intel_runtime_pm.c revision 1.11
1/*	$NetBSD: intel_runtime_pm.c,v 1.11 2021/12/19 11:49:11 riastradh Exp $	*/
2
3/*
4 * Copyright �� 2012-2014 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
27 *    Daniel Vetter <daniel.vetter@ffwll.ch>
28 *
29 */
30
31#include <sys/cdefs.h>
32__KERNEL_RCSID(0, "$NetBSD: intel_runtime_pm.c,v 1.11 2021/12/19 11:49:11 riastradh Exp $");
33
34#include <linux/pm_runtime.h>
35
36#include <drm/drm_print.h>
37
38#include "i915_drv.h"
39#include "i915_trace.h"
40
41#include <linux/nbsd-namespace.h>
42
43/**
44 * DOC: runtime pm
45 *
46 * The i915 driver supports dynamic enabling and disabling of entire hardware
47 * blocks at runtime. This is especially important on the display side where
48 * software is supposed to control many power gates manually on recent hardware,
49 * since on the GT side a lot of the power management is done by the hardware.
50 * But even there some manual control at the device level is required.
51 *
52 * Since i915 supports a diverse set of platforms with a unified codebase and
53 * hardware engineers just love to shuffle functionality around between power
54 * domains there's a sizeable amount of indirection required. This file provides
55 * generic functions to the driver for grabbing and releasing references for
56 * abstract power domains. It then maps those to the actual power wells
57 * present for a given platform.
58 */
59
60#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
61
62#include <linux/sort.h>
63
64#define STACKDEPTH 8
65
66static noinline depot_stack_handle_t __save_depot_stack(void)
67{
68	unsigned long entries[STACKDEPTH];
69	unsigned int n;
70
71	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
72	return stack_depot_save(entries, n, GFP_NOWAIT | __GFP_NOWARN);
73}
74
75static void __print_depot_stack(depot_stack_handle_t stack,
76				char *buf, int sz, int indent)
77{
78	unsigned long *entries;
79	unsigned int nr_entries;
80
81	nr_entries = stack_depot_fetch(stack, &entries);
82	stack_trace_snprint(buf, sz, entries, nr_entries, indent);
83}
84
85static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
86{
87	spin_lock_init(&rpm->debug.lock);
88}
89
90static noinline depot_stack_handle_t
91track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
92{
93	depot_stack_handle_t stack, *stacks;
94	unsigned long flags;
95
96	if (!rpm->available)
97		return -1;
98
99	stack = __save_depot_stack();
100	if (!stack)
101		return -1;
102
103	spin_lock_irqsave(&rpm->debug.lock, flags);
104
105	if (!rpm->debug.count)
106		rpm->debug.last_acquire = stack;
107
108	stacks = krealloc(rpm->debug.owners,
109			  (rpm->debug.count + 1) * sizeof(*stacks),
110			  GFP_NOWAIT | __GFP_NOWARN);
111	if (stacks) {
112		stacks[rpm->debug.count++] = stack;
113		rpm->debug.owners = stacks;
114	} else {
115		stack = -1;
116	}
117
118	spin_unlock_irqrestore(&rpm->debug.lock, flags);
119
120	return stack;
121}
122
123static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
124					     depot_stack_handle_t stack)
125{
126	unsigned long flags, n;
127	bool found = false;
128
129	if (unlikely(stack == -1))
130		return;
131
132	spin_lock_irqsave(&rpm->debug.lock, flags);
133	for (n = rpm->debug.count; n--; ) {
134		if (rpm->debug.owners[n] == stack) {
135			memmove(rpm->debug.owners + n,
136				rpm->debug.owners + n + 1,
137				(--rpm->debug.count - n) * sizeof(stack));
138			found = true;
139			break;
140		}
141	}
142	spin_unlock_irqrestore(&rpm->debug.lock, flags);
143
144	if (WARN(!found,
145		 "Unmatched wakeref (tracking %lu), count %u\n",
146		 rpm->debug.count, atomic_read(&rpm->wakeref_count))) {
147		char *buf;
148
149		buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN);
150		if (!buf)
151			return;
152
153		__print_depot_stack(stack, buf, PAGE_SIZE, 2);
154		DRM_DEBUG_DRIVER("wakeref %x from\n%s", stack, buf);
155
156		stack = READ_ONCE(rpm->debug.last_release);
157		if (stack) {
158			__print_depot_stack(stack, buf, PAGE_SIZE, 2);
159			DRM_DEBUG_DRIVER("wakeref last released at\n%s", buf);
160		}
161
162		kfree(buf);
163	}
164}
165
166static int cmphandle(const void *_a, const void *_b)
167{
168	const depot_stack_handle_t * const a = _a, * const b = _b;
169
170	if (*a < *b)
171		return -1;
172	else if (*a > *b)
173		return 1;
174	else
175		return 0;
176}
177
178static void
179__print_intel_runtime_pm_wakeref(struct drm_printer *p,
180				 const struct intel_runtime_pm_debug *dbg)
181{
182	unsigned long i;
183	char *buf;
184
185	buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN);
186	if (!buf)
187		return;
188
189	if (dbg->last_acquire) {
190		__print_depot_stack(dbg->last_acquire, buf, PAGE_SIZE, 2);
191		drm_printf(p, "Wakeref last acquired:\n%s", buf);
192	}
193
194	if (dbg->last_release) {
195		__print_depot_stack(dbg->last_release, buf, PAGE_SIZE, 2);
196		drm_printf(p, "Wakeref last released:\n%s", buf);
197	}
198
199	drm_printf(p, "Wakeref count: %lu\n", dbg->count);
200
201	sort(dbg->owners, dbg->count, sizeof(*dbg->owners), cmphandle, NULL);
202
203	for (i = 0; i < dbg->count; i++) {
204		depot_stack_handle_t stack = dbg->owners[i];
205		unsigned long rep;
206
207		rep = 1;
208		while (i + 1 < dbg->count && dbg->owners[i + 1] == stack)
209			rep++, i++;
210		__print_depot_stack(stack, buf, PAGE_SIZE, 2);
211		drm_printf(p, "Wakeref x%lu taken at:\n%s", rep, buf);
212	}
213
214	kfree(buf);
215}
216
217static noinline void
218__untrack_all_wakerefs(struct intel_runtime_pm_debug *debug,
219		       struct intel_runtime_pm_debug *saved)
220{
221	*saved = *debug;
222
223	debug->owners = NULL;
224	debug->count = 0;
225	debug->last_release = __save_depot_stack();
226}
227
228static void
229dump_and_free_wakeref_tracking(struct intel_runtime_pm_debug *debug)
230{
231	if (debug->count) {
232		struct drm_printer p = drm_debug_printer("i915");
233
234		__print_intel_runtime_pm_wakeref(&p, debug);
235	}
236
237	kfree(debug->owners);
238}
239
240static noinline void
241__intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm)
242{
243	struct intel_runtime_pm_debug dbg = {};
244	unsigned long flags;
245
246	if (!atomic_dec_and_lock_irqsave(&rpm->wakeref_count,
247					 &rpm->debug.lock,
248					 flags))
249		return;
250
251	__untrack_all_wakerefs(&rpm->debug, &dbg);
252	spin_unlock_irqrestore(&rpm->debug.lock, flags);
253
254	dump_and_free_wakeref_tracking(&dbg);
255}
256
257static noinline void
258untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm)
259{
260	struct intel_runtime_pm_debug dbg = {};
261	unsigned long flags;
262
263	spin_lock_irqsave(&rpm->debug.lock, flags);
264	__untrack_all_wakerefs(&rpm->debug, &dbg);
265	spin_unlock_irqrestore(&rpm->debug.lock, flags);
266
267	dump_and_free_wakeref_tracking(&dbg);
268}
269
270void print_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
271				    struct drm_printer *p)
272{
273	struct intel_runtime_pm_debug dbg = {};
274
275	do {
276		unsigned long alloc = dbg.count;
277		depot_stack_handle_t *s;
278
279		spin_lock_irq(&rpm->debug.lock);
280		dbg.count = rpm->debug.count;
281		if (dbg.count <= alloc) {
282			memcpy(dbg.owners,
283			       rpm->debug.owners,
284			       dbg.count * sizeof(*s));
285		}
286		dbg.last_acquire = rpm->debug.last_acquire;
287		dbg.last_release = rpm->debug.last_release;
288		spin_unlock_irq(&rpm->debug.lock);
289		if (dbg.count <= alloc)
290			break;
291
292		s = krealloc(dbg.owners,
293			     dbg.count * sizeof(*s),
294			     GFP_NOWAIT | __GFP_NOWARN);
295		if (!s)
296			goto out;
297
298		dbg.owners = s;
299	} while (1);
300
301	__print_intel_runtime_pm_wakeref(p, &dbg);
302
303out:
304	kfree(dbg.owners);
305}
306
307#else
308
309static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
310{
311}
312
313static depot_stack_handle_t
314track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
315{
316	return -1;
317}
318
319static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
320					     intel_wakeref_t wref)
321{
322}
323
324static void
325__intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm)
326{
327	atomic_dec(&rpm->wakeref_count);
328}
329
330static void
331untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm)
332{
333}
334
335#endif
336
337static void
338intel_runtime_pm_acquire(struct intel_runtime_pm *rpm, bool wakelock)
339{
340	if (wakelock) {
341		atomic_add(1 + INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count);
342		assert_rpm_wakelock_held(rpm);
343	} else {
344		atomic_inc(&rpm->wakeref_count);
345		assert_rpm_raw_wakeref_held(rpm);
346	}
347}
348
349static void
350intel_runtime_pm_release(struct intel_runtime_pm *rpm, int wakelock)
351{
352	if (wakelock) {
353		assert_rpm_wakelock_held(rpm);
354		atomic_sub(INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count);
355	} else {
356		assert_rpm_raw_wakeref_held(rpm);
357	}
358
359	__intel_wakeref_dec_and_check_tracking(rpm);
360}
361
362static intel_wakeref_t __intel_runtime_pm_get(struct intel_runtime_pm *rpm,
363					      bool wakelock)
364{
365	int ret;
366
367	ret = pm_runtime_get_sync(rpm->kdev);
368	WARN_ONCE(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
369
370	intel_runtime_pm_acquire(rpm, wakelock);
371
372	return track_intel_runtime_pm_wakeref(rpm);
373}
374
375/**
376 * intel_runtime_pm_get_raw - grab a raw runtime pm reference
377 * @rpm: the intel_runtime_pm structure
378 *
379 * This is the unlocked version of intel_display_power_is_enabled() and should
380 * only be used from error capture and recovery code where deadlocks are
381 * possible.
382 * This function grabs a device-level runtime pm reference (mostly used for
383 * asynchronous PM management from display code) and ensures that it is powered
384 * up. Raw references are not considered during wakelock assert checks.
385 *
386 * Any runtime pm reference obtained by this function must have a symmetric
387 * call to intel_runtime_pm_put_raw() to release the reference again.
388 *
389 * Returns: the wakeref cookie to pass to intel_runtime_pm_put_raw(), evaluates
390 * as True if the wakeref was acquired, or False otherwise.
391 */
392intel_wakeref_t intel_runtime_pm_get_raw(struct intel_runtime_pm *rpm)
393{
394	return __intel_runtime_pm_get(rpm, false);
395}
396
397/**
398 * intel_runtime_pm_get - grab a runtime pm reference
399 * @rpm: the intel_runtime_pm structure
400 *
401 * This function grabs a device-level runtime pm reference (mostly used for GEM
402 * code to ensure the GTT or GT is on) and ensures that it is powered up.
403 *
404 * Any runtime pm reference obtained by this function must have a symmetric
405 * call to intel_runtime_pm_put() to release the reference again.
406 *
407 * Returns: the wakeref cookie to pass to intel_runtime_pm_put()
408 */
409intel_wakeref_t intel_runtime_pm_get(struct intel_runtime_pm *rpm)
410{
411	return __intel_runtime_pm_get(rpm, true);
412}
413
414/**
415 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
416 * @rpm: the intel_runtime_pm structure
417 *
418 * This function grabs a device-level runtime pm reference if the device is
419 * already in use and ensures that it is powered up. It is illegal to try
420 * and access the HW should intel_runtime_pm_get_if_in_use() report failure.
421 *
422 * Any runtime pm reference obtained by this function must have a symmetric
423 * call to intel_runtime_pm_put() to release the reference again.
424 *
425 * Returns: the wakeref cookie to pass to intel_runtime_pm_put(), evaluates
426 * as True if the wakeref was acquired, or False otherwise.
427 */
428intel_wakeref_t intel_runtime_pm_get_if_in_use(struct intel_runtime_pm *rpm)
429{
430	if (IS_ENABLED(CONFIG_PM)) {
431		/*
432		 * In cases runtime PM is disabled by the RPM core and we get
433		 * an -EINVAL return value we are not supposed to call this
434		 * function, since the power state is undefined. This applies
435		 * atm to the late/early system suspend/resume handlers.
436		 */
437		if (pm_runtime_get_if_in_use(rpm->kdev) <= 0)
438			return 0;
439	}
440
441	intel_runtime_pm_acquire(rpm, true);
442
443	return track_intel_runtime_pm_wakeref(rpm);
444}
445
446/**
447 * intel_runtime_pm_get_noresume - grab a runtime pm reference
448 * @rpm: the intel_runtime_pm structure
449 *
450 * This function grabs a device-level runtime pm reference (mostly used for GEM
451 * code to ensure the GTT or GT is on).
452 *
453 * It will _not_ power up the device but instead only check that it's powered
454 * on.  Therefore it is only valid to call this functions from contexts where
455 * the device is known to be powered up and where trying to power it up would
456 * result in hilarity and deadlocks. That pretty much means only the system
457 * suspend/resume code where this is used to grab runtime pm references for
458 * delayed setup down in work items.
459 *
460 * Any runtime pm reference obtained by this function must have a symmetric
461 * call to intel_runtime_pm_put() to release the reference again.
462 *
463 * Returns: the wakeref cookie to pass to intel_runtime_pm_put()
464 */
465intel_wakeref_t intel_runtime_pm_get_noresume(struct intel_runtime_pm *rpm)
466{
467	assert_rpm_wakelock_held(rpm);
468	pm_runtime_get_noresume(rpm->kdev);
469
470	intel_runtime_pm_acquire(rpm, true);
471
472	return track_intel_runtime_pm_wakeref(rpm);
473}
474
475static void __intel_runtime_pm_put(struct intel_runtime_pm *rpm,
476				   intel_wakeref_t wref,
477				   bool wakelock)
478{
479	struct device *kdev = rpm->kdev;
480
481	untrack_intel_runtime_pm_wakeref(rpm, wref);
482
483	intel_runtime_pm_release(rpm, wakelock);
484
485	pm_runtime_mark_last_busy(kdev);
486	pm_runtime_put_autosuspend(kdev);
487}
488
489/**
490 * intel_runtime_pm_put_raw - release a raw runtime pm reference
491 * @rpm: the intel_runtime_pm structure
492 * @wref: wakeref acquired for the reference that is being released
493 *
494 * This function drops the device-level runtime pm reference obtained by
495 * intel_runtime_pm_get_raw() and might power down the corresponding
496 * hardware block right away if this is the last reference.
497 */
498void
499intel_runtime_pm_put_raw(struct intel_runtime_pm *rpm, intel_wakeref_t wref)
500{
501	__intel_runtime_pm_put(rpm, wref, false);
502}
503
504/**
505 * intel_runtime_pm_put_unchecked - release an unchecked runtime pm reference
506 * @rpm: the intel_runtime_pm structure
507 *
508 * This function drops the device-level runtime pm reference obtained by
509 * intel_runtime_pm_get() and might power down the corresponding
510 * hardware block right away if this is the last reference.
511 *
512 * This function exists only for historical reasons and should be avoided in
513 * new code, as the correctness of its use cannot be checked. Always use
514 * intel_runtime_pm_put() instead.
515 */
516void intel_runtime_pm_put_unchecked(struct intel_runtime_pm *rpm)
517{
518	__intel_runtime_pm_put(rpm, -1, true);
519}
520
521#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
522/**
523 * intel_runtime_pm_put - release a runtime pm reference
524 * @rpm: the intel_runtime_pm structure
525 * @wref: wakeref acquired for the reference that is being released
526 *
527 * This function drops the device-level runtime pm reference obtained by
528 * intel_runtime_pm_get() and might power down the corresponding
529 * hardware block right away if this is the last reference.
530 */
531void intel_runtime_pm_put(struct intel_runtime_pm *rpm, intel_wakeref_t wref)
532{
533	__intel_runtime_pm_put(rpm, wref, true);
534}
535#endif
536
537/**
538 * intel_runtime_pm_enable - enable runtime pm
539 * @rpm: the intel_runtime_pm structure
540 *
541 * This function enables runtime pm at the end of the driver load sequence.
542 *
543 * Note that this function does currently not enable runtime pm for the
544 * subordinate display power domains. That is done by
545 * intel_power_domains_enable().
546 */
547void intel_runtime_pm_enable(struct intel_runtime_pm *rpm)
548{
549	struct device *kdev = rpm->kdev;
550
551	/*
552	 * Disable the system suspend direct complete optimization, which can
553	 * leave the device suspended skipping the driver's suspend handlers
554	 * if the device was already runtime suspended. This is needed due to
555	 * the difference in our runtime and system suspend sequence and
556	 * becaue the HDA driver may require us to enable the audio power
557	 * domain during system suspend.
558	 */
559	dev_pm_set_driver_flags(kdev, DPM_FLAG_NEVER_SKIP);
560
561	pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
562	pm_runtime_mark_last_busy(kdev);
563
564	/*
565	 * Take a permanent reference to disable the RPM functionality and drop
566	 * it only when unloading the driver. Use the low level get/put helpers,
567	 * so the driver's own RPM reference tracking asserts also work on
568	 * platforms without RPM support.
569	 */
570	if (!rpm->available) {
571		int ret;
572
573		pm_runtime_dont_use_autosuspend(kdev);
574		ret = pm_runtime_get_sync(kdev);
575		WARN(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
576	} else {
577		pm_runtime_use_autosuspend(kdev);
578	}
579
580	/*
581	 * The core calls the driver load handler with an RPM reference held.
582	 * We drop that here and will reacquire it during unloading in
583	 * intel_power_domains_fini().
584	 */
585	pm_runtime_put_autosuspend(kdev);
586}
587
588void intel_runtime_pm_disable(struct intel_runtime_pm *rpm)
589{
590	struct device *kdev = rpm->kdev;
591
592	/* Transfer rpm ownership back to core */
593	WARN(pm_runtime_get_sync(kdev) < 0,
594	     "Failed to pass rpm ownership back to core\n");
595
596	pm_runtime_dont_use_autosuspend(kdev);
597
598	if (!rpm->available)
599		pm_runtime_put(kdev);
600}
601
602void intel_runtime_pm_driver_release(struct intel_runtime_pm *rpm)
603{
604	int count = atomic_read(&rpm->wakeref_count);
605
606	WARN(count,
607	     "i915 raw-wakerefs=%d wakelocks=%d on cleanup\n",
608	     intel_rpm_raw_wakeref_count(count),
609	     intel_rpm_wakelock_count(count));
610
611	untrack_all_intel_runtime_pm_wakerefs(rpm);
612}
613
614void intel_runtime_pm_init_early(struct intel_runtime_pm *rpm)
615{
616	struct drm_i915_private *i915 =
617			container_of(rpm, struct drm_i915_private, runtime_pm);
618	struct pci_dev *pdev = i915->drm.pdev;
619	struct device *kdev = pci_dev_dev(pdev);
620
621	rpm->kdev = kdev;
622	rpm->available = HAS_RUNTIME_PM(i915);
623
624	init_intel_runtime_pm_wakeref(rpm);
625}
626