kern_time.c revision 1.101
1/*	$NetBSD: kern_time.c,v 1.101 2006/06/07 22:33:40 kardel Exp $	*/
2
3/*-
4 * Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christopher G. Demetriou.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the NetBSD
21 *	Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39/*
40 * Copyright (c) 1982, 1986, 1989, 1993
41 *	The Regents of the University of California.  All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 *    notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 *    notice, this list of conditions and the following disclaimer in the
50 *    documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 *    may be used to endorse or promote products derived from this software
53 *    without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
68 */
69
70#include <sys/cdefs.h>
71__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.101 2006/06/07 22:33:40 kardel Exp $");
72
73#include "fs_nfs.h"
74#include "opt_nfs.h"
75#include "opt_nfsserver.h"
76
77#include <sys/param.h>
78#include <sys/resourcevar.h>
79#include <sys/kernel.h>
80#include <sys/systm.h>
81#include <sys/proc.h>
82#include <sys/sa.h>
83#include <sys/savar.h>
84#include <sys/vnode.h>
85#include <sys/signalvar.h>
86#include <sys/syslog.h>
87#ifdef __HAVE_TIMECOUNTER
88#include <sys/timetc.h>
89#else /* !__HAVE_TIMECOUNTER */
90#include <sys/timevar.h>
91#endif /* !__HAVE_TIMECOUNTER */
92#include <sys/kauth.h>
93
94#include <sys/mount.h>
95#include <sys/syscallargs.h>
96
97#include <uvm/uvm_extern.h>
98
99#if defined(NFS) || defined(NFSSERVER)
100#include <nfs/rpcv2.h>
101#include <nfs/nfsproto.h>
102#include <nfs/nfs.h>
103#include <nfs/nfs_var.h>
104#endif
105
106#include <machine/cpu.h>
107
108POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
109    &pool_allocator_nointr);
110POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
111    &pool_allocator_nointr);
112
113static void timerupcall(struct lwp *, void *);
114#ifdef __HAVE_TIMECOUNTER
115static int itimespecfix(struct timespec *);		/* XXX move itimerfix to timespecs */
116#endif /* __HAVE_TIMECOUNTER */
117
118/* Time of day and interval timer support.
119 *
120 * These routines provide the kernel entry points to get and set
121 * the time-of-day and per-process interval timers.  Subroutines
122 * here provide support for adding and subtracting timeval structures
123 * and decrementing interval timers, optionally reloading the interval
124 * timers when they expire.
125 */
126
127/* This function is used by clock_settime and settimeofday */
128int
129settime(struct proc *p, struct timespec *ts)
130{
131	struct timeval delta, tv;
132#ifdef __HAVE_TIMECOUNTER
133	struct timeval now;
134	struct timespec ts1;
135#endif /* !__HAVE_TIMECOUNTER */
136	struct cpu_info *ci;
137	int s;
138
139	/*
140	 * Don't allow the time to be set forward so far it will wrap
141	 * and become negative, thus allowing an attacker to bypass
142	 * the next check below.  The cutoff is 1 year before rollover
143	 * occurs, so even if the attacker uses adjtime(2) to move
144	 * the time past the cutoff, it will take a very long time
145	 * to get to the wrap point.
146	 *
147	 * XXX: we check against INT_MAX since on 64-bit
148	 *	platforms, sizeof(int) != sizeof(long) and
149	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
150	 */
151	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
152		struct proc *pp = p->p_pptr;
153		log(LOG_WARNING, "pid %d (%s) "
154		    "invoked by uid %d ppid %d (%s) "
155		    "tried to set clock forward to %ld\n",
156		    p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
157		    pp->p_pid, pp->p_comm, (long)ts->tv_sec);
158		return (EPERM);
159	}
160	TIMESPEC_TO_TIMEVAL(&tv, ts);
161
162	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
163	s = splclock();
164#ifdef __HAVE_TIMECOUNTER
165	microtime(&now);
166	timersub(&tv, &now, &delta);
167#else /* !__HAVE_TIMECOUNTER */
168	timersub(&tv, &time, &delta);
169#endif /* !__HAVE_TIMECOUNTER */
170	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) {
171		splx(s);
172		return (EPERM);
173	}
174#ifdef notyet
175	if ((delta.tv_sec < 86400) && securelevel > 0) {
176		splx(s);
177		return (EPERM);
178	}
179#endif
180#ifdef __HAVE_TIMECOUNTER
181	ts1.tv_sec = tv.tv_sec;
182	ts1.tv_nsec = tv.tv_usec * 1000;
183	tc_setclock(&ts1);
184	(void) spllowersoftclock();
185#else /* !__HAVE_TIMECOUNTER */
186	time = tv;
187	(void) spllowersoftclock();
188	timeradd(&boottime, &delta, &boottime);
189#endif /* !__HAVE_TIMECOUNTER */
190	/*
191	 * XXXSMP
192	 * This is wrong.  We should traverse a list of all
193	 * CPUs and add the delta to the runtime of those
194	 * CPUs which have a process on them.
195	 */
196	ci = curcpu();
197	timeradd(&ci->ci_schedstate.spc_runtime, &delta,
198	    &ci->ci_schedstate.spc_runtime);
199#if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
200	nqnfs_lease_updatetime(delta.tv_sec);
201#endif
202	splx(s);
203	resettodr();
204	return (0);
205}
206
207/* ARGSUSED */
208int
209sys_clock_gettime(struct lwp *l, void *v, register_t *retval)
210{
211	struct sys_clock_gettime_args /* {
212		syscallarg(clockid_t) clock_id;
213		syscallarg(struct timespec *) tp;
214	} */ *uap = v;
215	clockid_t clock_id;
216	struct timespec ats;
217
218	clock_id = SCARG(uap, clock_id);
219	switch (clock_id) {
220	case CLOCK_REALTIME:
221		nanotime(&ats);
222		break;
223	case CLOCK_MONOTONIC:
224#ifdef __HAVE_TIMECOUNTER
225		nanouptime(&ats);
226#else /* !__HAVE_TIMECOUNTER */
227		{
228		int s;
229
230		/* XXX "hz" granularity */
231		s = splclock();
232		TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
233		splx(s);
234		}
235#endif /* !__HAVE_TIMECOUNTER */
236		break;
237	default:
238		return (EINVAL);
239	}
240
241	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
242}
243
244/* ARGSUSED */
245int
246sys_clock_settime(struct lwp *l, void *v, register_t *retval)
247{
248	struct sys_clock_settime_args /* {
249		syscallarg(clockid_t) clock_id;
250		syscallarg(const struct timespec *) tp;
251	} */ *uap = v;
252	struct proc *p = l->l_proc;
253	int error;
254
255	if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
256				       &p->p_acflag)) != 0)
257		return (error);
258
259	return (clock_settime1(p, SCARG(uap, clock_id), SCARG(uap, tp)));
260}
261
262
263int
264clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
265{
266	struct timespec ats;
267	int error;
268
269	if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
270		return (error);
271
272	switch (clock_id) {
273	case CLOCK_REALTIME:
274		if ((error = settime(p, &ats)) != 0)
275			return (error);
276		break;
277	case CLOCK_MONOTONIC:
278		return (EINVAL);	/* read-only clock */
279	default:
280		return (EINVAL);
281	}
282
283	return 0;
284}
285
286int
287sys_clock_getres(struct lwp *l, void *v, register_t *retval)
288{
289	struct sys_clock_getres_args /* {
290		syscallarg(clockid_t) clock_id;
291		syscallarg(struct timespec *) tp;
292	} */ *uap = v;
293	clockid_t clock_id;
294	struct timespec ts;
295	int error = 0;
296
297	clock_id = SCARG(uap, clock_id);
298	switch (clock_id) {
299	case CLOCK_REALTIME:
300	case CLOCK_MONOTONIC:
301		ts.tv_sec = 0;
302		ts.tv_nsec = 1000000000 / hz;
303		break;
304	default:
305		return (EINVAL);
306	}
307
308	if (SCARG(uap, tp))
309		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
310
311	return error;
312}
313
314/* ARGSUSED */
315int
316sys_nanosleep(struct lwp *l, void *v, register_t *retval)
317{
318#ifdef __HAVE_TIMECOUNTER
319	static int nanowait;
320	struct sys_nanosleep_args/* {
321		syscallarg(struct timespec *) rqtp;
322		syscallarg(struct timespec *) rmtp;
323	} */ *uap = v;
324	struct timespec rmt, rqt;
325	int error, timo;
326
327	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
328	if (error)
329		return (error);
330
331	if (itimespecfix(&rqt))
332		return (EINVAL);
333
334	timo = tstohz(&rqt);
335	/*
336	 * Avoid inadvertantly sleeping forever
337	 */
338	if (timo == 0)
339		timo = 1;
340
341	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
342	if (error == ERESTART)
343		error = EINTR;
344	if (error == EWOULDBLOCK)
345		error = 0;
346
347	if (SCARG(uap, rmtp)) {
348		int error1;
349
350		getnanotime(&rmt);
351
352		timespecsub(&rqt, &rmt, &rmt);
353		if (rmt.tv_sec < 0)
354			timespecclear(&rmt);
355
356		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
357			sizeof(rmt));
358		if (error1)
359			return (error1);
360	}
361
362	return error;
363#else /* !__HAVE_TIMECOUNTER */
364	static int nanowait;
365	struct sys_nanosleep_args/* {
366		syscallarg(struct timespec *) rqtp;
367		syscallarg(struct timespec *) rmtp;
368	} */ *uap = v;
369	struct timespec rqt;
370	struct timespec rmt;
371	struct timeval atv, utv;
372	int error, s, timo;
373
374	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
375	if (error)
376		return (error);
377
378	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
379	if (itimerfix(&atv))
380		return (EINVAL);
381
382	s = splclock();
383	timeradd(&atv,&time,&atv);
384	timo = hzto(&atv);
385	/*
386	 * Avoid inadvertantly sleeping forever
387	 */
388	if (timo == 0)
389		timo = 1;
390	splx(s);
391
392	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
393	if (error == ERESTART)
394		error = EINTR;
395	if (error == EWOULDBLOCK)
396		error = 0;
397
398	if (SCARG(uap, rmtp)) {
399		int error1;
400
401		s = splclock();
402		utv = time;
403		splx(s);
404
405		timersub(&atv, &utv, &utv);
406		if (utv.tv_sec < 0)
407			timerclear(&utv);
408
409		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
410		error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
411			sizeof(rmt));
412		if (error1)
413			return (error1);
414	}
415
416	return error;
417#endif /* !__HAVE_TIMECOUNTER */
418}
419
420/* ARGSUSED */
421int
422sys_gettimeofday(struct lwp *l, void *v, register_t *retval)
423{
424	struct sys_gettimeofday_args /* {
425		syscallarg(struct timeval *) tp;
426		syscallarg(void *) tzp;		really "struct timezone *"
427	} */ *uap = v;
428	struct timeval atv;
429	int error = 0;
430	struct timezone tzfake;
431
432	if (SCARG(uap, tp)) {
433		microtime(&atv);
434		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
435		if (error)
436			return (error);
437	}
438	if (SCARG(uap, tzp)) {
439		/*
440		 * NetBSD has no kernel notion of time zone, so we just
441		 * fake up a timezone struct and return it if demanded.
442		 */
443		tzfake.tz_minuteswest = 0;
444		tzfake.tz_dsttime = 0;
445		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
446	}
447	return (error);
448}
449
450/* ARGSUSED */
451int
452sys_settimeofday(struct lwp *l, void *v, register_t *retval)
453{
454	struct sys_settimeofday_args /* {
455		syscallarg(const struct timeval *) tv;
456		syscallarg(const void *) tzp;	really "const struct timezone *"
457	} */ *uap = v;
458	struct proc *p = l->l_proc;
459	int error;
460
461	if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
462				       &p->p_acflag)) != 0)
463		return (error);
464
465	return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), p);
466}
467
468int
469settimeofday1(const struct timeval *utv, const struct timezone *utzp,
470    struct proc *p)
471{
472	struct timeval atv;
473	struct timespec ts;
474	int error;
475
476	/* Verify all parameters before changing time. */
477	/*
478	 * NetBSD has no kernel notion of time zone, and only an
479	 * obsolete program would try to set it, so we log a warning.
480	 */
481	if (utzp)
482		log(LOG_WARNING, "pid %d attempted to set the "
483		    "(obsolete) kernel time zone\n", p->p_pid);
484
485	if (utv == NULL)
486		return 0;
487
488	if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
489		return error;
490	TIMEVAL_TO_TIMESPEC(&atv, &ts);
491	return settime(p, &ts);
492}
493
494#ifndef __HAVE_TIMECOUNTER
495int	tickdelta;			/* current clock skew, us. per tick */
496long	timedelta;			/* unapplied time correction, us. */
497long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
498#endif
499
500int	time_adjusted;			/* set if an adjustment is made */
501
502/* ARGSUSED */
503int
504sys_adjtime(struct lwp *l, void *v, register_t *retval)
505{
506	struct sys_adjtime_args /* {
507		syscallarg(const struct timeval *) delta;
508		syscallarg(struct timeval *) olddelta;
509	} */ *uap = v;
510	struct proc *p = l->l_proc;
511	int error;
512
513	if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
514				       &p->p_acflag)) != 0)
515		return (error);
516
517	return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), p);
518}
519
520int
521adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
522{
523	struct timeval atv;
524	int error = 0;
525
526#ifdef __HAVE_TIMECOUNTER
527	extern int64_t time_adjtime;  /* in kern_ntptime.c */
528#else /* !__HAVE_TIMECOUNTER */
529	long ndelta, ntickdelta, odelta;
530	int s;
531#endif /* !__HAVE_TIMECOUNTER */
532
533#ifdef __HAVE_TIMECOUNTER
534	if (olddelta) {
535		atv.tv_sec = time_adjtime / 1000000;
536		atv.tv_usec = time_adjtime % 1000000;
537		if (atv.tv_usec < 0) {
538			atv.tv_usec += 1000000;
539			atv.tv_sec--;
540		}
541		error = copyout(&atv, olddelta, sizeof(struct timeval));
542		if (error)
543			return (error);
544	}
545
546	if (delta) {
547		error = copyin(delta, &atv, sizeof(struct timeval));
548		if (error)
549			return (error);
550
551		time_adjtime = (int64_t)atv.tv_sec * 1000000 +
552			atv.tv_usec;
553
554		if (time_adjtime)
555			/* We need to save the system time during shutdown */
556			time_adjusted |= 1;
557	}
558#else /* !__HAVE_TIMECOUNTER */
559	error = copyin(delta, &atv, sizeof(struct timeval));
560	if (error)
561		return (error);
562
563	/*
564	 * Compute the total correction and the rate at which to apply it.
565	 * Round the adjustment down to a whole multiple of the per-tick
566	 * delta, so that after some number of incremental changes in
567	 * hardclock(), tickdelta will become zero, lest the correction
568	 * overshoot and start taking us away from the desired final time.
569	 */
570	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
571	if (ndelta > bigadj || ndelta < -bigadj)
572		ntickdelta = 10 * tickadj;
573	else
574		ntickdelta = tickadj;
575	if (ndelta % ntickdelta)
576		ndelta = ndelta / ntickdelta * ntickdelta;
577
578	/*
579	 * To make hardclock()'s job easier, make the per-tick delta negative
580	 * if we want time to run slower; then hardclock can simply compute
581	 * tick + tickdelta, and subtract tickdelta from timedelta.
582	 */
583	if (ndelta < 0)
584		ntickdelta = -ntickdelta;
585	if (ndelta != 0)
586		/* We need to save the system clock time during shutdown */
587		time_adjusted |= 1;
588	s = splclock();
589	odelta = timedelta;
590	timedelta = ndelta;
591	tickdelta = ntickdelta;
592	splx(s);
593
594	if (olddelta) {
595		atv.tv_sec = odelta / 1000000;
596		atv.tv_usec = odelta % 1000000;
597		error = copyout(&atv, olddelta, sizeof(struct timeval));
598	}
599#endif /* __HAVE_TIMECOUNTER */
600
601	return error;
602}
603
604/*
605 * Interval timer support. Both the BSD getitimer() family and the POSIX
606 * timer_*() family of routines are supported.
607 *
608 * All timers are kept in an array pointed to by p_timers, which is
609 * allocated on demand - many processes don't use timers at all. The
610 * first three elements in this array are reserved for the BSD timers:
611 * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
612 * 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
613 * syscall.
614 *
615 * Realtime timers are kept in the ptimer structure as an absolute
616 * time; virtual time timers are kept as a linked list of deltas.
617 * Virtual time timers are processed in the hardclock() routine of
618 * kern_clock.c.  The real time timer is processed by a callout
619 * routine, called from the softclock() routine.  Since a callout may
620 * be delayed in real time due to interrupt processing in the system,
621 * it is possible for the real time timeout routine (realtimeexpire,
622 * given below), to be delayed in real time past when it is supposed
623 * to occur.  It does not suffice, therefore, to reload the real timer
624 * .it_value from the real time timers .it_interval.  Rather, we
625 * compute the next time in absolute time the timer should go off.  */
626
627/* Allocate a POSIX realtime timer. */
628int
629sys_timer_create(struct lwp *l, void *v, register_t *retval)
630{
631	struct sys_timer_create_args /* {
632		syscallarg(clockid_t) clock_id;
633		syscallarg(struct sigevent *) evp;
634		syscallarg(timer_t *) timerid;
635	} */ *uap = v;
636
637	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
638	    SCARG(uap, evp), copyin, l->l_proc);
639}
640
641int
642timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
643    copyin_t fetch_event, struct proc *p)
644{
645	int error;
646	timer_t timerid;
647	struct ptimer *pt;
648
649	if (id < CLOCK_REALTIME ||
650	    id > CLOCK_PROF)
651		return (EINVAL);
652
653	if (p->p_timers == NULL)
654		timers_alloc(p);
655
656	/* Find a free timer slot, skipping those reserved for setitimer(). */
657	for (timerid = 3; timerid < TIMER_MAX; timerid++)
658		if (p->p_timers->pts_timers[timerid] == NULL)
659			break;
660
661	if (timerid == TIMER_MAX)
662		return EAGAIN;
663
664	pt = pool_get(&ptimer_pool, PR_WAITOK);
665	if (evp) {
666		if (((error =
667		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
668		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
669			(pt->pt_ev.sigev_notify > SIGEV_SA))) {
670			pool_put(&ptimer_pool, pt);
671			return (error ? error : EINVAL);
672		}
673	} else {
674		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
675		switch (id) {
676		case CLOCK_REALTIME:
677			pt->pt_ev.sigev_signo = SIGALRM;
678			break;
679		case CLOCK_VIRTUAL:
680			pt->pt_ev.sigev_signo = SIGVTALRM;
681			break;
682		case CLOCK_PROF:
683			pt->pt_ev.sigev_signo = SIGPROF;
684			break;
685		}
686		pt->pt_ev.sigev_value.sival_int = timerid;
687	}
688	pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
689	pt->pt_info.ksi_errno = 0;
690	pt->pt_info.ksi_code = 0;
691	pt->pt_info.ksi_pid = p->p_pid;
692	pt->pt_info.ksi_uid = kauth_cred_getuid(p->p_cred);
693	pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
694
695	pt->pt_type = id;
696	pt->pt_proc = p;
697	pt->pt_overruns = 0;
698	pt->pt_poverruns = 0;
699	pt->pt_entry = timerid;
700	timerclear(&pt->pt_time.it_value);
701	if (id == CLOCK_REALTIME)
702		callout_init(&pt->pt_ch);
703	else
704		pt->pt_active = 0;
705
706	p->p_timers->pts_timers[timerid] = pt;
707
708	return copyout(&timerid, tid, sizeof(timerid));
709}
710
711/* Delete a POSIX realtime timer */
712int
713sys_timer_delete(struct lwp *l, void *v, register_t *retval)
714{
715	struct sys_timer_delete_args /*  {
716		syscallarg(timer_t) timerid;
717	} */ *uap = v;
718	struct proc *p = l->l_proc;
719	timer_t timerid;
720	struct ptimer *pt, *ptn;
721	int s;
722
723	timerid = SCARG(uap, timerid);
724
725	if ((p->p_timers == NULL) ||
726	    (timerid < 2) || (timerid >= TIMER_MAX) ||
727	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
728		return (EINVAL);
729
730	if (pt->pt_type == CLOCK_REALTIME)
731		callout_stop(&pt->pt_ch);
732	else if (pt->pt_active) {
733		s = splclock();
734		ptn = LIST_NEXT(pt, pt_list);
735		LIST_REMOVE(pt, pt_list);
736		for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
737			timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
738			    &ptn->pt_time.it_value);
739		splx(s);
740	}
741
742	p->p_timers->pts_timers[timerid] = NULL;
743	pool_put(&ptimer_pool, pt);
744
745	return (0);
746}
747
748/*
749 * Set up the given timer. The value in pt->pt_time.it_value is taken
750 * to be an absolute time for CLOCK_REALTIME timers and a relative
751 * time for virtual timers.
752 * Must be called at splclock().
753 */
754void
755timer_settime(struct ptimer *pt)
756{
757	struct ptimer *ptn, *pptn;
758	struct ptlist *ptl;
759
760	if (pt->pt_type == CLOCK_REALTIME) {
761		callout_stop(&pt->pt_ch);
762		if (timerisset(&pt->pt_time.it_value)) {
763			/*
764			 * Don't need to check hzto() return value, here.
765			 * callout_reset() does it for us.
766			 */
767			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
768			    realtimerexpire, pt);
769		}
770	} else {
771		if (pt->pt_active) {
772			ptn = LIST_NEXT(pt, pt_list);
773			LIST_REMOVE(pt, pt_list);
774			for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
775				timeradd(&pt->pt_time.it_value,
776				    &ptn->pt_time.it_value,
777				    &ptn->pt_time.it_value);
778		}
779		if (timerisset(&pt->pt_time.it_value)) {
780			if (pt->pt_type == CLOCK_VIRTUAL)
781				ptl = &pt->pt_proc->p_timers->pts_virtual;
782			else
783				ptl = &pt->pt_proc->p_timers->pts_prof;
784
785			for (ptn = LIST_FIRST(ptl), pptn = NULL;
786			     ptn && timercmp(&pt->pt_time.it_value,
787				 &ptn->pt_time.it_value, >);
788			     pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
789				timersub(&pt->pt_time.it_value,
790				    &ptn->pt_time.it_value,
791				    &pt->pt_time.it_value);
792
793			if (pptn)
794				LIST_INSERT_AFTER(pptn, pt, pt_list);
795			else
796				LIST_INSERT_HEAD(ptl, pt, pt_list);
797
798			for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
799				timersub(&ptn->pt_time.it_value,
800				    &pt->pt_time.it_value,
801				    &ptn->pt_time.it_value);
802
803			pt->pt_active = 1;
804		} else
805			pt->pt_active = 0;
806	}
807}
808
809void
810timer_gettime(struct ptimer *pt, struct itimerval *aitv)
811{
812#ifdef __HAVE_TIMECOUNTER
813	struct timeval now;
814#endif
815	struct ptimer *ptn;
816
817	*aitv = pt->pt_time;
818	if (pt->pt_type == CLOCK_REALTIME) {
819		/*
820		 * Convert from absolute to relative time in .it_value
821		 * part of real time timer.  If time for real time
822		 * timer has passed return 0, else return difference
823		 * between current time and time for the timer to go
824		 * off.
825		 */
826		if (timerisset(&aitv->it_value)) {
827#ifdef __HAVE_TIMECOUNTER
828			getmicrotime(&now);
829			if (timercmp(&aitv->it_value, &now, <))
830				timerclear(&aitv->it_value);
831			else
832				timersub(&aitv->it_value, &now,
833				    &aitv->it_value);
834#else /* !__HAVE_TIMECOUNTER */
835			if (timercmp(&aitv->it_value, &time, <))
836				timerclear(&aitv->it_value);
837			else
838				timersub(&aitv->it_value, &time,
839				    &aitv->it_value);
840#endif /* !__HAVE_TIMECOUNTER */
841		}
842	} else if (pt->pt_active) {
843		if (pt->pt_type == CLOCK_VIRTUAL)
844			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
845		else
846			ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
847		for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
848			timeradd(&aitv->it_value,
849			    &ptn->pt_time.it_value, &aitv->it_value);
850		KASSERT(ptn != NULL); /* pt should be findable on the list */
851	} else
852		timerclear(&aitv->it_value);
853}
854
855
856
857/* Set and arm a POSIX realtime timer */
858int
859sys_timer_settime(struct lwp *l, void *v, register_t *retval)
860{
861	struct sys_timer_settime_args /* {
862		syscallarg(timer_t) timerid;
863		syscallarg(int) flags;
864		syscallarg(const struct itimerspec *) value;
865		syscallarg(struct itimerspec *) ovalue;
866	} */ *uap = v;
867	int error;
868	struct itimerspec value, ovalue, *ovp = NULL;
869
870	if ((error = copyin(SCARG(uap, value), &value,
871	    sizeof(struct itimerspec))) != 0)
872		return (error);
873
874	if (SCARG(uap, ovalue))
875		ovp = &ovalue;
876
877	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
878	    SCARG(uap, flags), l->l_proc)) != 0)
879		return error;
880
881	if (ovp)
882		return copyout(&ovalue, SCARG(uap, ovalue),
883		    sizeof(struct itimerspec));
884	return 0;
885}
886
887int
888dotimer_settime(int timerid, struct itimerspec *value,
889    struct itimerspec *ovalue, int flags, struct proc *p)
890{
891#ifdef __HAVE_TIMECOUNTER
892	struct timeval now;
893#endif
894	struct itimerval val, oval;
895	struct ptimer *pt;
896	int s;
897
898	if ((p->p_timers == NULL) ||
899	    (timerid < 2) || (timerid >= TIMER_MAX) ||
900	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
901		return (EINVAL);
902
903	TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
904	TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
905	if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
906		return (EINVAL);
907
908	oval = pt->pt_time;
909	pt->pt_time = val;
910
911	s = splclock();
912	/*
913	 * If we've been passed a relative time for a realtime timer,
914	 * convert it to absolute; if an absolute time for a virtual
915	 * timer, convert it to relative and make sure we don't set it
916	 * to zero, which would cancel the timer, or let it go
917	 * negative, which would confuse the comparison tests.
918	 */
919	if (timerisset(&pt->pt_time.it_value)) {
920		if (pt->pt_type == CLOCK_REALTIME) {
921#ifdef __HAVE_TIMECOUNTER
922			if ((flags & TIMER_ABSTIME) == 0) {
923				getmicrotime(&now);
924				timeradd(&pt->pt_time.it_value, &now,
925				    &pt->pt_time.it_value);
926			}
927#else /* !__HAVE_TIMECOUNTER */
928			if ((flags & TIMER_ABSTIME) == 0)
929				timeradd(&pt->pt_time.it_value, &time,
930				    &pt->pt_time.it_value);
931#endif /* !__HAVE_TIMECOUNTER */
932		} else {
933			if ((flags & TIMER_ABSTIME) != 0) {
934#ifdef __HAVE_TIMECOUNTER
935				getmicrotime(&now);
936				timersub(&pt->pt_time.it_value, &now,
937				    &pt->pt_time.it_value);
938#else /* !__HAVE_TIMECOUNTER */
939				timersub(&pt->pt_time.it_value, &time,
940				    &pt->pt_time.it_value);
941#endif /* !__HAVE_TIMECOUNTER */
942				if (!timerisset(&pt->pt_time.it_value) ||
943				    pt->pt_time.it_value.tv_sec < 0) {
944					pt->pt_time.it_value.tv_sec = 0;
945					pt->pt_time.it_value.tv_usec = 1;
946				}
947			}
948		}
949	}
950
951	timer_settime(pt);
952	splx(s);
953
954	if (ovalue) {
955		TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
956		TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
957	}
958
959	return (0);
960}
961
962/* Return the time remaining until a POSIX timer fires. */
963int
964sys_timer_gettime(struct lwp *l, void *v, register_t *retval)
965{
966	struct sys_timer_gettime_args /* {
967		syscallarg(timer_t) timerid;
968		syscallarg(struct itimerspec *) value;
969	} */ *uap = v;
970	struct itimerspec its;
971	int error;
972
973	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
974	    &its)) != 0)
975		return error;
976
977	return copyout(&its, SCARG(uap, value), sizeof(its));
978}
979
980int
981dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
982{
983	int s;
984	struct ptimer *pt;
985	struct itimerval aitv;
986
987	if ((p->p_timers == NULL) ||
988	    (timerid < 2) || (timerid >= TIMER_MAX) ||
989	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
990		return (EINVAL);
991
992	s = splclock();
993	timer_gettime(pt, &aitv);
994	splx(s);
995
996	TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
997	TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
998
999	return 0;
1000}
1001
1002/*
1003 * Return the count of the number of times a periodic timer expired
1004 * while a notification was already pending. The counter is reset when
1005 * a timer expires and a notification can be posted.
1006 */
1007int
1008sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
1009{
1010	struct sys_timer_getoverrun_args /* {
1011		syscallarg(timer_t) timerid;
1012	} */ *uap = v;
1013	struct proc *p = l->l_proc;
1014	int timerid;
1015	struct ptimer *pt;
1016
1017	timerid = SCARG(uap, timerid);
1018
1019	if ((p->p_timers == NULL) ||
1020	    (timerid < 2) || (timerid >= TIMER_MAX) ||
1021	    ((pt = p->p_timers->pts_timers[timerid]) == NULL))
1022		return (EINVAL);
1023
1024	*retval = pt->pt_poverruns;
1025
1026	return (0);
1027}
1028
1029/* Glue function that triggers an upcall; called from userret(). */
1030static void
1031timerupcall(struct lwp *l, void *arg)
1032{
1033	struct ptimers *pt = (struct ptimers *)arg;
1034	unsigned int i, fired, done;
1035
1036	KDASSERT(l->l_proc->p_sa);
1037	/* Bail out if we do not own the virtual processor */
1038	if (l->l_savp->savp_lwp != l)
1039		return ;
1040
1041	KERNEL_PROC_LOCK(l);
1042
1043	fired = pt->pts_fired;
1044	done = 0;
1045	while ((i = ffs(fired)) != 0) {
1046		siginfo_t *si;
1047		int mask = 1 << --i;
1048		int f;
1049
1050		f = l->l_flag & L_SA;
1051		l->l_flag &= ~L_SA;
1052		si = siginfo_alloc(PR_WAITOK);
1053		si->_info = pt->pts_timers[i]->pt_info.ksi_info;
1054		if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
1055		    sizeof(*si), si, siginfo_free) != 0) {
1056			siginfo_free(si);
1057			/* XXX What do we do here?? */
1058		} else
1059			done |= mask;
1060		fired &= ~mask;
1061		l->l_flag |= f;
1062	}
1063	pt->pts_fired &= ~done;
1064	if (pt->pts_fired == 0)
1065		l->l_proc->p_userret = NULL;
1066
1067	KERNEL_PROC_UNLOCK(l);
1068}
1069
1070/*
1071 * Real interval timer expired:
1072 * send process whose timer expired an alarm signal.
1073 * If time is not set up to reload, then just return.
1074 * Else compute next time timer should go off which is > current time.
1075 * This is where delay in processing this timeout causes multiple
1076 * SIGALRM calls to be compressed into one.
1077 */
1078void
1079realtimerexpire(void *arg)
1080{
1081#ifdef __HAVE_TIMECOUNTER
1082	struct timeval now;
1083#endif
1084	struct ptimer *pt;
1085	int s;
1086
1087	pt = (struct ptimer *)arg;
1088
1089	itimerfire(pt);
1090
1091	if (!timerisset(&pt->pt_time.it_interval)) {
1092		timerclear(&pt->pt_time.it_value);
1093		return;
1094	}
1095#ifdef __HAVE_TIMECOUNTER
1096	for (;;) {
1097		s = splclock();	/* XXX need spl now? */
1098		timeradd(&pt->pt_time.it_value,
1099		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1100		getmicrotime(&now);
1101		if (timercmp(&pt->pt_time.it_value, &now, >)) {
1102			/*
1103			 * Don't need to check hzto() return value, here.
1104			 * callout_reset() does it for us.
1105			 */
1106			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1107			    realtimerexpire, pt);
1108			splx(s);
1109			return;
1110		}
1111		splx(s);
1112		pt->pt_overruns++;
1113	}
1114#else /* !__HAVE_TIMECOUNTER */
1115	for (;;) {
1116		s = splclock();
1117		timeradd(&pt->pt_time.it_value,
1118		    &pt->pt_time.it_interval, &pt->pt_time.it_value);
1119		if (timercmp(&pt->pt_time.it_value, &time, >)) {
1120			/*
1121			 * Don't need to check hzto() return value, here.
1122			 * callout_reset() does it for us.
1123			 */
1124			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
1125			    realtimerexpire, pt);
1126			splx(s);
1127			return;
1128		}
1129		splx(s);
1130		pt->pt_overruns++;
1131	}
1132#endif /* !__HAVE_TIMECOUNTER */
1133}
1134
1135/* BSD routine to get the value of an interval timer. */
1136/* ARGSUSED */
1137int
1138sys_getitimer(struct lwp *l, void *v, register_t *retval)
1139{
1140	struct sys_getitimer_args /* {
1141		syscallarg(int) which;
1142		syscallarg(struct itimerval *) itv;
1143	} */ *uap = v;
1144	struct proc *p = l->l_proc;
1145	struct itimerval aitv;
1146	int error;
1147
1148	error = dogetitimer(p, SCARG(uap, which), &aitv);
1149	if (error)
1150		return error;
1151	return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
1152}
1153
1154int
1155dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1156{
1157	int s;
1158
1159	if ((u_int)which > ITIMER_PROF)
1160		return (EINVAL);
1161
1162	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
1163		timerclear(&itvp->it_value);
1164		timerclear(&itvp->it_interval);
1165	} else {
1166		s = splclock();
1167		timer_gettime(p->p_timers->pts_timers[which], itvp);
1168		splx(s);
1169	}
1170
1171	return 0;
1172}
1173
1174/* BSD routine to set/arm an interval timer. */
1175/* ARGSUSED */
1176int
1177sys_setitimer(struct lwp *l, void *v, register_t *retval)
1178{
1179	struct sys_setitimer_args /* {
1180		syscallarg(int) which;
1181		syscallarg(const struct itimerval *) itv;
1182		syscallarg(struct itimerval *) oitv;
1183	} */ *uap = v;
1184	struct proc *p = l->l_proc;
1185	int which = SCARG(uap, which);
1186	struct sys_getitimer_args getargs;
1187	const struct itimerval *itvp;
1188	struct itimerval aitv;
1189	int error;
1190
1191	if ((u_int)which > ITIMER_PROF)
1192		return (EINVAL);
1193	itvp = SCARG(uap, itv);
1194	if (itvp &&
1195	    (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
1196		return (error);
1197	if (SCARG(uap, oitv) != NULL) {
1198		SCARG(&getargs, which) = which;
1199		SCARG(&getargs, itv) = SCARG(uap, oitv);
1200		if ((error = sys_getitimer(l, &getargs, retval)) != 0)
1201			return (error);
1202	}
1203	if (itvp == 0)
1204		return (0);
1205
1206	return dosetitimer(p, which, &aitv);
1207}
1208
1209int
1210dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1211{
1212#ifdef __HAVE_TIMECOUNTER
1213	struct timeval now;
1214#endif
1215	struct ptimer *pt;
1216	int s;
1217
1218	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1219		return (EINVAL);
1220
1221	/*
1222	 * Don't bother allocating data structures if the process just
1223	 * wants to clear the timer.
1224	 */
1225	if (!timerisset(&itvp->it_value) &&
1226	    ((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
1227		return (0);
1228
1229	if (p->p_timers == NULL)
1230		timers_alloc(p);
1231	if (p->p_timers->pts_timers[which] == NULL) {
1232		pt = pool_get(&ptimer_pool, PR_WAITOK);
1233		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1234		pt->pt_ev.sigev_value.sival_int = which;
1235		pt->pt_overruns = 0;
1236		pt->pt_proc = p;
1237		pt->pt_type = which;
1238		pt->pt_entry = which;
1239		switch (which) {
1240		case ITIMER_REAL:
1241			callout_init(&pt->pt_ch);
1242			pt->pt_ev.sigev_signo = SIGALRM;
1243			break;
1244		case ITIMER_VIRTUAL:
1245			pt->pt_active = 0;
1246			pt->pt_ev.sigev_signo = SIGVTALRM;
1247			break;
1248		case ITIMER_PROF:
1249			pt->pt_active = 0;
1250			pt->pt_ev.sigev_signo = SIGPROF;
1251			break;
1252		}
1253	} else
1254		pt = p->p_timers->pts_timers[which];
1255
1256	pt->pt_time = *itvp;
1257	p->p_timers->pts_timers[which] = pt;
1258
1259	s = splclock();
1260	if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
1261		/* Convert to absolute time */
1262#ifdef __HAVE_TIMECOUNTER
1263		/* XXX need to wrap in splclock for timecounters case? */
1264		getmicrotime(&now);
1265		timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
1266#else /* !__HAVE_TIMECOUNTER */
1267		timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
1268#endif /* !__HAVE_TIMECOUNTER */
1269	}
1270	timer_settime(pt);
1271	splx(s);
1272
1273	return (0);
1274}
1275
1276/* Utility routines to manage the array of pointers to timers. */
1277void
1278timers_alloc(struct proc *p)
1279{
1280	int i;
1281	struct ptimers *pts;
1282
1283	pts = pool_get(&ptimers_pool, PR_WAITOK);
1284	LIST_INIT(&pts->pts_virtual);
1285	LIST_INIT(&pts->pts_prof);
1286	for (i = 0; i < TIMER_MAX; i++)
1287		pts->pts_timers[i] = NULL;
1288	pts->pts_fired = 0;
1289	p->p_timers = pts;
1290}
1291
1292/*
1293 * Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1294 * then clean up all timers and free all the data structures. If
1295 * "which" is set to TIMERS_POSIX, only clean up the timers allocated
1296 * by timer_create(), not the BSD setitimer() timers, and only free the
1297 * structure if none of those remain.
1298 */
1299void
1300timers_free(struct proc *p, int which)
1301{
1302	int i, s;
1303	struct ptimers *pts;
1304	struct ptimer *pt, *ptn;
1305	struct timeval tv;
1306
1307	if (p->p_timers) {
1308		pts = p->p_timers;
1309		if (which == TIMERS_ALL)
1310			i = 0;
1311		else {
1312			s = splclock();
1313			timerclear(&tv);
1314			for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
1315			     ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
1316			     ptn = LIST_NEXT(ptn, pt_list))
1317				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1318			LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
1319			if (ptn) {
1320				timeradd(&tv, &ptn->pt_time.it_value,
1321				    &ptn->pt_time.it_value);
1322				LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
1323				    ptn, pt_list);
1324			}
1325
1326			timerclear(&tv);
1327			for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
1328			     ptn && ptn != pts->pts_timers[ITIMER_PROF];
1329			     ptn = LIST_NEXT(ptn, pt_list))
1330				timeradd(&tv, &ptn->pt_time.it_value, &tv);
1331			LIST_FIRST(&p->p_timers->pts_prof) = NULL;
1332			if (ptn) {
1333				timeradd(&tv, &ptn->pt_time.it_value,
1334				    &ptn->pt_time.it_value);
1335				LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
1336				    pt_list);
1337			}
1338			splx(s);
1339			i = 3;
1340		}
1341		for ( ; i < TIMER_MAX; i++)
1342			if ((pt = pts->pts_timers[i]) != NULL) {
1343				if (pt->pt_type == CLOCK_REALTIME)
1344					callout_stop(&pt->pt_ch);
1345				pts->pts_timers[i] = NULL;
1346				pool_put(&ptimer_pool, pt);
1347			}
1348		if ((pts->pts_timers[0] == NULL) &&
1349		    (pts->pts_timers[1] == NULL) &&
1350		    (pts->pts_timers[2] == NULL)) {
1351			p->p_timers = NULL;
1352			pool_put(&ptimers_pool, pts);
1353		}
1354	}
1355}
1356
1357/*
1358 * Check that a proposed value to load into the .it_value or
1359 * .it_interval part of an interval timer is acceptable, and
1360 * fix it to have at least minimal value (i.e. if it is less
1361 * than the resolution of the clock, round it up.)
1362 */
1363int
1364itimerfix(struct timeval *tv)
1365{
1366
1367	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
1368		return (EINVAL);
1369	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
1370		tv->tv_usec = tick;
1371	return (0);
1372}
1373
1374#ifdef __HAVE_TIMECOUNTER
1375int
1376itimespecfix(struct timespec *ts)
1377{
1378
1379	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1380		return (EINVAL);
1381	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1382		ts->tv_nsec = tick * 1000;
1383	return (0);
1384}
1385#endif /* __HAVE_TIMECOUNTER */
1386
1387/*
1388 * Decrement an interval timer by a specified number
1389 * of microseconds, which must be less than a second,
1390 * i.e. < 1000000.  If the timer expires, then reload
1391 * it.  In this case, carry over (usec - old value) to
1392 * reduce the value reloaded into the timer so that
1393 * the timer does not drift.  This routine assumes
1394 * that it is called in a context where the timers
1395 * on which it is operating cannot change in value.
1396 */
1397int
1398itimerdecr(struct ptimer *pt, int usec)
1399{
1400	struct itimerval *itp;
1401
1402	itp = &pt->pt_time;
1403	if (itp->it_value.tv_usec < usec) {
1404		if (itp->it_value.tv_sec == 0) {
1405			/* expired, and already in next interval */
1406			usec -= itp->it_value.tv_usec;
1407			goto expire;
1408		}
1409		itp->it_value.tv_usec += 1000000;
1410		itp->it_value.tv_sec--;
1411	}
1412	itp->it_value.tv_usec -= usec;
1413	usec = 0;
1414	if (timerisset(&itp->it_value))
1415		return (1);
1416	/* expired, exactly at end of interval */
1417expire:
1418	if (timerisset(&itp->it_interval)) {
1419		itp->it_value = itp->it_interval;
1420		itp->it_value.tv_usec -= usec;
1421		if (itp->it_value.tv_usec < 0) {
1422			itp->it_value.tv_usec += 1000000;
1423			itp->it_value.tv_sec--;
1424		}
1425		timer_settime(pt);
1426	} else
1427		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1428	return (0);
1429}
1430
1431void
1432itimerfire(struct ptimer *pt)
1433{
1434	struct proc *p = pt->pt_proc;
1435	struct sadata_vp *vp;
1436	int s;
1437	unsigned int i;
1438
1439	if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
1440		/*
1441		 * No RT signal infrastructure exists at this time;
1442		 * just post the signal number and throw away the
1443		 * value.
1444		 */
1445		if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
1446			pt->pt_overruns++;
1447		else {
1448			ksiginfo_t ksi;
1449			(void)memset(&ksi, 0, sizeof(ksi));
1450			ksi.ksi_signo = pt->pt_ev.sigev_signo;
1451			ksi.ksi_code = SI_TIMER;
1452			ksi.ksi_sigval = pt->pt_ev.sigev_value;
1453			pt->pt_poverruns = pt->pt_overruns;
1454			pt->pt_overruns = 0;
1455			kpsignal(p, &ksi, NULL);
1456		}
1457	} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
1458		/* Cause the process to generate an upcall when it returns. */
1459
1460		if (p->p_userret == NULL) {
1461			/*
1462			 * XXX stop signals can be processed inside tsleep,
1463			 * which can be inside sa_yield's inner loop, which
1464			 * makes testing for sa_idle alone insuffucent to
1465			 * determine if we really should call setrunnable.
1466			 */
1467			pt->pt_poverruns = pt->pt_overruns;
1468			pt->pt_overruns = 0;
1469			i = 1 << pt->pt_entry;
1470			p->p_timers->pts_fired = i;
1471			p->p_userret = timerupcall;
1472			p->p_userret_arg = p->p_timers;
1473
1474			SCHED_LOCK(s);
1475			SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
1476				if (vp->savp_lwp->l_flag & L_SA_IDLE) {
1477					vp->savp_lwp->l_flag &= ~L_SA_IDLE;
1478					sched_wakeup(vp->savp_lwp);
1479					break;
1480				}
1481			}
1482			SCHED_UNLOCK(s);
1483		} else if (p->p_userret == timerupcall) {
1484			i = 1 << pt->pt_entry;
1485			if ((p->p_timers->pts_fired & i) == 0) {
1486				pt->pt_poverruns = pt->pt_overruns;
1487				pt->pt_overruns = 0;
1488				p->p_timers->pts_fired |= i;
1489			} else
1490				pt->pt_overruns++;
1491		} else {
1492			pt->pt_overruns++;
1493			if ((p->p_flag & P_WEXIT) == 0)
1494				printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
1495				    p->p_pid, pt->pt_overruns,
1496				    pt->pt_ev.sigev_value.sival_int,
1497				    p->p_userret);
1498		}
1499	}
1500
1501}
1502
1503/*
1504 * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
1505 * for usage and rationale.
1506 */
1507int
1508ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1509{
1510	struct timeval tv, delta;
1511	int rv = 0;
1512#ifndef __HAVE_TIMECOUNTER
1513	int s;
1514#endif
1515
1516#ifdef __HAVE_TIMECOUNTER
1517	getmicrouptime(&tv);
1518#else /* !__HAVE_TIMECOUNTER */
1519	s = splclock();
1520	tv = mono_time;
1521	splx(s);
1522#endif /* !__HAVE_TIMECOUNTER */
1523	timersub(&tv, lasttime, &delta);
1524
1525	/*
1526	 * check for 0,0 is so that the message will be seen at least once,
1527	 * even if interval is huge.
1528	 */
1529	if (timercmp(&delta, mininterval, >=) ||
1530	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1531		*lasttime = tv;
1532		rv = 1;
1533	}
1534
1535	return (rv);
1536}
1537
1538/*
1539 * ppsratecheck(): packets (or events) per second limitation.
1540 */
1541int
1542ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1543{
1544	struct timeval tv, delta;
1545	int rv;
1546#ifndef __HAVE_TIMECOUNTER
1547	int s;
1548#endif
1549
1550#ifdef __HAVE_TIMECOUNTER
1551	getmicrouptime(&tv);
1552#else /* !__HAVE_TIMECOUNTER */
1553	s = splclock();
1554	tv = mono_time;
1555	splx(s);
1556#endif /* !__HAVE_TIMECOUNTER */
1557	timersub(&tv, lasttime, &delta);
1558
1559	/*
1560	 * check for 0,0 is so that the message will be seen at least once.
1561	 * if more than one second have passed since the last update of
1562	 * lasttime, reset the counter.
1563	 *
1564	 * we do increment *curpps even in *curpps < maxpps case, as some may
1565	 * try to use *curpps for stat purposes as well.
1566	 */
1567	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
1568	    delta.tv_sec >= 1) {
1569		*lasttime = tv;
1570		*curpps = 0;
1571	}
1572	if (maxpps < 0)
1573		rv = 1;
1574	else if (*curpps < maxpps)
1575		rv = 1;
1576	else
1577		rv = 0;
1578
1579#if 1 /*DIAGNOSTIC?*/
1580	/* be careful about wrap-around */
1581	if (*curpps + 1 > *curpps)
1582		*curpps = *curpps + 1;
1583#else
1584	/*
1585	 * assume that there's not too many calls to this function.
1586	 * not sure if the assumption holds, as it depends on *caller's*
1587	 * behavior, not the behavior of this function.
1588	 * IMHO it is wrong to make assumption on the caller's behavior,
1589	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
1590	 */
1591	*curpps = *curpps + 1;
1592#endif
1593
1594	return (rv);
1595}
1596