1/*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar2316.c,v 1.3 2013/09/12 11:44:08 martin Exp $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ar5212/ar5212.h"
25#include "ar5212/ar5212reg.h"
26#include "ar5212/ar5212phy.h"
27
28#include "ah_eeprom_v3.h"
29
30#define AH_5212_2316
31#include "ar5212/ar5212.ini"
32
33#define	N(a)	(sizeof(a)/sizeof(a[0]))
34
35typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2316;
36typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2316;
37#define PWR_TABLE_SIZE_2316 PWR_TABLE_SIZE_2413
38
39struct ar2316State {
40	RF_HAL_FUNCS	base;		/* public state, must be first */
41	uint16_t	pcdacTable[PWR_TABLE_SIZE_2316];
42
43	uint32_t	Bank1Data[N(ar5212Bank1_2316)];
44	uint32_t	Bank2Data[N(ar5212Bank2_2316)];
45	uint32_t	Bank3Data[N(ar5212Bank3_2316)];
46	uint32_t	Bank6Data[N(ar5212Bank6_2316)];
47	uint32_t	Bank7Data[N(ar5212Bank7_2316)];
48
49	/*
50	 * Private state for reduced stack usage.
51	 */
52	/* filled out Vpd table for all pdGains (chanL) */
53	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
54			    [MAX_PWR_RANGE_IN_HALF_DB];
55	/* filled out Vpd table for all pdGains (chanR) */
56	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
57			    [MAX_PWR_RANGE_IN_HALF_DB];
58	/* filled out Vpd table for all pdGains (interpolated) */
59	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
60			    [MAX_PWR_RANGE_IN_HALF_DB];
61};
62#define	AR2316(ah)	((struct ar2316State *) AH5212(ah)->ah_rfHal)
63
64extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
65		uint32_t numBits, uint32_t firstBit, uint32_t column);
66
67static void
68ar2316WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
69	int regWrites)
70{
71	struct ath_hal_5212 *ahp = AH5212(ah);
72
73	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2316, modesIndex, regWrites);
74	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2316, 1, regWrites);
75	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2316, freqIndex, regWrites);
76
77	/* For AP51 */
78        if (!ahp->ah_cwCalRequire) {
79		OS_REG_WRITE(ah, 0xa358, (OS_REG_READ(ah, 0xa358) & ~0x2));
80        } else {
81		ahp->ah_cwCalRequire = AH_FALSE;
82        }
83}
84
85/*
86 * Take the MHz channel value and set the Channel value
87 *
88 * ASSUMES: Writes enabled to analog bus
89 */
90static HAL_BOOL
91ar2316SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
92{
93	uint32_t channelSel  = 0;
94	uint32_t bModeSynth  = 0;
95	uint32_t aModeRefSel = 0;
96	uint32_t reg32       = 0;
97
98	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
99
100	if (chan->channel < 4800) {
101		uint32_t txctl;
102
103		if (((chan->channel - 2192) % 5) == 0) {
104			channelSel = ((chan->channel - 672) * 2 - 3040)/10;
105			bModeSynth = 0;
106		} else if (((chan->channel - 2224) % 5) == 0) {
107			channelSel = ((chan->channel - 704) * 2 - 3040) / 10;
108			bModeSynth = 1;
109		} else {
110			HALDEBUG(ah, HAL_DEBUG_ANY,
111			    "%s: invalid channel %u MHz\n",
112			    __func__, chan->channel);
113			return AH_FALSE;
114		}
115
116		channelSel = (channelSel << 2) & 0xff;
117		channelSel = ath_hal_reverseBits(channelSel, 8);
118
119		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
120		if (chan->channel == 2484) {
121			/* Enable channel spreading for channel 14 */
122			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
123				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
124		} else {
125			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
126				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
127		}
128	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
129		channelSel = ath_hal_reverseBits(
130			((chan->channel - 4800) / 20 << 2), 8);
131		aModeRefSel = ath_hal_reverseBits(3, 2);
132	} else if ((chan->channel % 10) == 0) {
133		channelSel = ath_hal_reverseBits(
134			((chan->channel - 4800) / 10 << 1), 8);
135		aModeRefSel = ath_hal_reverseBits(2, 2);
136	} else if ((chan->channel % 5) == 0) {
137		channelSel = ath_hal_reverseBits(
138			(chan->channel - 4800) / 5, 8);
139		aModeRefSel = ath_hal_reverseBits(1, 2);
140	} else {
141		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
142		    __func__, chan->channel);
143		return AH_FALSE;
144	}
145
146	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
147			(1 << 12) | 0x1;
148	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
149
150	reg32 >>= 8;
151	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
152
153	AH_PRIVATE(ah)->ah_curchan = chan;
154	return AH_TRUE;
155}
156
157/*
158 * Reads EEPROM header info from device structure and programs
159 * all rf registers
160 *
161 * REQUIRES: Access to the analog rf device
162 */
163static HAL_BOOL
164ar2316SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
165{
166#define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
167	int i;								    \
168	for (i = 0; i < N(ar5212Bank##_ix##_2316); i++)			    \
169		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2316[i][_col];\
170} while (0)
171	struct ath_hal_5212 *ahp = AH5212(ah);
172	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
173	uint16_t ob2GHz = 0, db2GHz = 0;
174	struct ar2316State *priv = AR2316(ah);
175	int regWrites = 0;
176
177	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
178	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
179	    __func__, chan->channel, chan->channelFlags, modesIndex);
180
181	HALASSERT(priv != AH_NULL);
182
183	/* Setup rf parameters */
184	switch (chan->channelFlags & CHANNEL_ALL) {
185	case CHANNEL_B:
186		ob2GHz = ee->ee_obFor24;
187		db2GHz = ee->ee_dbFor24;
188		break;
189	case CHANNEL_G:
190	case CHANNEL_108G:
191		ob2GHz = ee->ee_obFor24g;
192		db2GHz = ee->ee_dbFor24g;
193		break;
194	default:
195		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
196		    __func__, chan->channelFlags);
197		return AH_FALSE;
198	}
199
200	/* Bank 1 Write */
201	RF_BANK_SETUP(priv, 1, 1);
202
203	/* Bank 2 Write */
204	RF_BANK_SETUP(priv, 2, modesIndex);
205
206	/* Bank 3 Write */
207	RF_BANK_SETUP(priv, 3, modesIndex);
208
209	/* Bank 6 Write */
210	RF_BANK_SETUP(priv, 6, modesIndex);
211
212	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 178, 0);
213	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 175, 0);
214
215	/* Bank 7 Setup */
216	RF_BANK_SETUP(priv, 7, modesIndex);
217
218	/* Write Analog registers */
219	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2316, priv->Bank1Data, regWrites);
220	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2316, priv->Bank2Data, regWrites);
221	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2316, priv->Bank3Data, regWrites);
222	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2316, priv->Bank6Data, regWrites);
223	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2316, priv->Bank7Data, regWrites);
224
225	/* Now that we have reprogrammed rfgain value, clear the flag. */
226	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
227
228	return AH_TRUE;
229#undef	RF_BANK_SETUP
230}
231
232/*
233 * Return a reference to the requested RF Bank.
234 */
235static uint32_t *
236ar2316GetRfBank(struct ath_hal *ah, int bank)
237{
238	struct ar2316State *priv = AR2316(ah);
239
240	HALASSERT(priv != AH_NULL);
241	switch (bank) {
242	case 1: return priv->Bank1Data;
243	case 2: return priv->Bank2Data;
244	case 3: return priv->Bank3Data;
245	case 6: return priv->Bank6Data;
246	case 7: return priv->Bank7Data;
247	}
248	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
249	    __func__, bank);
250	return AH_NULL;
251}
252
253/*
254 * Return indices surrounding the value in sorted integer lists.
255 *
256 * NB: the input list is assumed to be sorted in ascending order
257 */
258static void
259GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
260                          uint32_t *vlo, uint32_t *vhi)
261{
262	int16_t target = v;
263	const int16_t *ep = lp+listSize;
264	const int16_t *tp;
265
266	/*
267	 * Check first and last elements for out-of-bounds conditions.
268	 */
269	if (target < lp[0]) {
270		*vlo = *vhi = 0;
271		return;
272	}
273	if (target >= ep[-1]) {
274		*vlo = *vhi = listSize - 1;
275		return;
276	}
277
278	/* look for value being near or between 2 values in list */
279	for (tp = lp; tp < ep; tp++) {
280		/*
281		 * If value is close to the current value of the list
282		 * then target is not between values, it is one of the values
283		 */
284		if (*tp == target) {
285			*vlo = *vhi = tp - (const int16_t *) lp;
286			return;
287		}
288		/*
289		 * Look for value being between current value and next value
290		 * if so return these 2 values
291		 */
292		if (target < tp[1]) {
293			*vlo = tp - (const int16_t *) lp;
294			*vhi = *vlo + 1;
295			return;
296		}
297	}
298}
299
300/*
301 * Fill the Vpdlist for indices Pmax-Pmin
302 */
303static HAL_BOOL
304ar2316FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
305		   const int16_t *pwrList, const int16_t *VpdList,
306		   uint16_t numIntercepts, uint16_t retVpdList[][64])
307{
308	uint16_t ii, kk;
309	int16_t currPwr = (int16_t)(2*Pmin);
310	/* since Pmin is pwr*2 and pwrList is 4*pwr */
311	uint32_t  idxL = 0, idxR = 0;
312
313	ii = 0;
314
315	if (numIntercepts < 2)
316		return AH_FALSE;
317
318	while (ii <= (uint16_t)(Pmax - Pmin)) {
319		GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
320					 &(idxL), &(idxR));
321		if (idxR < 1)
322			idxR = 1;			/* extrapolate below */
323		if (idxL == (uint32_t)(numIntercepts - 1))
324			idxL = numIntercepts - 2;	/* extrapolate above */
325		if (pwrList[idxL] == pwrList[idxR])
326			kk = VpdList[idxL];
327		else
328			kk = (uint16_t)
329				(((currPwr - pwrList[idxL])*VpdList[idxR]+
330				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
331				 (pwrList[idxR] - pwrList[idxL]));
332		retVpdList[pdGainIdx][ii] = kk;
333		ii++;
334		currPwr += 2;				/* half dB steps */
335	}
336
337	return AH_TRUE;
338}
339
340/*
341 * Returns interpolated or the scaled up interpolated value
342 */
343static int16_t
344interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
345	int16_t targetLeft, int16_t targetRight)
346{
347	int16_t rv;
348
349	if (srcRight != srcLeft) {
350		rv = ((target - srcLeft)*targetRight +
351		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
352	} else {
353		rv = targetLeft;
354	}
355	return rv;
356}
357
358/*
359 * Uses the data points read from EEPROM to reconstruct the pdadc power table
360 * Called by ar2316SetPowerTable()
361 */
362static int
363ar2316getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
364		const RAW_DATA_STRUCT_2316 *pRawDataset,
365		uint16_t pdGainOverlap_t2,
366		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
367		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
368{
369	struct ar2316State *priv = AR2316(ah);
370#define	VpdTable_L	priv->vpdTable_L
371#define	VpdTable_R	priv->vpdTable_R
372#define	VpdTable_I	priv->vpdTable_I
373	uint32_t ii, jj, kk;
374	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
375	uint32_t idxL = 0, idxR = 0;
376	uint32_t numPdGainsUsed = 0;
377	/*
378	 * If desired to support -ve power levels in future, just
379	 * change pwr_I_0 to signed 5-bits.
380	 */
381	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
382	/* to accomodate -ve power levels later on. */
383	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
384	/* to accomodate -ve power levels later on */
385	uint16_t numVpd = 0;
386	uint16_t Vpd_step;
387	int16_t tmpVal ;
388	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
389
390	/* Get upper lower index */
391	GetLowerUpperIndex(channel, pRawDataset->pChannels,
392				 pRawDataset->numChannels, &(idxL), &(idxR));
393
394	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
395		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
396		/* work backwards 'cause highest pdGain for lowest power */
397		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
398		if (numVpd > 0) {
399			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
400			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
401			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
402				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
403			}
404			Pmin_t2[numPdGainsUsed] = (int16_t)
405				(Pmin_t2[numPdGainsUsed] / 2);
406			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
407			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
408				Pmax_t2[numPdGainsUsed] =
409					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
410			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
411			ar2316FillVpdTable(
412					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
413					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
414					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
415					   );
416			ar2316FillVpdTable(
417					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
418					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
419					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
420					   );
421			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
422				VpdTable_I[numPdGainsUsed][kk] =
423					interpolate_signed(
424							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
425							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
426			}
427			/* fill VpdTable_I for this pdGain */
428			numPdGainsUsed++;
429		}
430		/* if this pdGain is used */
431	}
432
433	*pMinCalPower = Pmin_t2[0];
434	kk = 0; /* index for the final table */
435	for (ii = 0; ii < numPdGainsUsed; ii++) {
436		if (ii == (numPdGainsUsed - 1))
437			pPdGainBoundaries[ii] = Pmax_t2[ii] +
438				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
439		else
440			pPdGainBoundaries[ii] = (uint16_t)
441				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
442		if (pPdGainBoundaries[ii] > 63) {
443			HALDEBUG(ah, HAL_DEBUG_ANY,
444			    "%s: clamp pPdGainBoundaries[%d] %d\n",
445			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
446			pPdGainBoundaries[ii] = 63;
447		}
448
449		/* Find starting index for this pdGain */
450		if (ii == 0)
451			ss = 0; /* for the first pdGain, start from index 0 */
452		else
453			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
454				pdGainOverlap_t2;
455		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
456		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
457		/*
458		 *-ve ss indicates need to extrapolate data below for this pdGain
459		 */
460		while (ss < 0) {
461			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
462			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
463			ss++;
464		}
465
466		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
467		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
468		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
469
470		while (ss < (int16_t)maxIndex)
471			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
472
473		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
474				       VpdTable_I[ii][sizeCurrVpdTable-2]);
475		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
476		/*
477		 * for last gain, pdGainBoundary == Pmax_t2, so will
478		 * have to extrapolate
479		 */
480		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
481			while(ss < (int16_t)tgtIndex) {
482				tmpVal = (uint16_t)
483					(VpdTable_I[ii][sizeCurrVpdTable-1] +
484					 (ss-maxIndex)*Vpd_step);
485				pPDADCValues[kk++] = (tmpVal > 127) ?
486					127 : tmpVal;
487				ss++;
488			}
489		}				/* extrapolated above */
490	}					/* for all pdGainUsed */
491
492	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
493		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
494		ii++;
495	}
496	while (kk < 128) {
497		pPDADCValues[kk] = pPDADCValues[kk-1];
498		kk++;
499	}
500
501	return numPdGainsUsed;
502#undef VpdTable_L
503#undef VpdTable_R
504#undef VpdTable_I
505}
506
507static HAL_BOOL
508ar2316SetPowerTable(struct ath_hal *ah,
509	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
510	uint16_t *rfXpdGain)
511{
512	struct ath_hal_5212 *ahp = AH5212(ah);
513	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
514	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
515	uint16_t pdGainOverlap_t2;
516	int16_t minCalPower2316_t2;
517	uint16_t *pdadcValues = ahp->ah_pcdacTable;
518	uint16_t gainBoundaries[4];
519	uint32_t reg32, regoffset;
520	int i, numPdGainsUsed;
521#ifndef AH_USE_INIPDGAIN
522	uint32_t tpcrg1;
523#endif
524
525	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
526	    __func__, chan->channel,chan->channelFlags);
527
528	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
529		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
530	else if (IS_CHAN_B(chan))
531		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
532	else {
533		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
534		return AH_FALSE;
535	}
536
537	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
538					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
539
540	numPdGainsUsed = ar2316getGainBoundariesAndPdadcsForPowers(ah,
541		chan->channel, pRawDataset, pdGainOverlap_t2,
542		&minCalPower2316_t2,gainBoundaries, rfXpdGain, pdadcValues);
543	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
544
545#ifdef AH_USE_INIPDGAIN
546	/*
547	 * Use pd_gains curve from eeprom; Atheros always uses
548	 * the default curve from the ini file but some vendors
549	 * (e.g. Zcomax) want to override this curve and not
550	 * honoring their settings results in tx power 5dBm low.
551	 */
552	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
553			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
554#else
555	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
556	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
557		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
558	switch (numPdGainsUsed) {
559	case 3:
560		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
561		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
562		/* fall thru... */
563	case 2:
564		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
565		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
566		/* fall thru... */
567	case 1:
568		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
569		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
570		break;
571	}
572#ifdef AH_DEBUG
573	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
574		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
575		    "pd_gains (default 0x%x, calculated 0x%x)\n",
576		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
577#endif
578	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
579#endif
580
581	/*
582	 * Note the pdadc table may not start at 0 dBm power, could be
583	 * negative or greater than 0.  Need to offset the power
584	 * values by the amount of minPower for griffin
585	 */
586	if (minCalPower2316_t2 != 0)
587		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2316_t2);
588	else
589		ahp->ah_txPowerIndexOffset = 0;
590
591	/* Finally, write the power values into the baseband power table */
592	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
593	for (i = 0; i < 32; i++) {
594		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
595			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
596			((pdadcValues[4*i + 2] & 0xFF) << 16) |
597			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
598		OS_REG_WRITE(ah, regoffset, reg32);
599		regoffset += 4;
600	}
601
602	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
603		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
604		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
605		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
606		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
607		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
608
609	return AH_TRUE;
610}
611
612static int16_t
613ar2316GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
614{
615	uint32_t ii,jj;
616	uint16_t Pmin=0,numVpd;
617
618	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
619		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
620		/* work backwards 'cause highest pdGain for lowest power */
621		numVpd = data->pDataPerPDGain[jj].numVpd;
622		if (numVpd > 0) {
623			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
624			return(Pmin);
625		}
626	}
627	return(Pmin);
628}
629
630static int16_t
631ar2316GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2316 *data)
632{
633	uint32_t ii;
634	uint16_t Pmax=0,numVpd;
635
636	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
637		/* work forwards cuase lowest pdGain for highest power */
638		numVpd = data->pDataPerPDGain[ii].numVpd;
639		if (numVpd > 0) {
640			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
641			return(Pmax);
642		}
643	}
644	return(Pmax);
645}
646
647static HAL_BOOL
648ar2316GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
649	int16_t *maxPow, int16_t *minPow)
650{
651	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
652	const RAW_DATA_STRUCT_2316 *pRawDataset = AH_NULL;
653	const RAW_DATA_PER_CHANNEL_2316 *data=AH_NULL;
654	uint16_t numChannels;
655	int totalD,totalF, totalMin,last, i;
656
657	*maxPow = 0;
658
659	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
660		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
661	else if (IS_CHAN_B(chan))
662		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
663	else
664		return(AH_FALSE);
665
666	numChannels = pRawDataset->numChannels;
667	data = pRawDataset->pDataPerChannel;
668
669	/* Make sure the channel is in the range of the TP values
670	 *  (freq piers)
671	 */
672	if (numChannels < 1)
673		return(AH_FALSE);
674
675	if ((chan->channel < data[0].channelValue) ||
676	    (chan->channel > data[numChannels-1].channelValue)) {
677		if (chan->channel < data[0].channelValue) {
678			*maxPow = ar2316GetMaxPower(ah, &data[0]);
679			*minPow = ar2316GetMinPower(ah, &data[0]);
680			return(AH_TRUE);
681		} else {
682			*maxPow = ar2316GetMaxPower(ah, &data[numChannels - 1]);
683			*minPow = ar2316GetMinPower(ah, &data[numChannels - 1]);
684			return(AH_TRUE);
685		}
686	}
687
688	/* Linearly interpolate the power value now */
689	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
690	     last = i++);
691	totalD = data[i].channelValue - data[last].channelValue;
692	if (totalD > 0) {
693		totalF = ar2316GetMaxPower(ah, &data[i]) - ar2316GetMaxPower(ah, &data[last]);
694		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
695				     ar2316GetMaxPower(ah, &data[last])*totalD)/totalD);
696		totalMin = ar2316GetMinPower(ah, &data[i]) - ar2316GetMinPower(ah, &data[last]);
697		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
698				     ar2316GetMinPower(ah, &data[last])*totalD)/totalD);
699		return(AH_TRUE);
700	} else {
701		if (chan->channel == data[i].channelValue) {
702			*maxPow = ar2316GetMaxPower(ah, &data[i]);
703			*minPow = ar2316GetMinPower(ah, &data[i]);
704			return(AH_TRUE);
705		} else
706			return(AH_FALSE);
707	}
708}
709
710/*
711 * Free memory for analog bank scratch buffers
712 */
713static void
714ar2316RfDetach(struct ath_hal *ah)
715{
716	struct ath_hal_5212 *ahp = AH5212(ah);
717
718	HALASSERT(ahp->ah_rfHal != AH_NULL);
719	ath_hal_free(ahp->ah_rfHal);
720	ahp->ah_rfHal = AH_NULL;
721}
722
723/*
724 * Allocate memory for private state.
725 * Scratch Buffer will be reinitialized every reset so no need to zero now
726 */
727static HAL_BOOL
728ar2316RfAttach(struct ath_hal *ah, HAL_STATUS *status)
729{
730	struct ath_hal_5212 *ahp = AH5212(ah);
731	struct ar2316State *priv;
732
733	HALASSERT(ah->ah_magic == AR5212_MAGIC);
734
735	HALASSERT(ahp->ah_rfHal == AH_NULL);
736	priv = ath_hal_malloc(sizeof(struct ar2316State));
737	if (priv == AH_NULL) {
738		HALDEBUG(ah, HAL_DEBUG_ANY,
739		    "%s: cannot allocate private state\n", __func__);
740		*status = HAL_ENOMEM;		/* XXX */
741		return AH_FALSE;
742	}
743	priv->base.rfDetach		= ar2316RfDetach;
744	priv->base.writeRegs		= ar2316WriteRegs;
745	priv->base.getRfBank		= ar2316GetRfBank;
746	priv->base.setChannel		= ar2316SetChannel;
747	priv->base.setRfRegs		= ar2316SetRfRegs;
748	priv->base.setPowerTable	= ar2316SetPowerTable;
749	priv->base.getChannelMaxMinPower = ar2316GetChannelMaxMinPower;
750	priv->base.getNfAdjust		= ar5212GetNfAdjust;
751
752	ahp->ah_pcdacTable = priv->pcdacTable;
753	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
754	ahp->ah_rfHal = &priv->base;
755
756	ahp->ah_cwCalRequire = AH_TRUE;		/* force initial cal */
757
758	return AH_TRUE;
759}
760
761static HAL_BOOL
762ar2316Probe(struct ath_hal *ah)
763{
764	return IS_2316(ah);
765}
766AH_RF(RF2316, ar2316Probe, ar2316RfAttach);
767