1/*	$NetBSD: nouveau_nvkm_subdev_clk_gk20a.c,v 1.4 2021/12/18 23:45:39 riastradh Exp $	*/
2
3/*
4 * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
25 *
26 */
27#include <sys/cdefs.h>
28__KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_clk_gk20a.c,v 1.4 2021/12/18 23:45:39 riastradh Exp $");
29
30#include "priv.h"
31#include "gk20a.h"
32
33#include <core/tegra.h>
34#include <subdev/timer.h>
35
36static const u8 _pl_to_div[] = {
37/* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
38/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
39};
40
41static u32 pl_to_div(u32 pl)
42{
43	if (pl >= ARRAY_SIZE(_pl_to_div))
44		return 1;
45
46	return _pl_to_div[pl];
47}
48
49static u32 div_to_pl(u32 div)
50{
51	u32 pl;
52
53	for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) {
54		if (_pl_to_div[pl] >= div)
55			return pl;
56	}
57
58	return ARRAY_SIZE(_pl_to_div) - 1;
59}
60
61static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
62	.min_vco = 1000000, .max_vco = 2064000,
63	.min_u = 12000, .max_u = 38000,
64	.min_m = 1, .max_m = 255,
65	.min_n = 8, .max_n = 255,
66	.min_pl = 1, .max_pl = 32,
67};
68
69void
70gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll)
71{
72	struct nvkm_device *device = clk->base.subdev.device;
73	u32 val;
74
75	val = nvkm_rd32(device, GPCPLL_COEFF);
76	pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
77	pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
78	pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
79}
80
81void
82gk20a_pllg_write_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
83{
84	struct nvkm_device *device = clk->base.subdev.device;
85	u32 val;
86
87	val = (pll->m & MASK(GPCPLL_COEFF_M_WIDTH)) << GPCPLL_COEFF_M_SHIFT;
88	val |= (pll->n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
89	val |= (pll->pl & MASK(GPCPLL_COEFF_P_WIDTH)) << GPCPLL_COEFF_P_SHIFT;
90	nvkm_wr32(device, GPCPLL_COEFF, val);
91}
92
93u32
94gk20a_pllg_calc_rate(struct gk20a_clk *clk, struct gk20a_pll *pll)
95{
96	u64 rate;
97	u32 divider;
98
99	rate = clk->parent_rate * pll->n;
100	divider = pll->m * clk->pl_to_div(pll->pl);
101
102	return rate / divider / 2;
103}
104
105int
106gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate,
107		    struct gk20a_pll *pll)
108{
109	struct nvkm_subdev *subdev = &clk->base.subdev;
110	u32 target_clk_f, ref_clk_f, target_freq;
111	u32 min_vco_f, max_vco_f;
112	u32 low_pl, high_pl, best_pl;
113	u32 target_vco_f;
114	u32 best_m, best_n;
115	u32 best_delta = ~0;
116	u32 pl;
117
118	target_clk_f = rate * 2 / KHZ;
119	ref_clk_f = clk->parent_rate / KHZ;
120
121	target_vco_f = target_clk_f + target_clk_f / 50;
122	max_vco_f = max(clk->params->max_vco, target_vco_f);
123	min_vco_f = clk->params->min_vco;
124	best_m = clk->params->max_m;
125	best_n = clk->params->min_n;
126	best_pl = clk->params->min_pl;
127
128	/* min_pl <= high_pl <= max_pl */
129	high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
130	high_pl = min(high_pl, clk->params->max_pl);
131	high_pl = max(high_pl, clk->params->min_pl);
132	high_pl = clk->div_to_pl(high_pl);
133
134	/* min_pl <= low_pl <= max_pl */
135	low_pl = min_vco_f / target_vco_f;
136	low_pl = min(low_pl, clk->params->max_pl);
137	low_pl = max(low_pl, clk->params->min_pl);
138	low_pl = clk->div_to_pl(low_pl);
139
140	nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
141		   clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl));
142
143	/* Select lowest possible VCO */
144	for (pl = low_pl; pl <= high_pl; pl++) {
145		u32 m, n, n2;
146
147		target_vco_f = target_clk_f * clk->pl_to_div(pl);
148
149		for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
150			u32 u_f = ref_clk_f / m;
151
152			if (u_f < clk->params->min_u)
153				break;
154			if (u_f > clk->params->max_u)
155				continue;
156
157			n = (target_vco_f * m) / ref_clk_f;
158			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
159
160			if (n > clk->params->max_n)
161				break;
162
163			for (; n <= n2; n++) {
164				u32 vco_f;
165
166				if (n < clk->params->min_n)
167					continue;
168				if (n > clk->params->max_n)
169					break;
170
171				vco_f = ref_clk_f * n / m;
172
173				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
174					u32 delta, lwv;
175
176					lwv = (vco_f + (clk->pl_to_div(pl) / 2))
177						/ clk->pl_to_div(pl);
178					delta = abs(lwv - target_clk_f);
179
180					if (delta < best_delta) {
181						best_delta = delta;
182						best_m = m;
183						best_n = n;
184						best_pl = pl;
185
186						if (best_delta == 0)
187							goto found_match;
188					}
189				}
190			}
191		}
192	}
193
194found_match:
195	WARN_ON(best_delta == ~0);
196
197	if (best_delta != 0)
198		nvkm_debug(subdev,
199			   "no best match for target @ %dMHz on gpc_pll",
200			   target_clk_f / KHZ);
201
202	pll->m = best_m;
203	pll->n = best_n;
204	pll->pl = best_pl;
205
206	target_freq = gk20a_pllg_calc_rate(clk, pll);
207
208	nvkm_debug(subdev,
209		   "actual target freq %d KHz, M %d, N %d, PL %d(div%d)\n",
210		   target_freq / KHZ, pll->m, pll->n, pll->pl,
211		   clk->pl_to_div(pll->pl));
212	return 0;
213}
214
215static int
216gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
217{
218	struct nvkm_subdev *subdev = &clk->base.subdev;
219	struct nvkm_device *device = subdev->device;
220	struct gk20a_pll pll;
221	int ret = 0;
222
223	/* get old coefficients */
224	gk20a_pllg_read_mnp(clk, &pll);
225	/* do nothing if NDIV is the same */
226	if (n == pll.n)
227		return 0;
228
229	/* pll slowdown mode */
230	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
231		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
232		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
233
234	/* new ndiv ready for ramp */
235	pll.n = n;
236	udelay(1);
237	gk20a_pllg_write_mnp(clk, &pll);
238
239	/* dynamic ramp to new ndiv */
240	udelay(1);
241	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
242		  BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT),
243		  BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT));
244
245	/* wait for ramping to complete */
246	if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG,
247		GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK,
248		GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0)
249		ret = -ETIMEDOUT;
250
251	/* exit slowdown mode */
252	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
253		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
254		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
255	nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
256
257	return ret;
258}
259
260static int
261gk20a_pllg_enable(struct gk20a_clk *clk)
262{
263	struct nvkm_device *device = clk->base.subdev.device;
264	u32 val;
265
266	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
267	nvkm_rd32(device, GPCPLL_CFG);
268
269	/* enable lock detection */
270	val = nvkm_rd32(device, GPCPLL_CFG);
271	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
272		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
273		nvkm_wr32(device, GPCPLL_CFG, val);
274	}
275
276	/* wait for lock */
277	if (nvkm_wait_usec(device, 300, GPCPLL_CFG, GPCPLL_CFG_LOCK,
278			   GPCPLL_CFG_LOCK) < 0)
279		return -ETIMEDOUT;
280
281	/* switch to VCO mode */
282	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
283		BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
284
285	return 0;
286}
287
288static void
289gk20a_pllg_disable(struct gk20a_clk *clk)
290{
291	struct nvkm_device *device = clk->base.subdev.device;
292
293	/* put PLL in bypass before disabling it */
294	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
295
296	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
297	nvkm_rd32(device, GPCPLL_CFG);
298}
299
300static int
301gk20a_pllg_program_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
302{
303	struct nvkm_subdev *subdev = &clk->base.subdev;
304	struct nvkm_device *device = subdev->device;
305	struct gk20a_pll cur_pll;
306	int ret;
307
308	gk20a_pllg_read_mnp(clk, &cur_pll);
309
310	/* split VCO-to-bypass jump in half by setting out divider 1:2 */
311	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
312		  GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
313	/* Intentional 2nd write to assure linear divider operation */
314	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
315		  GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
316	nvkm_rd32(device, GPC2CLK_OUT);
317	udelay(2);
318
319	gk20a_pllg_disable(clk);
320
321	gk20a_pllg_write_mnp(clk, pll);
322
323	ret = gk20a_pllg_enable(clk);
324	if (ret)
325		return ret;
326
327	/* restore out divider 1:1 */
328	udelay(2);
329	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
330		  GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
331	/* Intentional 2nd write to assure linear divider operation */
332	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
333		  GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
334	nvkm_rd32(device, GPC2CLK_OUT);
335
336	return 0;
337}
338
339static int
340gk20a_pllg_program_mnp_slide(struct gk20a_clk *clk, const struct gk20a_pll *pll)
341{
342	struct gk20a_pll cur_pll;
343	int ret;
344
345	if (gk20a_pllg_is_enabled(clk)) {
346		gk20a_pllg_read_mnp(clk, &cur_pll);
347
348		/* just do NDIV slide if there is no change to M and PL */
349		if (pll->m == cur_pll.m && pll->pl == cur_pll.pl)
350			return gk20a_pllg_slide(clk, pll->n);
351
352		/* slide down to current NDIV_LO */
353		cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
354		ret = gk20a_pllg_slide(clk, cur_pll.n);
355		if (ret)
356			return ret;
357	}
358
359	/* program MNP with the new clock parameters and new NDIV_LO */
360	cur_pll = *pll;
361	cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
362	ret = gk20a_pllg_program_mnp(clk, &cur_pll);
363	if (ret)
364		return ret;
365
366	/* slide up to new NDIV */
367	return gk20a_pllg_slide(clk, pll->n);
368}
369
370static struct nvkm_pstate
371gk20a_pstates[] = {
372	{
373		.base = {
374			.domain[nv_clk_src_gpc] = 72000,
375			.voltage = 0,
376		},
377	},
378	{
379		.base = {
380			.domain[nv_clk_src_gpc] = 108000,
381			.voltage = 1,
382		},
383	},
384	{
385		.base = {
386			.domain[nv_clk_src_gpc] = 180000,
387			.voltage = 2,
388		},
389	},
390	{
391		.base = {
392			.domain[nv_clk_src_gpc] = 252000,
393			.voltage = 3,
394		},
395	},
396	{
397		.base = {
398			.domain[nv_clk_src_gpc] = 324000,
399			.voltage = 4,
400		},
401	},
402	{
403		.base = {
404			.domain[nv_clk_src_gpc] = 396000,
405			.voltage = 5,
406		},
407	},
408	{
409		.base = {
410			.domain[nv_clk_src_gpc] = 468000,
411			.voltage = 6,
412		},
413	},
414	{
415		.base = {
416			.domain[nv_clk_src_gpc] = 540000,
417			.voltage = 7,
418		},
419	},
420	{
421		.base = {
422			.domain[nv_clk_src_gpc] = 612000,
423			.voltage = 8,
424		},
425	},
426	{
427		.base = {
428			.domain[nv_clk_src_gpc] = 648000,
429			.voltage = 9,
430		},
431	},
432	{
433		.base = {
434			.domain[nv_clk_src_gpc] = 684000,
435			.voltage = 10,
436		},
437	},
438	{
439		.base = {
440			.domain[nv_clk_src_gpc] = 708000,
441			.voltage = 11,
442		},
443	},
444	{
445		.base = {
446			.domain[nv_clk_src_gpc] = 756000,
447			.voltage = 12,
448		},
449	},
450	{
451		.base = {
452			.domain[nv_clk_src_gpc] = 804000,
453			.voltage = 13,
454		},
455	},
456	{
457		.base = {
458			.domain[nv_clk_src_gpc] = 852000,
459			.voltage = 14,
460		},
461	},
462};
463
464int
465gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
466{
467	struct gk20a_clk *clk = gk20a_clk(base);
468	struct nvkm_subdev *subdev = &clk->base.subdev;
469	struct nvkm_device *device = subdev->device;
470	struct gk20a_pll pll;
471
472	switch (src) {
473	case nv_clk_src_crystal:
474		return device->crystal;
475	case nv_clk_src_gpc:
476		gk20a_pllg_read_mnp(clk, &pll);
477		return gk20a_pllg_calc_rate(clk, &pll) / GK20A_CLK_GPC_MDIV;
478	default:
479		nvkm_error(subdev, "invalid clock source %d\n", src);
480		return -EINVAL;
481	}
482}
483
484int
485gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
486{
487	struct gk20a_clk *clk = gk20a_clk(base);
488
489	return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
490					 GK20A_CLK_GPC_MDIV, &clk->pll);
491}
492
493int
494gk20a_clk_prog(struct nvkm_clk *base)
495{
496	struct gk20a_clk *clk = gk20a_clk(base);
497	int ret;
498
499	ret = gk20a_pllg_program_mnp_slide(clk, &clk->pll);
500	if (ret)
501		ret = gk20a_pllg_program_mnp(clk, &clk->pll);
502
503	return ret;
504}
505
506void
507gk20a_clk_tidy(struct nvkm_clk *base)
508{
509}
510
511int
512gk20a_clk_setup_slide(struct gk20a_clk *clk)
513{
514	struct nvkm_subdev *subdev = &clk->base.subdev;
515	struct nvkm_device *device = subdev->device;
516	u32 step_a, step_b;
517
518	switch (clk->parent_rate) {
519	case 12000000:
520	case 12800000:
521	case 13000000:
522		step_a = 0x2b;
523		step_b = 0x0b;
524		break;
525	case 19200000:
526		step_a = 0x12;
527		step_b = 0x08;
528		break;
529	case 38400000:
530		step_a = 0x04;
531		step_b = 0x05;
532		break;
533	default:
534		nvkm_error(subdev, "invalid parent clock rate %u KHz",
535			   clk->parent_rate / KHZ);
536		return -EINVAL;
537	}
538
539	nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
540		step_a << GPCPLL_CFG2_PLL_STEPA_SHIFT);
541	nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
542		step_b << GPCPLL_CFG3_PLL_STEPB_SHIFT);
543
544	return 0;
545}
546
547void
548gk20a_clk_fini(struct nvkm_clk *base)
549{
550	struct nvkm_device *device = base->subdev.device;
551	struct gk20a_clk *clk = gk20a_clk(base);
552
553	/* slide to VCO min */
554	if (gk20a_pllg_is_enabled(clk)) {
555		struct gk20a_pll pll;
556		u32 n_lo;
557
558		gk20a_pllg_read_mnp(clk, &pll);
559		n_lo = gk20a_pllg_n_lo(clk, &pll);
560		gk20a_pllg_slide(clk, n_lo);
561	}
562
563	gk20a_pllg_disable(clk);
564
565	/* set IDDQ */
566	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1);
567}
568
569static int
570gk20a_clk_init(struct nvkm_clk *base)
571{
572	struct gk20a_clk *clk = gk20a_clk(base);
573	struct nvkm_subdev *subdev = &clk->base.subdev;
574	struct nvkm_device *device = subdev->device;
575	int ret;
576
577	/* get out from IDDQ */
578	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0);
579	nvkm_rd32(device, GPCPLL_CFG);
580	udelay(5);
581
582	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK,
583		  GPC2CLK_OUT_INIT_VAL);
584
585	ret = gk20a_clk_setup_slide(clk);
586	if (ret)
587		return ret;
588
589	/* Start with lowest frequency */
590	base->func->calc(base, &base->func->pstates[0].base);
591	ret = base->func->prog(&clk->base);
592	if (ret) {
593		nvkm_error(subdev, "cannot initialize clock\n");
594		return ret;
595	}
596
597	return 0;
598}
599
600static const struct nvkm_clk_func
601gk20a_clk = {
602	.init = gk20a_clk_init,
603	.fini = gk20a_clk_fini,
604	.read = gk20a_clk_read,
605	.calc = gk20a_clk_calc,
606	.prog = gk20a_clk_prog,
607	.tidy = gk20a_clk_tidy,
608	.pstates = gk20a_pstates,
609	.nr_pstates = ARRAY_SIZE(gk20a_pstates),
610	.domains = {
611		{ nv_clk_src_crystal, 0xff },
612		{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
613		{ nv_clk_src_max }
614	}
615};
616
617int
618gk20a_clk_ctor(struct nvkm_device *device, int index,
619		const struct nvkm_clk_func *func,
620		const struct gk20a_clk_pllg_params *params,
621		struct gk20a_clk *clk)
622{
623	struct nvkm_device_tegra *tdev = device->func->tegra(device);
624	int ret;
625	int i;
626
627	/* Finish initializing the pstates */
628	for (i = 0; i < func->nr_pstates; i++) {
629		INIT_LIST_HEAD(&func->pstates[i].list);
630		func->pstates[i].pstate = i + 1;
631	}
632
633	clk->params = params;
634	clk->parent_rate = clk_get_rate(tdev->clk);
635
636	ret = nvkm_clk_ctor(func, device, index, true, &clk->base);
637	if (ret)
638		return ret;
639
640	nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n",
641		   clk->parent_rate / KHZ);
642
643	return 0;
644}
645
646int
647gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
648{
649	struct gk20a_clk *clk;
650	int ret;
651
652	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
653	if (!clk)
654		return -ENOMEM;
655	*pclk = &clk->base;
656
657	ret = gk20a_clk_ctor(device, index, &gk20a_clk, &gk20a_pllg_params,
658			      clk);
659
660	clk->pl_to_div = pl_to_div;
661	clk->div_to_pl = div_to_pl;
662
663	return ret;
664}
665