until a POSIX timer fires. */
979int
980sys_timer_gettime(struct lwp *l, void *v, register_t *retval __unused)
981{
982	struct sys_timer_gettime_args /* {
983		syscallarg(timer_t) timerid;
984		syscallarg(struct itimerspec *) value;
985	} */ *uap = v;
986	struct itimerspec its;
987	int error;
988
989	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
990	    &its)) != 0)
991		return error;
992
993	return copyout(&its, SCARG(uap, value), sizeof(its));
994}
995
996int
997dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
998{
999	int s;
1000	struct ptimer *pt;
1001	struct itimerval aitv;
1002
1003	if ((p->p_timers == NULL) ||
1004	    (timerid < 2) || (timerid >= TIMER_MAX) ||
1005	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1006		return (EINVAL);
1007
1008	s = splclock();
1009	timer_gettime(pt, &aitv);
1010	splx(s);
1011
1012	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
1013	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
1014
1015	return 0;
1016}
1017
1018/*
1019 * Return the count of the number of times a periodic timer expired
1020 * while a notification was already pending. The counter is reset when
1021 * a timer expires and a notification can be posted.
1022 */
1023int
1024sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1025{
1026	struct sys_timer_getoverrun_args /* {
1027		syscallarg(timer_t) timerid;
1028	} */ *uap = v;
1029	struct proc *p = l->l_proc;
1030	int timerid;
1031	struct ptimer *pt;
1032
1033	timerid = SCARG(uap, timerid);
1034
1035	if ((p->p_timers == NULL) ||
1036	    (timerid < 2) || (timerid >= TIMER_MAX) ||
1037	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1038		return (EINVAL);
1039
1040	*retval = pt->pt_poverruns;
1041
1042	return (0);
1043}
1044
1045/* Glue function that triggers an upcall; called from userret(). */
1046static void
1047timerupcall(struct lwp *l, void *arg)
1048{
1049	struct ptimers *pt = (struct ptimers *)arg;
1050	unsigned int i, fired, done;
1051
1052	KDASSERT(l->l_proc->p_sa);
1053	/* Bail out if we do not own the virtual processor */
1054	if (l->l_savp->savp_lwp != l)
1055		return ;
1056
1057	KERNEL_PROC_LOCK(l);
1058
1059	fired = pt->pts_fired;
1060	done = 0;
1061	while ((i = ffs(fired)) != 0) {
1062		siginfo_t *si;
1063		int mask = 1 << --i;
1064		int f;
1065
1066		f = l->l_flag & L_SA;
1067		l->l_flag &= ~L_SA;
1068		si = siginfo_alloc(PR_WAITOK);
1069		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1070		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1071		    sizeof(*si), si, siginfo_free) != 0) {
1072			siginfo_free(si);
1073			/* XXX What do we do here?? */
1074		} else
1075			done |= mask;
1076		fired &= ~mask;
1077		l->l_flag |= f;
1078	}
1079	pt->pts_fired &= ~done;
1080	if (pt->pts_fired == 0)
1081		l->l_proc->p_userret = NULL;
1082
1083	KERNEL_PROC_UNLOCK(l);
1084}
1085
1086/*
1087 * Real interval timer expired:
1088 * send process whose timer expired an alarm signal.
1089 * If time is not set up to reload, then just return.
1090 * Else compute next time timer should go off which is > current time.
1091 * This is where delay in processing this timeout causes multiple
1092 * SIGALRM calls to be compressed into one.
1093 */
1094void
1095realtimerexpire(void *arg)
1096{
1097#ifdef __HAVE_TIMECOUNTER
1098	struct timeval now;
1099#endif
1100	struct ptimer *pt;
1101	int s;
1102
1103	pt = (struct ptimer *)arg;
1104
1105	itimerfire(pt);
1106
1107	if (!timerisset(&pt->pt_time.it_interval)) {
1108		timerclear(&pt->pt_time.it_value);
1109		return;
1110	}
1111#ifdef __HAVE_TIMECOUNTER
1112	for (;;) {
1113		s = splclock();	/* XXX need spl now? */
1114		timeradd(&pt->pt_time.it_value,
1115		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1116		getmicrotime(&now);
1117		if (timercmp(&pt->pt_time.it_value, &now, >)) {
1118			/*
1119			 * Don't need to check hzto() return value, here.
1120			 * callout_reset() does it for us.
1121			 */
1122			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1123			    realtimerexpire, pt);
1124			splx(s);
1125			return;
1126		}
1127		splx(s);
1128		pt->pt_overruns++;
1129	}
1130#else /* !__HAVE_TIMECOUNTER */
1131	for (;;) {
1132		s = splclock();
1133		timeradd(&pt->pt_time.it_value,
1134		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1135		if (timercmp(&pt->pt_time.it_value, &time, >)) {
1136			/*
1137			 * Don't need to check hzto() return value, here.
1138			 * callout_reset() does it for us.
1139			 */
1140			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1141			    realtimerexpire, pt);
1142			splx(s);
1143			return;
1144		}
1145		splx(s);
1146		pt->pt_overruns++;
1147	}
1148#endif /* !__HAVE_TIMECOUNTER */
1149}
1150
1151/* BSD routine to get the value of an interval timer. */
1152/* ARGSUSED */
1153int
1154sys_getitimer(struct lwp *l, void *v, register_t *retval __unused)
1155{
1156	struct sys_getitimer_args /* {
1157		syscallarg(int) which;
1158		syscallarg(struct itimerval *) itv;
1159	} */ *uap = v;
1160	struct proc *p = l->l_proc;
1161	struct itimerval aitv;
1162	int error;
1163
1164	error = dogetitimer(p, SCARG(uap, which), &aitv);
1165	if (error)
1166		return error;
1167	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1168}
1169
1170int
1171dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1172{
1173	int s;
1174
1175	if ((u_int)which > ITIMER_PROF)
1176		return (EINVAL);
1177
1178	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1179		timerclear(&itvp->it_value);
1180		timerclear(&itvp->it_interval);
1181	} else {
1182		s = splclock();
1183		timer_gettime(p->p_timers->pts_timers[which], itvp);
1184		splx(s);
1185	}
1186
1187	return 0;
1188}
1189
1190/* BSD routine to set/arm an interval timer. */
1191/* ARGSUSED */
1192int
1193sys_setitimer(struct lwp *l, void *v, register_t *retval)
1194{
1195	struct sys_setitimer_args /* {
1196		syscallarg(int) which;
1197		syscallarg(const struct itimerval *) itv;
1198		syscallarg(struct itimerval *) oitv;
1199	} */ *uap = v;
1200	struct proc *p = l->l_proc;
1201	int which = SCARG(uap, which);
1202	struct sys_getitimer_args getargs;
1203	const struct itimerval *itvp;
1204	struct itimerval aitv;
1205	int error;
1206
1207	if ((u_int)which > ITIMER_PROF)
1208		return (EINVAL);
1209	itvp = SCARG(uap, itv);
1210	if (itvp &&
1211	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1212		return (error);
1213	if (SCARG(uap, oitv) != NULL) {
1214		SCARG(&getargs, which) = which;
1215		SCARG(&getargs, itv) = SCARG(uap, oitv);
1216		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1217			return (error);
1218	}
1219	if (itvp == 0)
1220		return (0);
1221
1222	return dosetitimer(p, which, &aitv);
1223}
1224
1225int
1226dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1227{
1228#ifdef __HAVE_TIMECOUNTER
1229	struct timeval now;
1230#endif
1231	struct ptimer *pt;
1232	int s;
1233
1234	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1235		return (EINVAL);
1236
1237	/*
1238	 * Don't bother allocating data structures if the process just
1239	 * wants to clear the timer.
1240	 */
1241	if (!timerisset(&itvp->it_value) &&
1242	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1243		return (0);
1244
1245	if (p->p_timers == NULL)
1246		timers_alloc(p);
1247	if (p->p_timers->pts_timers[which] == NULL) {
1248		pt = pool_get(&ptimer_pool, PR_WAITOK);
1249		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1250		pt->pt_ev.sigev_value.sival_int = which;
1251		pt->pt_overruns = 0;
1252		pt->pt_proc = p;
1253		pt->pt_type = which;
1254		pt->pt_entry = which;
1255		switch (which) {
1256		case ITIMER_REAL:
1257			callout_init(&pt->pt_ch);
1258			pt->pt_ev.sigev_signo = SIGALRM;
1259			break;
1260		case ITIMER_VIRTUAL:
1261			pt->pt_active = 0;
1262			pt->pt_ev.sigev_signo = SIGVTALRM;
1263			break;
1264		case ITIMER_PROF:
1265			pt->pt_active = 0;
1266			pt->pt_ev.sigev_signo = SIGPROF;
1267			break;
1268		}
1269	} else
1270		pt = p->p_timers->pts_timers[which];
1271
1272	pt->pt_time = *itvp;
1273	p->p_timers->pts_timers[which] = pt;
1274
1275	s = splclock();
1276	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1277		/* Convert to absolute time */
1278#ifdef __HAVE_TIMECOUNTER
1279		/* XXX need to wrap in splclock for timecounters case? */
1280		getmicrotime(&now);
1281		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1282#else /* !__HAVE_TIMECOUNTER */
1283		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1284#endif /* !__HAVE_TIMECOUNTER */
1285	}
1286	timer_settime(pt);
1287	splx(s);
1288
1289	return (0);
1290}
1291
1292/* Utility routines to manage the array of pointers to timers. */
1293void
1294timers_alloc(struct proc *p)
1295{
1296	int i;
1297	struct ptimers *pts;
1298
1299	pts = pool_get(&ptimers_pool, PR_WAITOK);
1300	LIST_INIT(&pts->pts_virtual);
1301	LIST_INIT(&pts->pts_prof);
1302	for (i = 0; i < TIMER_MAX; i++)
1303		pts->pts_timers[i] = NULL;
1304	pts->pts_fired = 0;
1305	p->p_timers = pts;
1306}
1307
1308/*
1309 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1310 * then clean up all timers and free all the data structures. If
1311 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1312 * by timer_create(), not the BSD setitimer() timers, and only free the
1313 * structure if none of those remain.
1314 */
1315void
1316timers_free(struct proc *p, int which)
1317{
1318	int i, s;
1319	struct ptimers *pts;
1320	struct ptimer *pt, *ptn;
1321	struct timeval tv;
1322
1323	if (p->p_timers) {
1324		pts = p->p_timers;
1325		if (which == TIMERS_ALL)
1326			i = 0;
1327		else {
1328			s = splclock();
1329			timerclear(&tv);
1330			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1331			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1332			     ptn = LIST_NEXT(ptn, pt_list))
1333				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1334			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1335			if (ptn) {
1336				timeradd(&tv, &ptn->pt_time.it_value,
1337				    &ptn->pt_time.it_value);
1338				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1339				    ptn, pt_list);
1340			}
1341
1342			timerclear(&tv);
1343			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1344			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1345			     ptn = LIST_NEXT(ptn, pt_list))
1346				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1347			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1348			if (ptn) {
1349				timeradd(&tv, &ptn->pt_time.it_value,
1350				    &ptn->pt_time.it_value);
1351				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1352				    pt_list);
1353			}
1354			splx(s);
1355			i = 3;
1356		}
1357		for ( ; i < TIMER_MAX; i++)
1358			if ((pt = pts->pts_timers[i]) != NULL) {
1359				if (pt->pt_type == CLOCK_REALTIME)
1360					callout_stop(&pt->pt_ch);
1361				pts->pts_timers[i] = NULL;
1362				pool_put(&ptimer_pool, pt);
1363			}
1364		if ((pts->pts_timers[0] == NULL) &&
1365		    (pts->pts_timers[1] == NULL) &&
1366		    (pts->pts_timers[2] == NULL)) {
1367			p->p_timers = NULL;
1368			pool_put(&ptimers_pool, pts);
1369		}
1370	}
1371}
1372
1373/*
1374 * Check that a proposed value to load into the .it_value or
1375 * .it_interval part of an interval timer is acceptable, and
1376 * fix it to have at least minimal value (i.e. if it is less
1377 * than the resolution of the clock, round it up.)
1378 */
1379int
1380itimerfix(struct timeval *tv)
1381{
1382
1383	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1384		return (EINVAL);
1385	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1386		tv->tv_usec = tick;
1387	return (0);
1388}
1389
1390#ifdef __HAVE_TIMECOUNTER
1391int
1392itimespecfix(struct timespec *ts)
1393{
1394
1395	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1396		return (EINVAL);
1397	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1398		ts->tv_nsec = tick * 1000;
1399	return (0);
1400}
1401#endif /* __HAVE_TIMECOUNTER */
1402
1403/*
1404 * Decrement an interval timer by a specified number
1405 * of microseconds, which must be less than a second,
1406 * i.e. < 1000000.  If the timer expires, then reload
1407 * it.  In this case, carry over (usec - old value) to
1408 * reduce the value reloaded into the timer so that
1409 * the timer does not drift.  This routine assumes
1410 * that it is called in a context where the timers
1411 * on which it is operating cannot change in value.
1412 */
1413int
1414itimerdecr(struct ptimer *pt, int usec)
1415{
1416	struct itimerval *itp;
1417
1418	itp = &pt->pt_time;
1419	if (itp->it_value.tv_usec < usec) {
1420		if (itp->it_value.tv_sec == 0) {
1421			/* expired, and already in next interval */
1422			usec -= itp->it_value.tv_usec;
1423			goto expire;
1424		}
1425		itp->it_value.tv_usec += 1000000;
1426		itp->it_value.tv_sec--;
1427	}
1428	itp->it_value.tv_usec -= usec;
1429	usec = 0;
1430	if (timerisset(&itp->it_value))
1431		return (1);
1432	/* expired, exactly at end of interval */
1433expire:
1434	if (timerisset(&itp->it_interval)) {
1435		itp->it_value = itp->it_interval;
1436		itp->it_value.tv_usec -= usec;
1437		if (itp->it_value.tv_usec < 0) {
1438			itp->it_value.tv_usec += 1000000;
1439			itp->it_value.tv_sec--;
1440		}
1441		timer_settime(pt);
1442	} else
1443		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1444	return (0);
1445}
1446
1447void
1448itimerfire(struct ptimer *pt)
1449{
1450	struct proc *p = pt->pt_proc;
1451	struct sadata_vp *vp;
1452	int s;
1453	unsigned int i;
1454
1455	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1456		/*
1457		 * No RT signal infrastructure exists at this time;
1458		 * just post the signal number and throw away the
1459		 * value.
1460		 */
1461		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1462			pt->pt_overruns++;
1463		else {
1464			ksiginfo_t ksi;
1465			(void)memset(&ksi, 0, sizeof(ksi));
1466			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1467			ksi.ksi_code = SI_TIMER;
1468			ksi.ksi_sigval = pt->pt_ev.sigev_value;
1469			pt->pt_poverruns = pt->pt_overruns;
1470			pt->pt_overruns = 0;
1471			kpsignal(p, &ksi, NULL);
1472		}
1473	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1474		/* Cause the process to generate an upcall when it returns. */
1475		signotify(p);
1476		if (p->p_userret == NULL) {
1477			/*
1478			 * XXX stop signals can be processed inside tsleep,
1479			 * which can be inside sa_yield's inner loop, which
1480			 * makes testing for sa_idle alone insuffucent to
1481			 * determine if we really should call setrunnable.
1482			 */
1483			pt->pt_poverruns = pt->pt_overruns;
1484			pt->pt_overruns = 0;
1485			i = 1 << pt->pt_entry;
1486			p->p_timers->pts_fired = i;
1487			p->p_userret = timerupcall;
1488			p->p_userret_arg = p->p_timers;
1489
1490			SCHED_LOCK(s);
1491			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1492				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1493					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1494					sched_wakeup(vp->savp_lwp);
1495					break;
1496				}
1497			}
1498			SCHED_UNLOCK(s);
1499		} else if (p->p_userret == timerupcall) {
1500			i = 1 << pt->pt_entry;
1501			if ((p->p_timers->pts_fired & i) == 0) {
1502				pt->pt_poverruns = pt->pt_overruns;
1503				pt->pt_overruns = 0;
1504				p->p_timers->pts_fired |= i;
1505			} else
1506				pt->pt_overruns++;
1507		} else {
1508			pt->pt_overruns++;
1509			if ((p->p_flag & P_WEXIT) == 0)
1510				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1511				    p->p_pid, pt->pt_overruns,
1512				    pt->pt_ev.sigev_value.sival_int,
1513				    p->p_userret);
1514		}
1515	}
1516
1517}
1518
1519/*
1520 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1521 * for usage and rationale.
1522 */
1523int
1524ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1525{
1526	struct timeval tv, delta;
1527	int rv = 0;
1528#ifndef __HAVE_TIMECOUNTER
1529	int s;
1530#endif
1531
1532#ifdef __HAVE_TIMECOUNTER
1533	getmicrouptime(&tv);
1534#else /* !__HAVE_TIMECOUNTER */
1535	s = splclock();
1536	tv = mono_time;
1537	splx(s);
1538#endif /* !__HAVE_TIMECOUNTER */
1539	timersub(&tv, lasttime, &delta);
1540
1541	/*
1542	 * check for 0,0 is so that the message will be seen at least once,
1543	 * even if interval is huge.
1544	 */
1545	if (timercmp(&delta, mininterval, >=) ||
1546	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1547		*lasttime = tv;
1548		rv = 1;
1549	}
1550
1551	return (rv);
1552}
1553
1554/*
1555 * ppsratecheck(): packets (or events) per second limitation.
1556 */
1557int
1558ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1559{
1560	struct timeval tv, delta;
1561	int rv;
1562#ifndef __HAVE_TIMECOUNTER
1563	int s;
1564#endif
1565
1566#ifdef __HAVE_TIMECOUNTER
1567	getmicrouptime(&tv);
1568#else /* !__HAVE_TIMECOUNTER */
1569	s = splclock();
1570	tv = mono_time;
1571	splx(s);
1572#endif /* !__HAVE_TIMECOUNTER */
1573	timersub(&tv, lasttime, &delta);
1574
1575	/*
1576	 * check for 0,0 is so that the message will be seen at least once.
1577	 * if more than one second have passed since the last update of
1578	 * lasttime, reset the counter.
1579	 *
1580	 * we do increment *curpps even in *curpps < maxpps case, as some may
1581	 * try to use *curpps for stat purposes as well.
1582	 */
1583	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1584	    delta.tv_sec >= 1) {
1585		*lasttime = tv;
1586		*curpps = 0;
1587	}
1588	if (maxpps < 0)
1589		rv = 1;
1590	else if (*curpps < maxpps)
1591		rv = 1;
1592	else
1593		rv = 0;
1594
1595#if 1 /*DIAGNOSTIC?*/
1596	/* be careful about wrap-around */
1597	if (*curpps + 1 > *curpps)
1598		*curpps = *curpps + 1;
1599#else
1600	/*
1601	 * assume that there's not too many calls to this function.
1602	 * not sure if the assumption holds, as it depends on *caller's*
1603	 * behavior, not the behavior of this function.
1604	 * IMHO it is wrong to make assumption on the caller's behavior,
1605	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1606	 */
1607	*curpps = *curpps + 1;
1608#endif
1609
1610	return (rv);
1611}
1612