1/*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar2413.c,v 1.3 2013/09/12 12:04:37 martin Exp $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ar5212/ar5212.h"
25#include "ar5212/ar5212reg.h"
26#include "ar5212/ar5212phy.h"
27
28#include "ah_eeprom_v3.h"
29
30#define AH_5212_2413
31#include "ar5212/ar5212.ini"
32
33#define	N(a)	(sizeof(a)/sizeof(a[0]))
34
35struct ar2413State {
36	RF_HAL_FUNCS	base;		/* public state, must be first */
37	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
38
39	uint32_t	Bank1Data[N(ar5212Bank1_2413)];
40	uint32_t	Bank2Data[N(ar5212Bank2_2413)];
41	uint32_t	Bank3Data[N(ar5212Bank3_2413)];
42	uint32_t	Bank6Data[N(ar5212Bank6_2413)];
43	uint32_t	Bank7Data[N(ar5212Bank7_2413)];
44
45	/*
46	 * Private state for reduced stack usage.
47	 */
48	/* filled out Vpd table for all pdGains (chanL) */
49	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50			    [MAX_PWR_RANGE_IN_HALF_DB];
51	/* filled out Vpd table for all pdGains (chanR) */
52	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53			    [MAX_PWR_RANGE_IN_HALF_DB];
54	/* filled out Vpd table for all pdGains (interpolated) */
55	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56			    [MAX_PWR_RANGE_IN_HALF_DB];
57};
58#define	AR2413(ah)	((struct ar2413State *) AH5212(ah)->ah_rfHal)
59
60extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61		uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63static void
64ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65	int writes)
66{
67	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
68	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
69	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
70}
71
72/*
73 * Take the MHz channel value and set the Channel value
74 *
75 * ASSUMES: Writes enabled to analog bus
76 */
77static HAL_BOOL
78ar2413SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
79{
80	uint32_t channelSel  = 0;
81	uint32_t bModeSynth  = 0;
82	uint32_t aModeRefSel = 0;
83	uint32_t reg32       = 0;
84	uint16_t freq;
85
86	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
87
88	if (chan->channel < 4800) {
89		uint32_t txctl;
90
91		if (((chan->channel - 2192) % 5) == 0) {
92			channelSel = ((chan->channel - 672) * 2 - 3040)/10;
93			bModeSynth = 0;
94		} else if (((chan->channel - 2224) % 5) == 0) {
95			channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
96			bModeSynth = 1;
97		} else {
98			HALDEBUG(ah, HAL_DEBUG_ANY,
99			    "%s: invalid channel %u MHz\n",
100			    __func__, chan->channel);
101			return AH_FALSE;
102		}
103
104		channelSel = (channelSel << 2) & 0xff;
105		channelSel = ath_hal_reverseBits(channelSel, 8);
106
107		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108		if (chan->channel == 2484) {
109			/* Enable channel spreading for channel 14 */
110			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112		} else {
113			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115		}
116	} else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
117		freq = chan->channel - 2; /* Align to even 5MHz raster */
118		channelSel = ath_hal_reverseBits(
119			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120            	aModeRefSel = ath_hal_reverseBits(0, 2);
121	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
122		channelSel = ath_hal_reverseBits(
123			((chan->channel - 4800) / 20 << 2), 8);
124		aModeRefSel = ath_hal_reverseBits(3, 2);
125	} else if ((chan->channel % 10) == 0) {
126		channelSel = ath_hal_reverseBits(
127			((chan->channel - 4800) / 10 << 1), 8);
128		aModeRefSel = ath_hal_reverseBits(2, 2);
129	} else if ((chan->channel % 5) == 0) {
130		channelSel = ath_hal_reverseBits(
131			(chan->channel - 4800) / 5, 8);
132		aModeRefSel = ath_hal_reverseBits(1, 2);
133	} else {
134		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135		    __func__, chan->channel);
136		return AH_FALSE;
137	}
138
139	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140			(1 << 12) | 0x1;
141	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143	reg32 >>= 8;
144	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146	AH_PRIVATE(ah)->ah_curchan = chan;
147
148	return AH_TRUE;
149}
150
151/*
152 * Reads EEPROM header info from device structure and programs
153 * all rf registers
154 *
155 * REQUIRES: Access to the analog rf device
156 */
157static HAL_BOOL
158ar2413SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
159{
160#define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
161	int i;								    \
162	for (i = 0; i < N(ar5212Bank##_ix##_2413); i++)			    \
163		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
164} while (0)
165	struct ath_hal_5212 *ahp = AH5212(ah);
166	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
167	uint16_t ob2GHz = 0, db2GHz = 0;
168	struct ar2413State *priv = AR2413(ah);
169	int regWrites = 0;
170
171	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
172	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
173	    __func__, chan->channel, chan->channelFlags, modesIndex);
174
175	HALASSERT(priv);
176
177	/* Setup rf parameters */
178	switch (chan->channelFlags & CHANNEL_ALL) {
179	case CHANNEL_B:
180		ob2GHz = ee->ee_obFor24;
181		db2GHz = ee->ee_dbFor24;
182		break;
183	case CHANNEL_G:
184	case CHANNEL_108G:
185		ob2GHz = ee->ee_obFor24g;
186		db2GHz = ee->ee_dbFor24g;
187		break;
188	default:
189		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
190		    __func__, chan->channelFlags);
191		return AH_FALSE;
192	}
193
194	/* Bank 1 Write */
195	RF_BANK_SETUP(priv, 1, 1);
196
197	/* Bank 2 Write */
198	RF_BANK_SETUP(priv, 2, modesIndex);
199
200	/* Bank 3 Write */
201	RF_BANK_SETUP(priv, 3, modesIndex);
202
203	/* Bank 6 Write */
204	RF_BANK_SETUP(priv, 6, modesIndex);
205
206	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 168, 0);
207	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 165, 0);
208
209	/* Bank 7 Setup */
210	RF_BANK_SETUP(priv, 7, modesIndex);
211
212	/* Write Analog registers */
213	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
214	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
215	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
216	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
217	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
218
219	/* Now that we have reprogrammed rfgain value, clear the flag. */
220	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
221
222	return AH_TRUE;
223#undef	RF_BANK_SETUP
224}
225
226/*
227 * Return a reference to the requested RF Bank.
228 */
229static uint32_t *
230ar2413GetRfBank(struct ath_hal *ah, int bank)
231{
232	struct ar2413State *priv = AR2413(ah);
233
234	HALASSERT(priv != AH_NULL);
235	switch (bank) {
236	case 1: return priv->Bank1Data;
237	case 2: return priv->Bank2Data;
238	case 3: return priv->Bank3Data;
239	case 6: return priv->Bank6Data;
240	case 7: return priv->Bank7Data;
241	}
242	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
243	    __func__, bank);
244	return AH_NULL;
245}
246
247/*
248 * Return indices surrounding the value in sorted integer lists.
249 *
250 * NB: the input list is assumed to be sorted in ascending order
251 */
252static void
253GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
254                          uint32_t *vlo, uint32_t *vhi)
255{
256	int16_t target = v;
257	const uint16_t *ep = lp+listSize;
258	const uint16_t *tp;
259
260	/*
261	 * Check first and last elements for out-of-bounds conditions.
262	 */
263	if (target < lp[0]) {
264		*vlo = *vhi = 0;
265		return;
266	}
267	if (target >= ep[-1]) {
268		*vlo = *vhi = listSize - 1;
269		return;
270	}
271
272	/* look for value being near or between 2 values in list */
273	for (tp = lp; tp < ep; tp++) {
274		/*
275		 * If value is close to the current value of the list
276		 * then target is not between values, it is one of the values
277		 */
278		if (*tp == target) {
279			*vlo = *vhi = tp - (const uint16_t *) lp;
280			return;
281		}
282		/*
283		 * Look for value being between current value and next value
284		 * if so return these 2 values
285		 */
286		if (target < tp[1]) {
287			*vlo = tp - (const uint16_t *) lp;
288			*vhi = *vlo + 1;
289			return;
290		}
291	}
292}
293
294/*
295 * Fill the Vpdlist for indices Pmax-Pmin
296 */
297static HAL_BOOL
298ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
299		   const int16_t *pwrList, const uint16_t *VpdList,
300		   uint16_t numIntercepts, uint16_t retVpdList[][64])
301{
302	uint16_t ii, kk;
303	int16_t currPwr = (int16_t)(2*Pmin);
304	/* since Pmin is pwr*2 and pwrList is 4*pwr */
305	uint32_t  idxL = 0, idxR = 0;
306
307	ii = 0;
308
309	if (numIntercepts < 2)
310		return AH_FALSE;
311
312	while (ii <= (uint16_t)(Pmax - Pmin)) {
313		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
314				   numIntercepts, &(idxL), &(idxR));
315		if (idxR < 1)
316			idxR = 1;			/* extrapolate below */
317		if (idxL == (uint32_t)(numIntercepts - 1))
318			idxL = numIntercepts - 2;	/* extrapolate above */
319		if (pwrList[idxL] == pwrList[idxR])
320			kk = VpdList[idxL];
321		else
322			kk = (uint16_t)
323				(((currPwr - pwrList[idxL])*VpdList[idxR]+
324				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
325				 (pwrList[idxR] - pwrList[idxL]));
326		retVpdList[pdGainIdx][ii] = kk;
327		ii++;
328		currPwr += 2;				/* half dB steps */
329	}
330
331	return AH_TRUE;
332}
333
334/*
335 * Returns interpolated or the scaled up interpolated value
336 */
337static int16_t
338interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
339	int16_t targetLeft, int16_t targetRight)
340{
341	int16_t rv;
342
343	if (srcRight != srcLeft) {
344		rv = ((target - srcLeft)*targetRight +
345		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
346	} else {
347		rv = targetLeft;
348	}
349	return rv;
350}
351
352/*
353 * Uses the data points read from EEPROM to reconstruct the pdadc power table
354 * Called by ar2413SetPowerTable()
355 */
356static int
357ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
358		const RAW_DATA_STRUCT_2413 *pRawDataset,
359		uint16_t pdGainOverlap_t2,
360		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
361		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
362{
363	struct ar2413State *priv = AR2413(ah);
364#define	VpdTable_L	priv->vpdTable_L
365#define	VpdTable_R	priv->vpdTable_R
366#define	VpdTable_I	priv->vpdTable_I
367	uint32_t ii, jj, kk;
368	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
369	uint32_t idxL = 0, idxR = 0;
370	uint32_t numPdGainsUsed = 0;
371	/*
372	 * If desired to support -ve power levels in future, just
373	 * change pwr_I_0 to signed 5-bits.
374	 */
375	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
376	/* to accomodate -ve power levels later on. */
377	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
378	/* to accomodate -ve power levels later on */
379	uint16_t numVpd = 0;
380	uint16_t Vpd_step;
381	int16_t tmpVal ;
382	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
383
384	/* Get upper lower index */
385	GetLowerUpperIndex(channel, pRawDataset->pChannels,
386				 pRawDataset->numChannels, &(idxL), &(idxR));
387
388	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
389		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
390		/* work backwards 'cause highest pdGain for lowest power */
391		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
392		if (numVpd > 0) {
393			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
394			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
395			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
396				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
397			}
398			Pmin_t2[numPdGainsUsed] = (int16_t)
399				(Pmin_t2[numPdGainsUsed] / 2);
400			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
401			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
402				Pmax_t2[numPdGainsUsed] =
403					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
404			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
405			ar2413FillVpdTable(
406					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
407					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
408					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
409					   );
410			ar2413FillVpdTable(
411					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
412					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
413					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
414					   );
415			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
416				VpdTable_I[numPdGainsUsed][kk] =
417					interpolate_signed(
418							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
419							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
420			}
421			/* fill VpdTable_I for this pdGain */
422			numPdGainsUsed++;
423		}
424		/* if this pdGain is used */
425	}
426
427	*pMinCalPower = Pmin_t2[0];
428	kk = 0; /* index for the final table */
429	for (ii = 0; ii < numPdGainsUsed; ii++) {
430		if (ii == (numPdGainsUsed - 1))
431			pPdGainBoundaries[ii] = Pmax_t2[ii] +
432				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
433		else
434			pPdGainBoundaries[ii] = (uint16_t)
435				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
436		if (pPdGainBoundaries[ii] > 63) {
437			HALDEBUG(ah, HAL_DEBUG_ANY,
438			    "%s: clamp pPdGainBoundaries[%d] %d\n",
439			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
440			pPdGainBoundaries[ii] = 63;
441		}
442
443		/* Find starting index for this pdGain */
444		if (ii == 0)
445			ss = 0; /* for the first pdGain, start from index 0 */
446		else
447			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
448				pdGainOverlap_t2;
449		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
450		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
451		/*
452		 *-ve ss indicates need to extrapolate data below for this pdGain
453		 */
454		while (ss < 0) {
455			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
456			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
457			ss++;
458		}
459
460		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
461		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
462		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
463
464		while (ss < (int16_t)maxIndex)
465			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
466
467		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
468				       VpdTable_I[ii][sizeCurrVpdTable-2]);
469		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
470		/*
471		 * for last gain, pdGainBoundary == Pmax_t2, so will
472		 * have to extrapolate
473		 */
474		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
475			while(ss < (int16_t)tgtIndex) {
476				tmpVal = (uint16_t)
477					(VpdTable_I[ii][sizeCurrVpdTable-1] +
478					 (ss-maxIndex)*Vpd_step);
479				pPDADCValues[kk++] = (tmpVal > 127) ?
480					127 : tmpVal;
481				ss++;
482			}
483		}				/* extrapolated above */
484	}					/* for all pdGainUsed */
485
486	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
487		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
488		ii++;
489	}
490	while (kk < 128) {
491		pPDADCValues[kk] = pPDADCValues[kk-1];
492		kk++;
493	}
494
495	return numPdGainsUsed;
496#undef VpdTable_L
497#undef VpdTable_R
498#undef VpdTable_I
499}
500
501static HAL_BOOL
502ar2413SetPowerTable(struct ath_hal *ah,
503	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
504	uint16_t *rfXpdGain)
505{
506	struct ath_hal_5212 *ahp = AH5212(ah);
507	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
508	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
509	uint16_t pdGainOverlap_t2;
510	int16_t minCalPower2413_t2;
511	uint16_t *pdadcValues = ahp->ah_pcdacTable;
512	uint16_t gainBoundaries[4];
513	uint32_t reg32, regoffset;
514	int i, numPdGainsUsed;
515#ifndef AH_USE_INIPDGAIN
516	uint32_t tpcrg1;
517#endif
518
519	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
520	    __func__, chan->channel,chan->channelFlags);
521
522	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
523		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
524	else if (IS_CHAN_B(chan))
525		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
526	else {
527		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
528		return AH_FALSE;
529	}
530
531	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
532					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
533
534	numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
535		chan->channel, pRawDataset, pdGainOverlap_t2,
536		&minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
537	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
538
539#ifdef AH_USE_INIPDGAIN
540	/*
541	 * Use pd_gains curve from eeprom; Atheros always uses
542	 * the default curve from the ini file but some vendors
543	 * (e.g. Zcomax) want to override this curve and not
544	 * honoring their settings results in tx power 5dBm low.
545	 */
546	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
547			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
548#else
549	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
550	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
551		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
552	switch (numPdGainsUsed) {
553	case 3:
554		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
555		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
556		/* fall thru... */
557	case 2:
558		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
559		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
560		/* fall thru... */
561	case 1:
562		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
563		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
564		break;
565	}
566#ifdef AH_DEBUG
567	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
568		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
569		    "pd_gains (default 0x%x, calculated 0x%x)\n",
570		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
571#endif
572	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
573#endif
574
575	/*
576	 * Note the pdadc table may not start at 0 dBm power, could be
577	 * negative or greater than 0.  Need to offset the power
578	 * values by the amount of minPower for griffin
579	 */
580	if (minCalPower2413_t2 != 0)
581		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
582	else
583		ahp->ah_txPowerIndexOffset = 0;
584
585	/* Finally, write the power values into the baseband power table */
586	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
587	for (i = 0; i < 32; i++) {
588		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
589			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
590			((pdadcValues[4*i + 2] & 0xFF) << 16) |
591			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
592		OS_REG_WRITE(ah, regoffset, reg32);
593		regoffset += 4;
594	}
595
596	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
597		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
598		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
599		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
600		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
601		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
602
603	return AH_TRUE;
604}
605
606static int16_t
607ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
608{
609	uint32_t ii,jj;
610	uint16_t Pmin=0,numVpd;
611
612	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
613		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
614		/* work backwards 'cause highest pdGain for lowest power */
615		numVpd = data->pDataPerPDGain[jj].numVpd;
616		if (numVpd > 0) {
617			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
618			return(Pmin);
619		}
620	}
621	return(Pmin);
622}
623
624static int16_t
625ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
626{
627	uint32_t ii;
628	uint16_t Pmax=0,numVpd;
629
630	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
631		/* work forwards cuase lowest pdGain for highest power */
632		numVpd = data->pDataPerPDGain[ii].numVpd;
633		if (numVpd > 0) {
634			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
635			return(Pmax);
636		}
637	}
638	return(Pmax);
639}
640
641static HAL_BOOL
642ar2413GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
643	int16_t *maxPow, int16_t *minPow)
644{
645	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
646	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
647	const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
648	uint16_t numChannels;
649	int totalD,totalF, totalMin,last, i;
650
651	*maxPow = 0;
652
653	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
654		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
655	else if (IS_CHAN_B(chan))
656		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
657	else
658		return(AH_FALSE);
659
660	numChannels = pRawDataset->numChannels;
661	data = pRawDataset->pDataPerChannel;
662
663	/* Make sure the channel is in the range of the TP values
664	 *  (freq piers)
665	 */
666	if (numChannels < 1)
667		return(AH_FALSE);
668
669	if ((chan->channel < data[0].channelValue) ||
670	    (chan->channel > data[numChannels-1].channelValue)) {
671		if (chan->channel < data[0].channelValue) {
672			*maxPow = ar2413GetMaxPower(ah, &data[0]);
673			*minPow = ar2413GetMinPower(ah, &data[0]);
674			return(AH_TRUE);
675		} else {
676			*maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
677			*minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
678			return(AH_TRUE);
679		}
680	}
681
682	/* Linearly interpolate the power value now */
683	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
684	     last = i++);
685	totalD = data[i].channelValue - data[last].channelValue;
686	if (totalD > 0) {
687		totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
688		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
689				     ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
690		totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
691		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
692				     ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
693		return(AH_TRUE);
694	} else {
695		if (chan->channel == data[i].channelValue) {
696			*maxPow = ar2413GetMaxPower(ah, &data[i]);
697			*minPow = ar2413GetMinPower(ah, &data[i]);
698			return(AH_TRUE);
699		} else
700			return(AH_FALSE);
701	}
702}
703
704/*
705 * Free memory for analog bank scratch buffers
706 */
707static void
708ar2413RfDetach(struct ath_hal *ah)
709{
710	struct ath_hal_5212 *ahp = AH5212(ah);
711
712	HALASSERT(ahp->ah_rfHal != AH_NULL);
713	ath_hal_free(ahp->ah_rfHal);
714	ahp->ah_rfHal = AH_NULL;
715}
716
717/*
718 * Allocate memory for analog bank scratch buffers
719 * Scratch Buffer will be reinitialized every reset so no need to zero now
720 */
721static HAL_BOOL
722ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
723{
724	struct ath_hal_5212 *ahp = AH5212(ah);
725	struct ar2413State *priv;
726
727	HALASSERT(ah->ah_magic == AR5212_MAGIC);
728
729	HALASSERT(ahp->ah_rfHal == AH_NULL);
730	priv = ath_hal_malloc(sizeof(struct ar2413State));
731	if (priv == AH_NULL) {
732		HALDEBUG(ah, HAL_DEBUG_ANY,
733		    "%s: cannot allocate private state\n", __func__);
734		*status = HAL_ENOMEM;		/* XXX */
735		return AH_FALSE;
736	}
737	priv->base.rfDetach		= ar2413RfDetach;
738	priv->base.writeRegs		= ar2413WriteRegs;
739	priv->base.getRfBank		= ar2413GetRfBank;
740	priv->base.setChannel		= ar2413SetChannel;
741	priv->base.setRfRegs		= ar2413SetRfRegs;
742	priv->base.setPowerTable	= ar2413SetPowerTable;
743	priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
744	priv->base.getNfAdjust		= ar5212GetNfAdjust;
745
746	ahp->ah_pcdacTable = priv->pcdacTable;
747	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
748	ahp->ah_rfHal = &priv->base;
749
750	return AH_TRUE;
751}
752
753static HAL_BOOL
754ar2413Probe(struct ath_hal *ah)
755{
756	return IS_2413(ah);
757}
758AH_RF(RF2413, ar2413Probe, ar2413RfAttach);
759