1/*	$NetBSD: dwc2_hcd.h,v 1.15 2018/08/08 07:20:44 simonb Exp $	*/
2
3/*
4 * hcd.h - DesignWare HS OTG Controller host-mode declarations
5 *
6 * Copyright (C) 2004-2013 Synopsys, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. The names of the above-listed copyright holders may not be used
18 *    to endorse or promote products derived from this software without
19 *    specific prior written permission.
20 *
21 * ALTERNATIVELY, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") as published by the Free Software
23 * Foundation; either version 2 of the License, or (at your option) any
24 * later version.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
27 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
28 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 */
38#ifndef __DWC2_HCD_H__
39#define __DWC2_HCD_H__
40
41/*
42 * This file contains the structures, constants, and interfaces for the
43 * Host Contoller Driver (HCD)
44 *
45 * The Host Controller Driver (HCD) is responsible for translating requests
46 * from the USB Driver into the appropriate actions on the DWC_otg controller.
47 * It isolates the USBD from the specifics of the controller by providing an
48 * API to the USBD.
49 */
50
51struct dwc2_qh;
52
53/**
54 * struct dwc2_host_chan - Software host channel descriptor
55 *
56 * @hc_num:             Host channel number, used for register address lookup
57 * @dev_addr:           Address of the device
58 * @ep_num:             Endpoint of the device
59 * @ep_is_in:           Endpoint direction
60 * @speed:              Device speed. One of the following values:
61 *                       - USB_SPEED_LOW
62 *                       - USB_SPEED_FULL
63 *                       - USB_SPEED_HIGH
64 * @ep_type:            Endpoint type. One of the following values:
65 *                       - USB_ENDPOINT_XFER_CONTROL: 0
66 *                       - USB_ENDPOINT_XFER_ISOC:    1
67 *                       - USB_ENDPOINT_XFER_BULK:    2
68 *                       - USB_ENDPOINT_XFER_INTR:    3
69 * @max_packet:         Max packet size in bytes
70 * @data_pid_start:     PID for initial transaction.
71 *                       0: DATA0
72 *                       1: DATA2
73 *                       2: DATA1
74 *                       3: MDATA (non-Control EP),
75 *                          SETUP (Control EP)
76 * @multi_count:        Number of additional periodic transactions per
77 *                      (micro)frame
78 * @xfer_buf:           Pointer to current transfer buffer position
79 * @xfer_dma:           DMA address of xfer_buf
80 * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
81 *                      DWORD aligned
82 * @xfer_len:           Total number of bytes to transfer
83 * @xfer_count:         Number of bytes transferred so far
84 * @start_pkt_count:    Packet count at start of transfer
85 * @xfer_started:       True if the transfer has been started
86 * @ping:               True if a PING request should be issued on this channel
87 * @error_state:        True if the error count for this transaction is non-zero
88 * @halt_on_queue:      True if this channel should be halted the next time a
89 *                      request is queued for the channel. This is necessary in
90 *                      slave mode if no request queue space is available when
91 *                      an attempt is made to halt the channel.
92 * @halt_pending:       True if the host channel has been halted, but the core
93 *                      is not finished flushing queued requests
94 * @do_split:           Enable split for the channel
95 * @complete_split:     Enable complete split
96 * @hub_addr:           Address of high speed hub for the split
97 * @hub_port:           Port of the low/full speed device for the split
98 * @xact_pos:           Split transaction position. One of the following values:
99 *                       - DWC2_HCSPLT_XACTPOS_MID
100 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
101 *                       - DWC2_HCSPLT_XACTPOS_END
102 *                       - DWC2_HCSPLT_XACTPOS_ALL
103 * @requests:           Number of requests issued for this channel since it was
104 *                      assigned to the current transfer (not counting PINGs)
105 * @schinfo:            Scheduling micro-frame bitmap
106 * @ntd:                Number of transfer descriptors for the transfer
107 * @halt_status:        Reason for halting the host channel
108 * @hcint               Contents of the HCINT register when the interrupt came
109 * @qh:                 QH for the transfer being processed by this channel
110 * @hc_list_entry:      For linking to list of host channels
111 * @desc_list_addr:     Current QH's descriptor list DMA address
112 * @desc_list_sz:       Current QH's descriptor list size
113 *
114 * This structure represents the state of a single host channel when acting in
115 * host mode. It contains the data items needed to transfer packets to an
116 * endpoint via a host channel.
117 */
118struct dwc2_host_chan {
119	u8 hc_num;
120
121	unsigned dev_addr:7;
122	unsigned ep_num:4;
123	unsigned ep_is_in:1;
124	unsigned speed:4;
125	unsigned ep_type:2;
126	unsigned max_packet:11;
127	unsigned data_pid_start:2;
128#define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
129#define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
130#define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
131#define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
132#define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
133
134	unsigned multi_count:2;
135
136	usb_dma_t *xfer_usbdma;
137	u8 *xfer_buf;
138	dma_addr_t xfer_dma;
139	dma_addr_t align_buf;
140	u32 xfer_len;
141	u32 xfer_count;
142	u16 start_pkt_count;
143	u8 xfer_started;
144	u8 do_ping;
145	u8 error_state;
146	u8 halt_on_queue;
147	u8 halt_pending;
148	u8 do_split;
149	u8 complete_split;
150	u8 hub_addr;
151	u8 hub_port;
152	u8 xact_pos;
153#define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
154#define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
155#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
156#define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
157
158	u8 requests;
159	u8 schinfo;
160	u16 ntd;
161	enum dwc2_halt_status halt_status;
162	u32 hcint;
163	struct dwc2_qh *qh;
164	struct list_head hc_list_entry;
165	usb_dma_t desc_list_usbdma;
166	dma_addr_t desc_list_addr;
167	u32 desc_list_sz;
168};
169
170struct dwc2_hcd_pipe_info {
171	u8 dev_addr;
172	u8 ep_num;
173	u8 pipe_type;
174	u8 pipe_dir;
175	u16 mps;
176};
177
178struct dwc2_hcd_iso_packet_desc {
179	u32 offset;
180	u32 length;
181	u32 actual_length;
182	u32 status;
183};
184
185struct dwc2_qtd;
186
187struct dwc2_hcd_urb {
188	void *priv;		/* the xfer handle */
189	struct dwc2_qtd *qtd;
190	usb_dma_t *usbdma;
191	u8 *buf;
192	dma_addr_t dma;
193	usb_dma_t *setup_usbdma;
194	void *setup_packet;
195	dma_addr_t setup_dma;
196	u32 length;
197	u32 actual_length;
198	u32 status;
199	u32 error_count;
200	u32 packet_count;
201	u32 flags;
202	u16 interval;
203	struct dwc2_hcd_pipe_info pipe_info;
204	struct dwc2_hcd_iso_packet_desc iso_descs[0];
205};
206
207/* Phases for control transfers */
208enum dwc2_control_phase {
209	DWC2_CONTROL_SETUP,
210	DWC2_CONTROL_DATA,
211	DWC2_CONTROL_STATUS,
212};
213
214/* Transaction types */
215enum dwc2_transaction_type {
216	DWC2_TRANSACTION_NONE,
217	DWC2_TRANSACTION_PERIODIC,
218	DWC2_TRANSACTION_NON_PERIODIC,
219	DWC2_TRANSACTION_ALL,
220};
221
222/**
223 * struct dwc2_qh - Software queue head structure
224 *
225 * @hsotg:              The HCD state structure for the DWC OTG controller
226 * @ep_type:            Endpoint type. One of the following values:
227 *                       - USB_ENDPOINT_XFER_CONTROL
228 *                       - USB_ENDPOINT_XFER_BULK
229 *                       - USB_ENDPOINT_XFER_INT
230 *                       - USB_ENDPOINT_XFER_ISOC
231 * @ep_is_in:           Endpoint direction
232 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
233 * @dev_speed:          Device speed. One of the following values:
234 *                       - USB_SPEED_LOW
235 *                       - USB_SPEED_FULL
236 *                       - USB_SPEED_HIGH
237 * @data_toggle:        Determines the PID of the next data packet for
238 *                      non-controltransfers. Ignored for control transfers.
239 *                      One of the following values:
240 *                       - DWC2_HC_PID_DATA0
241 *                       - DWC2_HC_PID_DATA1
242 * @ping_state:         Ping state
243 * @do_split:           Full/low speed endpoint on high-speed hub requires split
244 * @td_first:           Index of first activated isochronous transfer descriptor
245 * @td_last:            Index of last activated isochronous transfer descriptor
246 * @usecs:              Bandwidth in microseconds per (micro)frame
247 * @interval:           Interval between transfers in (micro)frames
248 * @sched_frame:        (Micro)frame to initialize a periodic transfer.
249 *                      The transfer executes in the following (micro)frame.
250 * @nak_frame:          Internal variable used by the NAK holdoff code
251 * @frame_usecs:        Internal variable used by the microframe scheduler
252 * @start_split_frame:  (Micro)frame at which last start split was initialized
253 * @ntd:                Actual number of transfer descriptors in a list
254 * @dw_align_buf:       Used instead of original buffer if its physical address
255 *                      is not dword-aligned
256 * @dw_align_buf_size:  Size of dw_align_buf
257 * @dw_align_buf_dma:   DMA address for dw_align_buf
258 * @qtd_list:           List of QTDs for this QH
259 * @channel:            Host channel currently processing transfers for this QH
260 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
261 *                      schedule
262 * @desc_list:          List of transfer descriptors
263 * @desc_list_dma:      Physical address of desc_list
264 * @desc_list_sz:       Size of descriptors list
265 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
266 *                      descriptor and indicates original XferSize value for the
267 *                      descriptor
268 * @wait_timer:         Timer used to wait before re-queuing.
269 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
270 * @want_wait:          We should wait before re-queuing; only matters for non-
271 *                      periodic transfers and is ignored for periodic ones.
272 * @wait_timer_cancel:  Set to true to cancel the wait_timer.
273 *
274 * A Queue Head (QH) holds the static characteristics of an endpoint and
275 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
276 * be entered in either the non-periodic or periodic schedule.
277 */
278struct dwc2_qh {
279	struct dwc2_hsotg *hsotg;
280	u8 ep_type;
281	u8 ep_is_in;
282	u16 maxp;
283	u8 dev_speed;
284	u8 data_toggle;
285	u8 ping_state;
286	u8 do_split;
287	u8 td_first;
288	u8 td_last;
289	u16 usecs;
290	u16 interval;
291	u16 sched_frame;
292	u16 nak_frame;
293	u16 frame_usecs[8];
294	u16 start_split_frame;
295	u16 ntd;
296	usb_dma_t dw_align_buf_usbdma;
297	u8 *dw_align_buf;
298	int dw_align_buf_size;
299	dma_addr_t dw_align_buf_dma;
300	struct list_head qtd_list;
301	struct dwc2_host_chan *channel;
302	struct list_head qh_list_entry;
303	usb_dma_t desc_list_usbdma;
304	struct dwc2_hcd_dma_desc *desc_list;
305	dma_addr_t desc_list_dma;
306	u32 desc_list_sz;
307	u32 *n_bytes;
308	/* XXX struct timer_list wait_timer; */
309	callout_t wait_timer;
310	unsigned tt_buffer_dirty:1;
311	unsigned want_wait:1;
312	unsigned wait_timer_cancel:1;
313};
314
315/**
316 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
317 *
318 * @control_phase:      Current phase for control transfers (Setup, Data, or
319 *                      Status)
320 * @in_process:         Indicates if this QTD is currently processed by HW
321 * @data_toggle:        Determines the PID of the next data packet for the
322 *                      data phase of control transfers. Ignored for other
323 *                      transfer types. One of the following values:
324 *                       - DWC2_HC_PID_DATA0
325 *                       - DWC2_HC_PID_DATA1
326 * @complete_split:     Keeps track of the current split type for FS/LS
327 *                      endpoints on a HS Hub
328 * @isoc_split_pos:     Position of the ISOC split in full/low speed
329 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
330 *                      transfer. A frame descriptor describes the buffer
331 *                      position and length of the data to be transferred in the
332 *                      next scheduled (micro)frame of an isochronous transfer.
333 *                      It also holds status for that transaction. The frame
334 *                      index starts at 0.
335 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
336 *                      current frame
337 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
338 * @error_count:        Holds the number of bus errors that have occurred for
339 *                      a transaction within this transfer
340 * @n_desc:             Number of DMA descriptors for this QTD
341 * @isoc_frame_index_last: Last activated frame (packet) index, used in
342 *                      descriptor DMA mode only
343 * @num_naks:           Number of NAKs received on this QTD.
344 * @urb:                URB for this transfer
345 * @qh:                 Queue head for this QTD
346 * @qtd_list_entry:     For linking to the QH's list of QTDs
347 *
348 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
349 * interrupt, or isochronous transfer. A single QTD is created for each URB
350 * (of one of these types) submitted to the HCD. The transfer associated with
351 * a QTD may require one or multiple transactions.
352 *
353 * A QTD is linked to a Queue Head, which is entered in either the
354 * non-periodic or periodic schedule for execution. When a QTD is chosen for
355 * execution, some or all of its transactions may be executed. After
356 * execution, the state of the QTD is updated. The QTD may be retired if all
357 * its transactions are complete or if an error occurred. Otherwise, it
358 * remains in the schedule so more transactions can be executed later.
359 */
360struct dwc2_qtd {
361	enum dwc2_control_phase control_phase;
362	u8 in_process;
363	u8 data_toggle;
364	u8 complete_split;
365	u8 isoc_split_pos;
366	u16 isoc_frame_index;
367	u16 isoc_split_offset;
368	u16 isoc_td_last;
369	u16 isoc_td_first;
370	u32 ssplit_out_xfer_count;
371	u8 error_count;
372	u8 n_desc;
373	u16 isoc_frame_index_last;
374	u16 num_naks;
375	struct dwc2_hcd_urb *urb;
376	struct dwc2_qh *qh;
377	struct list_head qtd_list_entry;
378};
379
380#ifdef DEBUG
381struct hc_xfer_info {
382	struct dwc2_hsotg *hsotg;
383	struct dwc2_host_chan *chan;
384};
385#endif
386
387/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
388static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
389{
390	return (struct usb_hcd *)hsotg->priv;
391}
392
393/*
394 * Inline used to disable one channel interrupt. Channel interrupts are
395 * disabled when the channel is halted or released by the interrupt handler.
396 * There is no need to handle further interrupts of that type until the
397 * channel is re-assigned. In fact, subsequent handling may cause crashes
398 * because the channel structures are cleaned up when the channel is released.
399 */
400static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
401{
402	u32 mask = DWC2_READ_4(hsotg, HCINTMSK(chnum));
403
404	mask &= ~intr;
405	DWC2_WRITE_4(hsotg, HCINTMSK(chnum), mask);
406}
407
408/*
409 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
410 * are read as 1, they won't clear when written back.
411 */
412static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
413{
414	u32 hprt0 = DWC2_READ_4(hsotg, HPRT0);
415
416	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
417	return hprt0;
418}
419
420static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
421{
422	return pipe->ep_num;
423}
424
425static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
426{
427	return pipe->pipe_type;
428}
429
430static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
431{
432	return pipe->mps;
433}
434
435static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
436{
437	return pipe->dev_addr;
438}
439
440static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
441{
442	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
443}
444
445static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
446{
447	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
448}
449
450static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
451{
452	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
453}
454
455static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
456{
457	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
458}
459
460static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
461{
462	return pipe->pipe_dir == USB_DIR_IN;
463}
464
465static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
466{
467	return !dwc2_hcd_is_pipe_in(pipe);
468}
469
470extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
471extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
472
473/* Transaction Execution Functions */
474extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
475						struct dwc2_hsotg *hsotg);
476extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
477					enum dwc2_transaction_type tr_type);
478
479/* Schedule Queue Functions */
480/* Implemented in hcd_queue.c */
481extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
482extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
483					  struct dwc2_hcd_urb *urb,
484					  gfp_t mem_flags);
485extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
486extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
487extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
488extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
489				   int sched_csplit);
490
491extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
492extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
493			    struct dwc2_qh *qh);
494
495/* Removes and frees a QTD */
496extern void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
497					 struct dwc2_qtd *qtd,
498					 struct dwc2_qh *qh);
499
500/* Descriptor DMA support functions */
501extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
502				     struct dwc2_qh *qh);
503extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
504					struct dwc2_host_chan *chan, int chnum,
505					enum dwc2_halt_status halt_status);
506
507extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
508				 gfp_t mem_flags);
509extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
510
511/* Check if QH is non-periodic */
512#define dwc2_qh_is_non_per(_qh_ptr_) \
513	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
514	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
515
516#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
517static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
518static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
519static inline bool dbg_perio(void) { return true; }
520#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
521static inline bool dbg_hc(struct dwc2_host_chan *hc)
522{
523	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
524	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
525}
526
527static inline bool dbg_qh(struct dwc2_qh *qh)
528{
529	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
530	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
531}
532
533
534static inline bool dbg_perio(void) { return false; }
535#endif
536
537/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
538#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
539
540/* Packet size for any kind of endpoint descriptor */
541#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
542
543/*
544 * Returns true if frame1 index is greater than frame2 index. The comparison
545 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
546 * frame number when the max index frame number is reached.
547 */
548static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
549{
550	u16 diff = fr_idx1 - fr_idx2;
551	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
552
553	return diff && !sign;
554}
555
556/*
557 * Returns true if frame1 is less than or equal to frame2. The comparison is
558 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
559 * frame number when the max frame number is reached.
560 */
561static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
562{
563	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
564}
565
566/*
567 * Returns true if frame1 is greater than frame2. The comparison is done
568 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
569 * number when the max frame number is reached.
570 */
571static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
572{
573	return (frame1 != frame2) &&
574	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
575}
576
577/*
578 * Increments frame by the amount specified by inc. The addition is done
579 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
580 */
581static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
582{
583	return (frame + inc) & HFNUM_MAX_FRNUM;
584}
585
586static inline u16 dwc2_full_frame_num(u16 frame)
587{
588	return (frame & HFNUM_MAX_FRNUM) >> 3;
589}
590
591static inline u16 dwc2_micro_frame_num(u16 frame)
592{
593	return frame & 0x7;
594}
595
596/*
597 * Returns the Core Interrupt Status register contents, ANDed with the Core
598 * Interrupt Mask register contents
599 */
600static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
601{
602	return DWC2_READ_4(hsotg, GINTSTS) & DWC2_READ_4(hsotg, GINTMSK);
603}
604
605static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
606{
607	return dwc2_urb->status;
608}
609
610static inline u32 dwc2_hcd_urb_get_actual_length(
611		struct dwc2_hcd_urb *dwc2_urb)
612{
613	return dwc2_urb->actual_length;
614}
615
616static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
617{
618	return dwc2_urb->error_count;
619}
620
621static inline void dwc2_hcd_urb_set_iso_desc_params(
622		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
623		u32 length)
624{
625	dwc2_urb->iso_descs[desc_num].offset = offset;
626	dwc2_urb->iso_descs[desc_num].length = length;
627}
628
629static inline u32 dwc2_hcd_urb_get_iso_desc_status(
630		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
631{
632	return dwc2_urb->iso_descs[desc_num].status;
633}
634
635static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
636		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
637{
638	return dwc2_urb->iso_descs[desc_num].actual_length;
639}
640
641static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
642						  struct usbd_xfer *xfer)
643{
644	struct dwc2_pipe *dpipe = DWC2_XFER2DPIPE(xfer);
645	struct dwc2_qh *qh = dpipe->priv;
646
647	if (qh && !list_empty(&qh->qh_list_entry))
648		return 1;
649
650	return 0;
651}
652
653static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
654					    struct dwc2_pipe *dpipe)
655{
656	struct dwc2_qh *qh = dpipe->priv;
657
658	if (!qh) {
659		WARN_ON(1);
660		return 0;
661	}
662
663	return qh->usecs;
664}
665
666extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
667				      struct dwc2_host_chan *chan, int chnum,
668				      struct dwc2_qtd *qtd);
669
670/* HCD Core API */
671
672/**
673 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
674 *
675 * @hsotg: The DWC2 HCD
676 *
677 * Returns IRQ_HANDLED if interrupt is handled
678 * Return IRQ_NONE if interrupt is not handled
679 */
680extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
681
682/**
683 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
684 *
685 * @hsotg: The DWC2 HCD
686 */
687extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
688
689/**
690 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
691 * and 0 otherwise
692 *
693 * @hsotg: The DWC2 HCD
694 */
695extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
696
697/**
698 * dwc2_hcd_dump_state() - Dumps hsotg state
699 *
700 * @hsotg: The DWC2 HCD
701 *
702 * NOTE: This function will be removed once the peripheral controller code
703 * is integrated and the driver is stable
704 */
705extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
706
707/**
708 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
709 *
710 * @hsotg: The DWC2 HCD
711 *
712 * This can be used to determine average interrupt latency. Frame remaining is
713 * also shown for start transfer and two additional sample points.
714 *
715 * NOTE: This function will be removed once the peripheral controller code
716 * is integrated and the driver is stable
717 */
718extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
719
720/* URB interface */
721
722/* Transfer flags */
723#define URB_GIVEBACK_ASAP	0x1
724#define URB_SEND_ZERO_PACKET	0x2
725
726/* Host driver callbacks */
727
728extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
729extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
730extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
731			       int *hub_addr, int *hub_port);
732extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
733extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
734			       int status);
735
736#ifdef DEBUG
737/*
738 * Macro to sample the remaining PHY clocks left in the current frame. This
739 * may be used during debugging to determine the average time it takes to
740 * execute sections of code. There are two possible sample points, "a" and
741 * "b", so the _letter_ argument must be one of these values.
742 *
743 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
744 * example, "cat /sys/devices/lm0/hcd_frrem".
745 */
746#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
747do {									\
748	struct hfnum_data _hfnum_;					\
749	struct dwc2_qtd *_qtd_;						\
750									\
751	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
752			   qtd_list_entry);				\
753	if (usb_pipeint(_qtd_->urb->pipe) &&				\
754	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
755		_hfnum_.d32 = DWC2_READ_4((_hcd_), HFNUM);		\
756		switch (_hfnum_.b.frnum & 0x7) {			\
757		case 7:							\
758			(_hcd_)->hfnum_7_samples_##_letter_++;		\
759			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
760				_hfnum_.b.frrem;			\
761			break;						\
762		case 0:							\
763			(_hcd_)->hfnum_0_samples_##_letter_++;		\
764			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
765				_hfnum_.b.frrem;			\
766			break;						\
767		default:						\
768			(_hcd_)->hfnum_other_samples_##_letter_++;	\
769			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
770				_hfnum_.b.frrem;			\
771			break;						\
772		}							\
773	}								\
774} while (0)
775#else
776#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
777#endif
778
779
780void dwc2_wakeup_detected(void *);
781
782int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *, struct dwc2_hcd_urb *);
783void dwc2_hcd_reinit(struct dwc2_hsotg *);
784int dwc2_hcd_hub_control(struct dwc2_hsotg *, u16, u16, u16, char *, u16);
785struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *);
786int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
787				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
788				struct dwc2_qtd *qtd);
789void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *, struct dwc2_hcd_urb *,
790			       u8 ,u8, u8, u8, u16);
791
792struct dwc2_hcd_urb * dwc2_hcd_urb_alloc(struct dwc2_hsotg *, int, gfp_t);
793void dwc2_hcd_urb_free(struct dwc2_hsotg *, struct dwc2_hcd_urb *, int);
794
795int _dwc2_hcd_start(struct dwc2_hsotg *);
796
797int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *);
798
799#endif /* __DWC2_HCD_H__ */
800