1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD: src/sys/dev/ath/ath_hal/ar5416/ar9285_reset.c,v 1.4 2010/08/14 15:29:21 adrian Exp $
18 */
19
20/*
21 * This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
22 * supports only 2Ghz operation.
23 */
24
25#include "opt_ah.h"
26
27#include "ah.h"
28#include "ah_internal.h"
29#include "ah_devid.h"
30
31#include "ah_eeprom_v14.h"
32#include "ah_eeprom_v4k.h"
33
34#include "ar5416/ar9285.h"
35#include "ar5416/ar5416.h"
36#include "ar5416/ar5416reg.h"
37#include "ar5416/ar5416phy.h"
38
39/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
40#define	EEP_MINOR(_ah) \
41	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
42#define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
43#define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
44
45/* Additional Time delay to wait after activiting the Base band */
46#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
47#define PLL_SETTLE_DELAY	300	/* 300 usec */
48#define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
49
50static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
51	struct ar5416eeprom_4k *pEepData,
52	HAL_CHANNEL_INTERNAL *chan, int16_t *ratesArray,
53	uint16_t cfgCtl, uint16_t AntennaReduction,
54	uint16_t twiceMaxRegulatoryPower,
55	uint16_t powerLimit);
56static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
57	struct ar5416eeprom_4k *pEepData,
58	HAL_CHANNEL_INTERNAL *chan,
59	int16_t *pTxPowerIndexOffset);
60static int16_t interpolate(uint16_t target, uint16_t srcLeft,
61	uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
62static HAL_BOOL ar9285FillVpdTable(uint8_t, uint8_t, uint8_t *, uint8_t *,
63		                   uint16_t, uint8_t *);
64static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
65	HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
66	uint8_t * bChans, uint16_t availPiers,
67	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
68	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
69	uint16_t numXpdGains);
70static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
71	uint16_t listSize,  uint16_t *indexL, uint16_t *indexR);
72static uint16_t ar9285GetMaxEdgePower(uint16_t, CAL_CTL_EDGES *);
73
74/* XXX gag, this is sick */
75typedef enum Ar5416_Rates {
76	rate6mb,  rate9mb,  rate12mb, rate18mb,
77	rate24mb, rate36mb, rate48mb, rate54mb,
78	rate1l,   rate2l,   rate2s,   rate5_5l,
79	rate5_5s, rate11l,  rate11s,  rateXr,
80	rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
81	rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
82	rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
83	rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
84	rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
85	Ar5416RateSize
86} AR5416_RATES;
87
88HAL_BOOL
89ar9285SetTransmitPower(struct ath_hal *ah,
90	HAL_CHANNEL *chan, uint16_t *rfXpdGain)
91{
92#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
93#define N(a)            (sizeof (a) / sizeof (a[0]))
94
95    HAL_CHANNEL_INTERNAL *ichan;
96    MODAL_EEP4K_HEADER	*pModal;
97    struct ath_hal_5212 *ahp = AH5212(ah);
98    int16_t		ratesArray[Ar5416RateSize];
99    int16_t		txPowerIndexOffset = 0;
100    uint8_t		ht40PowerIncForPdadc = 2;
101    int			i;
102
103    uint16_t		cfgCtl;
104    uint16_t		powerLimit;
105    uint16_t		twiceAntennaReduction;
106    uint16_t		twiceMaxRegulatoryPower;
107    int16_t		maxPower;
108    HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
109    struct ar5416eeprom_4k *pEepData = &ee->ee_base;
110
111    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
112    ichan = ath_hal_checkchannel(ah, chan);
113
114    /* Setup info for the actual eeprom */
115    OS_MEMZERO(ratesArray, sizeof(ratesArray));
116    cfgCtl = ath_hal_getctl(ah, chan);
117    powerLimit = ichan->maxRegTxPower * 2;
118    twiceAntennaReduction = ichan->antennaMax;
119    twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
120    pModal = &pEepData->modalHeader;
121    HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
122	__func__,chan->channel, cfgCtl );
123
124    if (IS_EEP_MINOR_V2(ah)) {
125        ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
126    }
127
128    if (!ar9285SetPowerPerRateTable(ah, pEepData, ichan,
129                                    &ratesArray[0],cfgCtl,
130                                    twiceAntennaReduction,
131				    twiceMaxRegulatoryPower, powerLimit)) {
132        HALDEBUG(ah, HAL_DEBUG_ANY,
133	    "%s: unable to set tx power per rate table\n", __func__);
134        return AH_FALSE;
135    }
136
137    if (!ar9285SetPowerCalTable(ah,  pEepData, ichan, &txPowerIndexOffset)) {
138        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
139	    __func__);
140        return AH_FALSE;
141    }
142
143    maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
144    maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
145
146    if (IS_CHAN_HT40(chan)) {
147        maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
148    }
149
150    ahp->ah_tx6PowerInHalfDbm = maxPower;
151    AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
152    ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
153
154    /*
155     * txPowerIndexOffset is set by the SetPowerTable() call -
156     *  adjust the rate table (0 offset if rates EEPROM not loaded)
157     */
158    for (i = 0; i < N(ratesArray); i++) {
159        ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
160        if (ratesArray[i] > AR5416_MAX_RATE_POWER)
161            ratesArray[i] = AR5416_MAX_RATE_POWER;
162	ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
163    }
164
165#ifdef AH_EEPROM_DUMP
166    ar5416PrintPowerPerRate(ah, ratesArray);
167#endif
168
169    /* Write the OFDM power per rate set */
170    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
171        POW_SM(ratesArray[rate18mb], 24)
172          | POW_SM(ratesArray[rate12mb], 16)
173          | POW_SM(ratesArray[rate9mb], 8)
174          | POW_SM(ratesArray[rate6mb], 0)
175    );
176    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
177        POW_SM(ratesArray[rate54mb], 24)
178          | POW_SM(ratesArray[rate48mb], 16)
179          | POW_SM(ratesArray[rate36mb], 8)
180          | POW_SM(ratesArray[rate24mb], 0)
181    );
182
183    /* Write the CCK power per rate set */
184    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
185        POW_SM(ratesArray[rate2s], 24)
186          | POW_SM(ratesArray[rate2l],  16)
187          | POW_SM(ratesArray[rateXr],  8) /* XR target power */
188          | POW_SM(ratesArray[rate1l],   0)
189    );
190    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
191        POW_SM(ratesArray[rate11s], 24)
192          | POW_SM(ratesArray[rate11l], 16)
193          | POW_SM(ratesArray[rate5_5s], 8)
194          | POW_SM(ratesArray[rate5_5l], 0)
195    );
196    HALDEBUG(ah, HAL_DEBUG_RESET,
197	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
198	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
199	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
200
201    /* Write the HT20 power per rate set */
202    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
203        POW_SM(ratesArray[rateHt20_3], 24)
204          | POW_SM(ratesArray[rateHt20_2], 16)
205          | POW_SM(ratesArray[rateHt20_1], 8)
206          | POW_SM(ratesArray[rateHt20_0], 0)
207    );
208    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
209        POW_SM(ratesArray[rateHt20_7], 24)
210          | POW_SM(ratesArray[rateHt20_6], 16)
211          | POW_SM(ratesArray[rateHt20_5], 8)
212          | POW_SM(ratesArray[rateHt20_4], 0)
213    );
214
215    if (IS_CHAN_HT40(chan)) {
216        /* Write the HT40 power per rate set */
217	/* Correct PAR difference between HT40 and HT20/LEGACY */
218        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
219            POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
220              | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
221              | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
222              | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
223        );
224        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
225            POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
226              | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
227              | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
228              | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
229        );
230        /* Write the Dup/Ext 40 power per rate set */
231        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
232            POW_SM(ratesArray[rateExtOfdm], 24)
233              | POW_SM(ratesArray[rateExtCck], 16)
234              | POW_SM(ratesArray[rateDupOfdm], 8)
235              | POW_SM(ratesArray[rateDupCck], 0)
236        );
237    }
238
239    return AH_TRUE;
240#undef POW_SM
241#undef N
242}
243
244HAL_BOOL
245ar9285SetBoardValues(struct ath_hal *ah, HAL_CHANNEL *_chan)
246{
247    HAL_CHANNEL_INTERNAL *chan;
248    const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
249    const struct ar5416eeprom_4k *eep = &ee->ee_base;
250    const MODAL_EEP4K_HEADER *pModal;
251    uint8_t	txRxAttenLocal = 23;
252
253    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
254    chan = ath_hal_checkchannel(ah, _chan);
255    pModal = &eep->modalHeader;
256
257    OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
258    OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0, pModal->antCtrlChain[0]);
259    OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
260        	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) &
261        	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
262        	SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
263        	SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
264
265    if (IS_EEP_MINOR_V3(ah)) {
266	if (IS_CHAN_HT40(chan)) {
267		/* Overwrite switch settling with HT40 value */
268		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
269		    pModal->swSettleHt40);
270	}
271	txRxAttenLocal = pModal->txRxAttenCh[0];
272
273        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
274	    pModal->bswMargin[0]);
275        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
276	    pModal->bswAtten[0]);
277	OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
278	    pModal->xatten2Margin[0]);
279	OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
280	    pModal->xatten2Db[0]);
281
282	/* block 1 has the same values as block 0 */
283        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
284	    AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
285        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
286	    AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
287	OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
288	    AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
289	OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
290	    AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
291
292    }
293    OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
294        AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
295    OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
296        AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
297
298    OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
299        AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
300    OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
301        AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
302
303    if (AR_SREV_KITE_11(ah))
304	    OS_REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
305
306    return AH_TRUE;
307}
308
309/*
310 * Helper functions common for AP/CB/XB
311 */
312
313static HAL_BOOL
314ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
315			   HAL_CHANNEL_INTERNAL *chan,
316                           int16_t *ratesArray, uint16_t cfgCtl,
317                           uint16_t AntennaReduction,
318                           uint16_t twiceMaxRegulatoryPower,
319                           uint16_t powerLimit)
320{
321#define	N(a)	(sizeof(a)/sizeof(a[0]))
322/* Local defines to distinguish between extension and control CTL's */
323#define EXT_ADDITIVE (0x8000)
324#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
325#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
326
327	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
328	int i;
329	int16_t  twiceLargestAntenna;
330	CAL_CTL_DATA_4K *rep;
331	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
332	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
333	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
334	int16_t scaledPower, minCtlPower;
335
336#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
337	static const uint16_t ctlModesFor11g[] = {
338	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
339	};
340	const uint16_t *pCtlMode;
341	uint16_t numCtlModes, ctlMode, freq;
342	CHAN_CENTERS centers;
343
344	ar5416GetChannelCenters(ah,  chan, &centers);
345
346	/* Compute TxPower reduction due to Antenna Gain */
347
348	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
349	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
350
351	/* XXX setup for 5212 use (really used?) */
352	ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
353
354	/*
355	 * scaledPower is the minimum of the user input power level and
356	 * the regulatory allowed power level
357	 */
358	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
359
360	/* Get target powers from EEPROM - our baseline for TX Power */
361	/* Setup for CTL modes */
362	numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
363	pCtlMode = ctlModesFor11g;
364
365	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
366			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
367	ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
368			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
369	ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
370			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
371
372	if (IS_CHAN_HT40(chan)) {
373		numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
374
375		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
376			AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
377		/* Get target powers for extension channels */
378		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
379			AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
380		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
381			AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
382	}
383
384	/*
385	 * For MIMO, need to apply regulatory caps individually across dynamically
386	 * running modes: CCK, OFDM, HT20, HT40
387	 *
388	 * The outer loop walks through each possible applicable runtime mode.
389	 * The inner loop walks through each ctlIndex entry in EEPROM.
390	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
391	 *
392	 */
393	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
394		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
395		    (pCtlMode[ctlMode] == CTL_2GHT40);
396		if (isHt40CtlMode) {
397			freq = centers.ctl_center;
398		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
399			freq = centers.ext_center;
400		} else {
401			freq = centers.ctl_center;
402		}
403
404		/* walk through each CTL index stored in EEPROM */
405		for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
406			uint16_t twiceMinEdgePower;
407
408			/* compare test group from regulatory channel list with test mode from pCtlMode list */
409			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
410				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
411				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
412				rep = &(pEepData->ctlData[i]);
413				twiceMinEdgePower = ar9285GetMaxEdgePower(freq,
414							rep->ctlEdges[
415							  owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1]);
416				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
417					/* Find the minimum of all CTL edge powers that apply to this channel */
418					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
419				} else {
420					/* specific */
421					twiceMaxEdgePower = twiceMinEdgePower;
422					break;
423				}
424			}
425		}
426		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
427		/* Apply ctl mode to correct target power set */
428		switch(pCtlMode[ctlMode]) {
429		case CTL_11B:
430			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
431				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
432			}
433			break;
434		case CTL_11A:
435		case CTL_11G:
436			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
437				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
438			}
439			break;
440		case CTL_5GHT20:
441		case CTL_2GHT20:
442			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
443				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
444			}
445			break;
446		case CTL_11B_EXT:
447			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
448			break;
449		case CTL_11G_EXT:
450			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
451			break;
452		case CTL_5GHT40:
453		case CTL_2GHT40:
454			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
455				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
456			}
457			break;
458		default:
459			return AH_FALSE;
460			break;
461		}
462	} /* end ctl mode checking */
463
464	/* Set rates Array from collected data */
465	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
466	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
467	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
468	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
469	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
470
471	for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
472		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
473	}
474
475	ratesArray[rate1l]  = targetPowerCck.tPow2x[0];
476	ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck.tPow2x[1];
477	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
478	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
479	if (IS_CHAN_HT40(chan)) {
480		for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
481			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
482		}
483		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
484		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
485		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
486		if (IS_CHAN_2GHZ(chan)) {
487			ratesArray[rateExtCck]  = targetPowerCckExt.tPow2x[0];
488		}
489	}
490	return AH_TRUE;
491#undef EXT_ADDITIVE
492#undef CTL_11G_EXT
493#undef CTL_11B_EXT
494#undef SUB_NUM_CTL_MODES_AT_2G_40
495#undef N
496}
497
498/**************************************************************************
499 * fbin2freq
500 *
501 * Get channel value from binary representation held in eeprom
502 * RETURNS: the frequency in MHz
503 */
504static uint16_t
505fbin2freq(uint8_t fbin)
506{
507    /*
508     * Reserved value 0xFF provides an empty definition both as
509     * an fbin and as a frequency - do not convert
510     */
511    if (fbin == AR5416_BCHAN_UNUSED) {
512        return fbin;
513    }
514
515    return (uint16_t)(2300 + fbin);
516}
517
518/*
519 * XXX almost the same as ar5416GetMaxEdgePower.
520 */
521static uint16_t
522ar9285GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower)
523{
524    uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
525    int      i;
526
527    /* Get the edge power */
528    for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
529        /*
530         * If there's an exact channel match or an inband flag set
531         * on the lower channel use the given rdEdgePower
532         */
533        if (freq == fbin2freq(pRdEdgesPower[i].bChannel)) {
534            twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
535            break;
536        } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel))) {
537            if (fbin2freq(pRdEdgesPower[i - 1].bChannel) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
538                twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
539            }
540            /* Leave loop - no more affecting edges possible in this monotonic increasing list */
541            break;
542        }
543    }
544    HALASSERT(twiceMaxEdgePower > 0);
545    return twiceMaxEdgePower;
546}
547
548
549
550static HAL_BOOL
551ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
552	HAL_CHANNEL_INTERNAL *chan, int16_t *pTxPowerIndexOffset)
553{
554    CAL_DATA_PER_FREQ_4K *pRawDataset;
555    uint8_t  *pCalBChans = AH_NULL;
556    uint16_t pdGainOverlap_t2;
557    static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
558    uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
559    uint16_t numPiers, i, j;
560    int16_t  tMinCalPower;
561    uint16_t numXpdGain, xpdMask;
562    uint16_t xpdGainValues[AR5416_4K_NUM_PD_GAINS];
563    uint32_t reg32, regOffset, regChainOffset;
564
565    OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
566
567    xpdMask = pEepData->modalHeader.xpdGain;
568
569    if (IS_EEP_MINOR_V2(ah)) {
570        pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
571    } else {
572    	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
573    }
574
575    pCalBChans = pEepData->calFreqPier2G;
576    numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
577    numXpdGain = 0;
578    /* Calculate the value of xpdgains from the xpdGain Mask */
579    for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
580        if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
581            if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
582                HALASSERT(0);
583                break;
584            }
585            xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
586            numXpdGain++;
587        }
588    }
589
590    /* Write the detector gain biases and their number */
591    OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
592    	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
593	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
594	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(0, AR_PHY_TPCRG1_PD_GAIN_3));
595
596    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
597
598            if (AR_SREV_OWL_20_OR_LATER(ah) &&
599            ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
600            /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
601             * only chains 0 and 2 populated
602             */
603            regChainOffset = (i == 1) ? 0x2000 : 0x1000;
604        } else {
605            regChainOffset = i * 0x1000;
606        }
607
608        if (pEepData->baseEepHeader.txMask & (1 << i)) {
609            pRawDataset = pEepData->calPierData2G[i];
610
611            ar9285GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
612                                             pCalBChans, numPiers,
613                                             pdGainOverlap_t2,
614                                             &tMinCalPower, gainBoundaries,
615                                             pdadcValues, numXpdGain);
616
617            if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
618                /*
619                 * Note the pdadc table may not start at 0 dBm power, could be
620                 * negative or greater than 0.  Need to offset the power
621                 * values by the amount of minPower for griffin
622                 */
623
624                OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
625                     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
626                     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
627                     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
628                     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
629                     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
630            }
631
632            /* Write the power values into the baseband power table */
633            regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
634
635            for (j = 0; j < 32; j++) {
636                reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
637                    ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
638                    ((pdadcValues[4*j + 2] & 0xFF) << 16) |
639                    ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
640                OS_REG_WRITE(ah, regOffset, reg32);
641
642#ifdef PDADC_DUMP
643		ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
644			       i,
645			       4*j, pdadcValues[4*j],
646			       4*j+1, pdadcValues[4*j + 1],
647			       4*j+2, pdadcValues[4*j + 2],
648			       4*j+3, pdadcValues[4*j + 3]);
649#endif
650                regOffset += 4;
651            }
652        }
653    }
654    *pTxPowerIndexOffset = 0;
655
656    return AH_TRUE;
657}
658
659static void
660ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
661				 HAL_CHANNEL_INTERNAL *chan,
662				 CAL_DATA_PER_FREQ_4K *pRawDataSet,
663                                 uint8_t * bChans,  uint16_t availPiers,
664                                 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
665                                 uint8_t * pPDADCValues, uint16_t numXpdGains)
666{
667
668    int       i, j, k;
669    int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
670    uint16_t  idxL, idxR, numPiers; /* Pier indexes */
671
672    /* filled out Vpd table for all pdGains (chanL) */
673    static uint8_t   vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
674
675    /* filled out Vpd table for all pdGains (chanR) */
676    static uint8_t   vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
677
678    /* filled out Vpd table for all pdGains (interpolated) */
679    static uint8_t   vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
680
681    uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
682    uint8_t   minPwrT4[AR5416_4K_NUM_PD_GAINS];
683    uint8_t   maxPwrT4[AR5416_4K_NUM_PD_GAINS];
684    int16_t   vpdStep;
685    int16_t   tmpVal;
686    uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
687    HAL_BOOL    match;
688    int16_t  minDelta = 0;
689    CHAN_CENTERS centers;
690
691    ar5416GetChannelCenters(ah, chan, &centers);
692
693    /* Trim numPiers for the number of populated channel Piers */
694    for (numPiers = 0; numPiers < availPiers; numPiers++) {
695        if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
696            break;
697        }
698    }
699
700    /* Find pier indexes around the current channel */
701    match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
702			bChans, numPiers, &idxL, &idxR);
703
704    if (match) {
705        /* Directly fill both vpd tables from the matching index */
706        for (i = 0; i < numXpdGains; i++) {
707            minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
708            maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
709            ar9285FillVpdTable(minPwrT4[i], maxPwrT4[i],
710			       pRawDataSet[idxL].pwrPdg[i],
711                               pRawDataSet[idxL].vpdPdg[i],
712			       AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
713        }
714    } else {
715        for (i = 0; i < numXpdGains; i++) {
716            pVpdL = pRawDataSet[idxL].vpdPdg[i];
717            pPwrL = pRawDataSet[idxL].pwrPdg[i];
718            pVpdR = pRawDataSet[idxR].vpdPdg[i];
719            pPwrR = pRawDataSet[idxR].pwrPdg[i];
720
721            /* Start Vpd interpolation from the max of the minimum powers */
722            minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
723
724            /* End Vpd interpolation from the min of the max powers */
725            maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
726            HALASSERT(maxPwrT4[i] > minPwrT4[i]);
727
728            /* Fill pier Vpds */
729            ar9285FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
730			       AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
731            ar9285FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
732			       AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
733
734            /* Interpolate the final vpd */
735            for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
736                vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
737                    bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
738            }
739        }
740    }
741    *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
742
743    k = 0; /* index for the final table */
744    for (i = 0; i < numXpdGains; i++) {
745        if (i == (numXpdGains - 1)) {
746            pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
747        } else {
748            pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
749        }
750
751        pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
752
753	/* NB: only applies to owl 1.0 */
754        if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
755	    /*
756             * fix the gain delta, but get a delta that can be applied to min to
757             * keep the upper power values accurate, don't think max needs to
758             * be adjusted because should not be at that area of the table?
759	     */
760            minDelta = pPdGainBoundaries[0] - 23;
761            pPdGainBoundaries[0] = 23;
762        }
763        else {
764            minDelta = 0;
765        }
766
767        /* Find starting index for this pdGain */
768        if (i == 0) {
769            ss = 0; /* for the first pdGain, start from index 0 */
770        } else {
771	    /* need overlap entries extrapolated below. */
772            ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
773        }
774        vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
775        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
776        /*
777         *-ve ss indicates need to extrapolate data below for this pdGain
778         */
779        while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
780            tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
781            pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
782            ss++;
783        }
784
785        sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
786        tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
787        maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
788
789        while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
790            pPDADCValues[k++] = vpdTableI[i][ss++];
791        }
792
793        vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
794        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
795        /*
796         * for last gain, pdGainBoundary == Pmax_t2, so will
797         * have to extrapolate
798         */
799        if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
800            while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
801                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
802                          (ss - maxIndex +1) * vpdStep));
803                pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
804                ss++;
805            }
806        }               /* extrapolated above */
807    }                   /* for all pdGainUsed */
808
809    /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
810    while (i < AR5416_PD_GAINS_IN_MASK) {
811        pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
812        i++;
813    }
814
815    while (k < AR5416_NUM_PDADC_VALUES) {
816        pPDADCValues[k] = pPDADCValues[k-1];
817        k++;
818    }
819    return;
820}
821/*
822 * XXX same as ar5416FillVpdTable
823 */
824static HAL_BOOL
825ar9285FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
826                   uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
827{
828    uint16_t  i, k;
829    uint8_t   currPwr = pwrMin;
830    uint16_t  idxL, idxR;
831
832    HALASSERT(pwrMax > pwrMin);
833    for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
834        getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
835                           &(idxL), &(idxR));
836        if (idxR < 1)
837            idxR = 1;           /* extrapolate below */
838        if (idxL == numIntercepts - 1)
839            idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
840        if (pPwrList[idxL] == pPwrList[idxR])
841            k = pVpdList[idxL];
842        else
843            k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
844                  (pPwrList[idxR] - pPwrList[idxL]) );
845        HALASSERT(k < 256);
846        pRetVpdList[i] = (uint8_t)k;
847        currPwr += 2;               /* half dB steps */
848    }
849
850    return AH_TRUE;
851}
852static int16_t
853interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
854            int16_t targetLeft, int16_t targetRight)
855{
856    int16_t rv;
857
858    if (srcRight == srcLeft) {
859        rv = targetLeft;
860    } else {
861        rv = (int16_t)( ((target - srcLeft) * targetRight +
862              (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
863    }
864    return rv;
865}
866
867HAL_BOOL
868getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
869                   uint16_t *indexL, uint16_t *indexR)
870{
871    uint16_t i;
872
873    /*
874     * Check first and last elements for beyond ordered array cases.
875     */
876    if (target <= pList[0]) {
877        *indexL = *indexR = 0;
878        return AH_TRUE;
879    }
880    if (target >= pList[listSize-1]) {
881        *indexL = *indexR = (uint16_t)(listSize - 1);
882        return AH_TRUE;
883    }
884
885    /* look for value being near or between 2 values in list */
886    for (i = 0; i < listSize - 1; i++) {
887        /*
888         * If value is close to the current value of the list
889         * then target is not between values, it is one of the values
890         */
891        if (pList[i] == target) {
892            *indexL = *indexR = i;
893            return AH_TRUE;
894        }
895        /*
896         * Look for value being between current value and next value
897         * if so return these 2 values
898         */
899        if (target < pList[i + 1]) {
900            *indexL = i;
901            *indexR = (uint16_t)(i + 1);
902            return AH_FALSE;
903        }
904    }
905    HALASSERT(0);
906    *indexL = *indexR = 0;
907    return AH_FALSE;
908}
909