sljitNativePPC_64.c revision 1.4
1/*	$NetBSD: sljitNativePPC_64.c,v 1.4 2019/01/20 23:14:16 alnsn Exp $	*/
2
3/*
4 *    Stack-less Just-In-Time compiler
5 *
6 *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without modification, are
9 * permitted provided that the following conditions are met:
10 *
11 *   1. Redistributions of source code must retain the above copyright notice, this list of
12 *      conditions and the following disclaimer.
13 *
14 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
15 *      of conditions and the following disclaimer in the documentation and/or other materials
16 *      provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
19 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
21 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
24 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
26 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/* ppc 64-bit arch dependent functions. */
30
31#if defined(__GNUC__) || (defined(__IBM_GCC_ASM) && __IBM_GCC_ASM)
32#define ASM_SLJIT_CLZ(src, dst) \
33	__asm__ volatile ( "cntlzd %0, %1" : "=r"(dst) : "r"(src) )
34#elif defined(__xlc__)
35#error "Please enable GCC syntax for inline assembly statements"
36#else
37#error "Must implement count leading zeroes"
38#endif
39
40#define RLDI(dst, src, sh, mb, type) \
41	(HI(30) | S(src) | A(dst) | ((type) << 2) | (((sh) & 0x1f) << 11) | (((sh) & 0x20) >> 4) | (((mb) & 0x1f) << 6) | ((mb) & 0x20))
42
43#define PUSH_RLDICR(reg, shift) \
44	push_inst(compiler, RLDI(reg, reg, 63 - shift, shift, 1))
45
46static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm)
47{
48	sljit_uw tmp;
49	sljit_uw shift;
50	sljit_uw tmp2;
51	sljit_uw shift2;
52
53	if (imm <= SIMM_MAX && imm >= SIMM_MIN)
54		return push_inst(compiler, ADDI | D(reg) | A(0) | IMM(imm));
55
56	if (!(imm & ~0xffff))
57		return push_inst(compiler, ORI | S(TMP_ZERO) | A(reg) | IMM(imm));
58
59	if (imm <= 0x7fffffffl && imm >= -0x80000000l) {
60		FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 16)));
61		return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)) : SLJIT_SUCCESS;
62	}
63
64	/* Count leading zeroes. */
65	tmp = (imm >= 0) ? imm : ~imm;
66	ASM_SLJIT_CLZ(tmp, shift);
67	SLJIT_ASSERT(shift > 0);
68	shift--;
69	tmp = (imm << shift);
70
71	if ((tmp & ~0xffff000000000000ul) == 0) {
72		FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
73		shift += 15;
74		return PUSH_RLDICR(reg, shift);
75	}
76
77	if ((tmp & ~0xffffffff00000000ul) == 0) {
78		FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(tmp >> 48)));
79		FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp >> 32)));
80		shift += 31;
81		return PUSH_RLDICR(reg, shift);
82	}
83
84	/* Cut out the 16 bit from immediate. */
85	shift += 15;
86	tmp2 = imm & ((1ul << (63 - shift)) - 1);
87
88	if (tmp2 <= 0xffff) {
89		FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
90		FAIL_IF(PUSH_RLDICR(reg, shift));
91		return push_inst(compiler, ORI | S(reg) | A(reg) | tmp2);
92	}
93
94	if (tmp2 <= 0xffffffff) {
95		FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
96		FAIL_IF(PUSH_RLDICR(reg, shift));
97		FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | (tmp2 >> 16)));
98		return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp2)) : SLJIT_SUCCESS;
99	}
100
101	ASM_SLJIT_CLZ(tmp2, shift2);
102	tmp2 <<= shift2;
103
104	if ((tmp2 & ~0xffff000000000000ul) == 0) {
105		FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
106		shift2 += 15;
107		shift += (63 - shift2);
108		FAIL_IF(PUSH_RLDICR(reg, shift));
109		FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | (tmp2 >> 48)));
110		return PUSH_RLDICR(reg, shift2);
111	}
112
113	/* The general version. */
114	FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 48)));
115	FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm >> 32)));
116	FAIL_IF(PUSH_RLDICR(reg, 31));
117	FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(imm >> 16)));
118	return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm));
119}
120
121/* Simplified mnemonics: clrldi. */
122#define INS_CLEAR_LEFT(dst, src, from) \
123	(RLDICL | S(src) | A(dst) | ((from) << 6) | (1 << 5))
124
125/* Sign extension for integer operations. */
126#define UN_EXTS() \
127	if ((flags & (ALT_SIGN_EXT | REG2_SOURCE)) == (ALT_SIGN_EXT | REG2_SOURCE)) { \
128		FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
129		src2 = TMP_REG2; \
130	}
131
132#define BIN_EXTS() \
133	if (flags & ALT_SIGN_EXT) { \
134		if (flags & REG1_SOURCE) { \
135			FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
136			src1 = TMP_REG1; \
137		} \
138		if (flags & REG2_SOURCE) { \
139			FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
140			src2 = TMP_REG2; \
141		} \
142	}
143
144#define BIN_IMM_EXTS() \
145	if ((flags & (ALT_SIGN_EXT | REG1_SOURCE)) == (ALT_SIGN_EXT | REG1_SOURCE)) { \
146		FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
147		src1 = TMP_REG1; \
148	}
149
150static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags,
151	sljit_s32 dst, sljit_s32 src1, sljit_s32 src2)
152{
153	switch (op) {
154	case SLJIT_MOV:
155	case SLJIT_MOV_P:
156		SLJIT_ASSERT(src1 == TMP_REG1);
157		if (dst != src2)
158			return push_inst(compiler, OR | S(src2) | A(dst) | B(src2));
159		return SLJIT_SUCCESS;
160
161	case SLJIT_MOV_U32:
162	case SLJIT_MOV_S32:
163		SLJIT_ASSERT(src1 == TMP_REG1);
164		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
165			if (op == SLJIT_MOV_S32)
166				return push_inst(compiler, EXTSW | S(src2) | A(dst));
167			return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 0));
168		}
169		else {
170			SLJIT_ASSERT(dst == src2);
171		}
172		return SLJIT_SUCCESS;
173
174	case SLJIT_MOV_U8:
175	case SLJIT_MOV_S8:
176		SLJIT_ASSERT(src1 == TMP_REG1);
177		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
178			if (op == SLJIT_MOV_S8)
179				return push_inst(compiler, EXTSB | S(src2) | A(dst));
180			return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 24));
181		}
182		else if ((flags & REG_DEST) && op == SLJIT_MOV_S8)
183			return push_inst(compiler, EXTSB | S(src2) | A(dst));
184		else {
185			SLJIT_ASSERT(dst == src2);
186		}
187		return SLJIT_SUCCESS;
188
189	case SLJIT_MOV_U16:
190	case SLJIT_MOV_S16:
191		SLJIT_ASSERT(src1 == TMP_REG1);
192		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
193			if (op == SLJIT_MOV_S16)
194				return push_inst(compiler, EXTSH | S(src2) | A(dst));
195			return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 16));
196		}
197		else {
198			SLJIT_ASSERT(dst == src2);
199		}
200		return SLJIT_SUCCESS;
201
202	case SLJIT_NOT:
203		SLJIT_ASSERT(src1 == TMP_REG1);
204		UN_EXTS();
205		return push_inst(compiler, NOR | RC(flags) | S(src2) | A(dst) | B(src2));
206
207	case SLJIT_NEG:
208		SLJIT_ASSERT(src1 == TMP_REG1);
209		UN_EXTS();
210		return push_inst(compiler, NEG | OERC(flags) | D(dst) | A(src2));
211
212	case SLJIT_CLZ:
213		SLJIT_ASSERT(src1 == TMP_REG1);
214		if (flags & ALT_FORM1)
215			return push_inst(compiler, CNTLZW | RC(flags) | S(src2) | A(dst));
216		return push_inst(compiler, CNTLZD | RC(flags) | S(src2) | A(dst));
217
218	case SLJIT_ADD:
219		if (flags & ALT_FORM1) {
220			/* Flags does not set: BIN_IMM_EXTS unnecessary. */
221			SLJIT_ASSERT(src2 == TMP_REG2);
222			return push_inst(compiler, ADDI | D(dst) | A(src1) | compiler->imm);
223		}
224		if (flags & ALT_FORM2) {
225			/* Flags does not set: BIN_IMM_EXTS unnecessary. */
226			SLJIT_ASSERT(src2 == TMP_REG2);
227			return push_inst(compiler, ADDIS | D(dst) | A(src1) | compiler->imm);
228		}
229		if (flags & ALT_FORM3) {
230			SLJIT_ASSERT(src2 == TMP_REG2);
231			BIN_IMM_EXTS();
232			return push_inst(compiler, ADDIC | D(dst) | A(src1) | compiler->imm);
233		}
234		if (flags & ALT_FORM4) {
235			/* Flags does not set: BIN_IMM_EXTS unnecessary. */
236			FAIL_IF(push_inst(compiler, ADDI | D(dst) | A(src1) | (compiler->imm & 0xffff)));
237			return push_inst(compiler, ADDIS | D(dst) | A(dst) | (((compiler->imm >> 16) & 0xffff) + ((compiler->imm >> 15) & 0x1)));
238		}
239		if (!(flags & ALT_SET_FLAGS))
240			return push_inst(compiler, ADD | D(dst) | A(src1) | B(src2));
241		BIN_EXTS();
242		return push_inst(compiler, ADDC | OERC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2));
243
244	case SLJIT_ADDC:
245		BIN_EXTS();
246		return push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2));
247
248	case SLJIT_SUB:
249		if (flags & ALT_FORM1) {
250			/* Flags does not set: BIN_IMM_EXTS unnecessary. */
251			SLJIT_ASSERT(src2 == TMP_REG2);
252			return push_inst(compiler, SUBFIC | D(dst) | A(src1) | compiler->imm);
253		}
254		if (flags & (ALT_FORM2 | ALT_FORM3)) {
255			SLJIT_ASSERT(src2 == TMP_REG2);
256			return push_inst(compiler, ((flags & ALT_FORM2) ? CMPI : CMPLI) | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm);
257		}
258		if (flags & (ALT_FORM4 | ALT_FORM5)) {
259			return push_inst(compiler, ((flags & ALT_FORM4) ? CMP : CMPL) | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2));
260		}
261		if (flags & ALT_FORM6) {
262			SLJIT_ASSERT(src2 == TMP_REG2);
263			FAIL_IF(push_inst(compiler, CMPLI | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm));
264			return push_inst(compiler, ADDI | D(dst) | A(src1) | (-compiler->imm & 0xffff));
265		}
266		if (flags & ALT_FORM7) {
267			FAIL_IF(push_inst(compiler, CMPL | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
268			return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
269		}
270		if (!(flags & ALT_SET_FLAGS))
271			return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
272		BIN_EXTS();
273		return push_inst(compiler, SUBFC | OERC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
274
275	case SLJIT_SUBC:
276		BIN_EXTS();
277		return push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1));
278
279	case SLJIT_MUL:
280		if (flags & ALT_FORM1) {
281			SLJIT_ASSERT(src2 == TMP_REG2);
282			return push_inst(compiler, MULLI | D(dst) | A(src1) | compiler->imm);
283		}
284		BIN_EXTS();
285		if (flags & ALT_FORM2)
286			return push_inst(compiler, MULLW | OERC(flags) | D(dst) | A(src2) | B(src1));
287		return push_inst(compiler, MULLD | OERC(flags) | D(dst) | A(src2) | B(src1));
288
289	case SLJIT_AND:
290		if (flags & ALT_FORM1) {
291			SLJIT_ASSERT(src2 == TMP_REG2);
292			return push_inst(compiler, ANDI | S(src1) | A(dst) | compiler->imm);
293		}
294		if (flags & ALT_FORM2) {
295			SLJIT_ASSERT(src2 == TMP_REG2);
296			return push_inst(compiler, ANDIS | S(src1) | A(dst) | compiler->imm);
297		}
298		return push_inst(compiler, AND | RC(flags) | S(src1) | A(dst) | B(src2));
299
300	case SLJIT_OR:
301		if (flags & ALT_FORM1) {
302			SLJIT_ASSERT(src2 == TMP_REG2);
303			return push_inst(compiler, ORI | S(src1) | A(dst) | compiler->imm);
304		}
305		if (flags & ALT_FORM2) {
306			SLJIT_ASSERT(src2 == TMP_REG2);
307			return push_inst(compiler, ORIS | S(src1) | A(dst) | compiler->imm);
308		}
309		if (flags & ALT_FORM3) {
310			SLJIT_ASSERT(src2 == TMP_REG2);
311			FAIL_IF(push_inst(compiler, ORI | S(src1) | A(dst) | IMM(compiler->imm)));
312			return push_inst(compiler, ORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
313		}
314		return push_inst(compiler, OR | RC(flags) | S(src1) | A(dst) | B(src2));
315
316	case SLJIT_XOR:
317		if (flags & ALT_FORM1) {
318			SLJIT_ASSERT(src2 == TMP_REG2);
319			return push_inst(compiler, XORI | S(src1) | A(dst) | compiler->imm);
320		}
321		if (flags & ALT_FORM2) {
322			SLJIT_ASSERT(src2 == TMP_REG2);
323			return push_inst(compiler, XORIS | S(src1) | A(dst) | compiler->imm);
324		}
325		if (flags & ALT_FORM3) {
326			SLJIT_ASSERT(src2 == TMP_REG2);
327			FAIL_IF(push_inst(compiler, XORI | S(src1) | A(dst) | IMM(compiler->imm)));
328			return push_inst(compiler, XORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
329		}
330		return push_inst(compiler, XOR | RC(flags) | S(src1) | A(dst) | B(src2));
331
332	case SLJIT_SHL:
333		if (flags & ALT_FORM1) {
334			SLJIT_ASSERT(src2 == TMP_REG2);
335			if (flags & ALT_FORM2) {
336				compiler->imm &= 0x1f;
337				return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11) | ((31 - compiler->imm) << 1));
338			}
339			compiler->imm &= 0x3f;
340			return push_inst(compiler, RLDI(dst, src1, compiler->imm, 63 - compiler->imm, 1) | RC(flags));
341		}
342		return push_inst(compiler, ((flags & ALT_FORM2) ? SLW : SLD) | RC(flags) | S(src1) | A(dst) | B(src2));
343
344	case SLJIT_LSHR:
345		if (flags & ALT_FORM1) {
346			SLJIT_ASSERT(src2 == TMP_REG2);
347			if (flags & ALT_FORM2) {
348				compiler->imm &= 0x1f;
349				return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (((32 - compiler->imm) & 0x1f) << 11) | (compiler->imm << 6) | (31 << 1));
350			}
351			compiler->imm &= 0x3f;
352			return push_inst(compiler, RLDI(dst, src1, 64 - compiler->imm, compiler->imm, 0) | RC(flags));
353		}
354		return push_inst(compiler, ((flags & ALT_FORM2) ? SRW : SRD) | RC(flags) | S(src1) | A(dst) | B(src2));
355
356	case SLJIT_ASHR:
357		if (flags & ALT_FORM1) {
358			SLJIT_ASSERT(src2 == TMP_REG2);
359			if (flags & ALT_FORM2) {
360				compiler->imm &= 0x1f;
361				return push_inst(compiler, SRAWI | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11));
362			}
363			compiler->imm &= 0x3f;
364			return push_inst(compiler, SRADI | RC(flags) | S(src1) | A(dst) | ((compiler->imm & 0x1f) << 11) | ((compiler->imm & 0x20) >> 4));
365		}
366		return push_inst(compiler, ((flags & ALT_FORM2) ? SRAW : SRAD) | RC(flags) | S(src1) | A(dst) | B(src2));
367	}
368
369	SLJIT_UNREACHABLE();
370	return SLJIT_SUCCESS;
371}
372
373static SLJIT_INLINE sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw init_value)
374{
375	FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(init_value >> 48)));
376	FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value >> 32)));
377	FAIL_IF(PUSH_RLDICR(reg, 31));
378	FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(init_value >> 16)));
379	return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value));
380}
381
382SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset)
383{
384	sljit_ins *inst = (sljit_ins*)addr;
385
386	inst[0] = (inst[0] & 0xffff0000) | ((new_target >> 48) & 0xffff);
387	inst[1] = (inst[1] & 0xffff0000) | ((new_target >> 32) & 0xffff);
388	inst[3] = (inst[3] & 0xffff0000) | ((new_target >> 16) & 0xffff);
389	inst[4] = (inst[4] & 0xffff0000) | (new_target & 0xffff);
390	inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
391	SLJIT_CACHE_FLUSH(inst, inst + 5);
392}
393
394SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset)
395{
396	sljit_ins *inst = (sljit_ins*)addr;
397
398	inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 48) & 0xffff);
399	inst[1] = (inst[1] & 0xffff0000) | ((new_constant >> 32) & 0xffff);
400	inst[3] = (inst[3] & 0xffff0000) | ((new_constant >> 16) & 0xffff);
401	inst[4] = (inst[4] & 0xffff0000) | (new_constant & 0xffff);
402	inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
403	SLJIT_CACHE_FLUSH(inst, inst + 5);
404}
405