1/*	$NetBSD: i915_gem_fence_reg.c,v 1.6 2021/12/19 11:33:49 riastradh Exp $	*/
2
3/*
4 * Copyright �� 2008-2015 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 */
25
26#include <sys/cdefs.h>
27__KERNEL_RCSID(0, "$NetBSD: i915_gem_fence_reg.c,v 1.6 2021/12/19 11:33:49 riastradh Exp $");
28
29#include <linux/bitmap.h>
30#include <drm/i915_drm.h>
31
32#include "i915_drv.h"
33#include "i915_scatterlist.h"
34#include "i915_vgpu.h"
35
36/**
37 * DOC: fence register handling
38 *
39 * Important to avoid confusions: "fences" in the i915 driver are not execution
40 * fences used to track command completion but hardware detiler objects which
41 * wrap a given range of the global GTT. Each platform has only a fairly limited
42 * set of these objects.
43 *
44 * Fences are used to detile GTT memory mappings. They're also connected to the
45 * hardware frontbuffer render tracking and hence interact with frontbuffer
46 * compression. Furthermore on older platforms fences are required for tiled
47 * objects used by the display engine. They can also be used by the render
48 * engine - they're required for blitter commands and are optional for render
49 * commands. But on gen4+ both display (with the exception of fbc) and rendering
50 * have their own tiling state bits and don't need fences.
51 *
52 * Also note that fences only support X and Y tiling and hence can't be used for
53 * the fancier new tiling formats like W, Ys and Yf.
54 *
55 * Finally note that because fences are such a restricted resource they're
56 * dynamically associated with objects. Furthermore fence state is committed to
57 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
58 * explicitly call i915_gem_object_get_fence() to synchronize fencing status
59 * for cpu access. Also note that some code wants an unfenced view, for those
60 * cases the fence can be removed forcefully with i915_gem_object_put_fence().
61 *
62 * Internally these functions will synchronize with userspace access by removing
63 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
64 */
65
66#define pipelined 0
67
68static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
69{
70	return fence->ggtt->vm.i915;
71}
72
73static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
74{
75	return fence->ggtt->vm.gt->uncore;
76}
77
78static void i965_write_fence_reg(struct i915_fence_reg *fence,
79				 struct i915_vma *vma)
80{
81	i915_reg_t fence_reg_lo, fence_reg_hi;
82	int fence_pitch_shift;
83	u64 val;
84
85	if (INTEL_GEN(fence_to_i915(fence)) >= 6) {
86		fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
87		fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
88		fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
89
90	} else {
91		fence_reg_lo = FENCE_REG_965_LO(fence->id);
92		fence_reg_hi = FENCE_REG_965_HI(fence->id);
93		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
94	}
95
96	val = 0;
97	if (vma) {
98		unsigned int stride = i915_gem_object_get_stride(vma->obj);
99
100		GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
101		GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
102		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
103		GEM_BUG_ON(!IS_ALIGNED(stride, 128));
104
105		val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
106		val |= vma->node.start;
107		val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
108		if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
109			val |= BIT(I965_FENCE_TILING_Y_SHIFT);
110		val |= I965_FENCE_REG_VALID;
111	}
112
113	if (!pipelined) {
114		struct intel_uncore *uncore = fence_to_uncore(fence);
115
116		/*
117		 * To w/a incoherency with non-atomic 64-bit register updates,
118		 * we split the 64-bit update into two 32-bit writes. In order
119		 * for a partial fence not to be evaluated between writes, we
120		 * precede the update with write to turn off the fence register,
121		 * and only enable the fence as the last step.
122		 *
123		 * For extra levels of paranoia, we make sure each step lands
124		 * before applying the next step.
125		 */
126		intel_uncore_write_fw(uncore, fence_reg_lo, 0);
127		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
128
129		intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
130		intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
131		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
132	}
133}
134
135static void i915_write_fence_reg(struct i915_fence_reg *fence,
136				 struct i915_vma *vma)
137{
138	u32 val;
139
140	val = 0;
141	if (vma) {
142		unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
143		bool is_y_tiled = tiling == I915_TILING_Y;
144		unsigned int stride = i915_gem_object_get_stride(vma->obj);
145
146		GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
147		GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
148		GEM_BUG_ON(!is_power_of_2(vma->fence_size));
149		GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
150
151		if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
152			stride /= 128;
153		else
154			stride /= 512;
155		GEM_BUG_ON(!is_power_of_2(stride));
156
157		val = vma->node.start;
158		if (is_y_tiled)
159			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
160		val |= I915_FENCE_SIZE_BITS(vma->fence_size);
161		val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
162
163		val |= I830_FENCE_REG_VALID;
164	}
165
166	if (!pipelined) {
167		struct intel_uncore *uncore = fence_to_uncore(fence);
168		i915_reg_t reg = FENCE_REG(fence->id);
169
170		intel_uncore_write_fw(uncore, reg, val);
171		intel_uncore_posting_read_fw(uncore, reg);
172	}
173}
174
175static void i830_write_fence_reg(struct i915_fence_reg *fence,
176				 struct i915_vma *vma)
177{
178	u32 val;
179
180	val = 0;
181	if (vma) {
182		unsigned int stride = i915_gem_object_get_stride(vma->obj);
183
184		GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
185		GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
186		GEM_BUG_ON(!is_power_of_2(vma->fence_size));
187		GEM_BUG_ON(!is_power_of_2(stride / 128));
188		GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
189
190		val = vma->node.start;
191		if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
192			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
193		val |= I830_FENCE_SIZE_BITS(vma->fence_size);
194		val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
195		val |= I830_FENCE_REG_VALID;
196	}
197
198	if (!pipelined) {
199		struct intel_uncore *uncore = fence_to_uncore(fence);
200		i915_reg_t reg = FENCE_REG(fence->id);
201
202		intel_uncore_write_fw(uncore, reg, val);
203		intel_uncore_posting_read_fw(uncore, reg);
204	}
205}
206
207static void fence_write(struct i915_fence_reg *fence,
208			struct i915_vma *vma)
209{
210	struct drm_i915_private *i915 = fence_to_i915(fence);
211
212	/*
213	 * Previous access through the fence register is marshalled by
214	 * the mb() inside the fault handlers (i915_gem_release_mmaps)
215	 * and explicitly managed for internal users.
216	 */
217
218	if (IS_GEN(i915, 2))
219		i830_write_fence_reg(fence, vma);
220	else if (IS_GEN(i915, 3))
221		i915_write_fence_reg(fence, vma);
222	else
223		i965_write_fence_reg(fence, vma);
224
225	/*
226	 * Access through the fenced region afterwards is
227	 * ordered by the posting reads whilst writing the registers.
228	 */
229
230	fence->dirty = false;
231}
232
233static int fence_update(struct i915_fence_reg *fence,
234			struct i915_vma *vma)
235{
236	struct i915_ggtt *ggtt = fence->ggtt;
237	struct intel_uncore *uncore = fence_to_uncore(fence);
238	intel_wakeref_t wakeref;
239	struct i915_vma *old;
240	int ret;
241
242	if (vma) {
243		if (!i915_vma_is_map_and_fenceable(vma))
244			return -EINVAL;
245
246		if (WARN(!i915_gem_object_get_stride(vma->obj) ||
247			 !i915_gem_object_get_tiling(vma->obj),
248			 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
249			 i915_gem_object_get_stride(vma->obj),
250			 i915_gem_object_get_tiling(vma->obj)))
251			return -EINVAL;
252
253		ret = i915_vma_sync(vma);
254		if (ret)
255			return ret;
256	}
257
258	old = xchg(&fence->vma, NULL);
259	if (old) {
260		/* XXX Ideally we would move the waiting to outside the mutex */
261		ret = i915_vma_sync(old);
262		if (ret) {
263			fence->vma = old;
264			return ret;
265		}
266
267		i915_vma_flush_writes(old);
268
269		/*
270		 * Ensure that all userspace CPU access is completed before
271		 * stealing the fence.
272		 */
273		if (old != vma) {
274			GEM_BUG_ON(old->fence != fence);
275			i915_vma_revoke_mmap(old);
276			old->fence = NULL;
277		}
278
279		list_move(&fence->link, &ggtt->fence_list);
280	}
281
282	/*
283	 * We only need to update the register itself if the device is awake.
284	 * If the device is currently powered down, we will defer the write
285	 * to the runtime resume, see i915_gem_restore_fences().
286	 *
287	 * This only works for removing the fence register, on acquisition
288	 * the caller must hold the rpm wakeref. The fence register must
289	 * be cleared before we can use any other fences to ensure that
290	 * the new fences do not overlap the elided clears, confusing HW.
291	 */
292	wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
293	if (!wakeref) {
294		GEM_BUG_ON(vma);
295		return 0;
296	}
297
298	WRITE_ONCE(fence->vma, vma);
299	fence_write(fence, vma);
300
301	if (vma) {
302		vma->fence = fence;
303		list_move_tail(&fence->link, &ggtt->fence_list);
304	}
305
306	intel_runtime_pm_put(uncore->rpm, wakeref);
307	return 0;
308}
309
310/**
311 * i915_vma_revoke_fence - force-remove fence for a VMA
312 * @vma: vma to map linearly (not through a fence reg)
313 *
314 * This function force-removes any fence from the given object, which is useful
315 * if the kernel wants to do untiled GTT access.
316 *
317 * Returns:
318 *
319 * 0 on success, negative error code on failure.
320 */
321int i915_vma_revoke_fence(struct i915_vma *vma)
322{
323	struct i915_fence_reg *fence = vma->fence;
324
325	lockdep_assert_held(&vma->vm->mutex);
326	if (!fence)
327		return 0;
328
329	if (atomic_read(&fence->pin_count))
330		return -EBUSY;
331
332	return fence_update(fence, NULL);
333}
334
335static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
336{
337	struct i915_fence_reg *fence;
338
339	list_for_each_entry(fence, &ggtt->fence_list, link) {
340		GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
341
342		if (atomic_read(&fence->pin_count))
343			continue;
344
345		return fence;
346	}
347
348	/* Wait for completion of pending flips which consume fences */
349	if (intel_has_pending_fb_unpin(ggtt->vm.i915))
350		return ERR_PTR(-EAGAIN);
351
352	return ERR_PTR(-EDEADLK);
353}
354
355int __i915_vma_pin_fence(struct i915_vma *vma)
356{
357	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
358	struct i915_fence_reg *fence;
359	struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
360	int err;
361
362	lockdep_assert_held(&vma->vm->mutex);
363
364	/* Just update our place in the LRU if our fence is getting reused. */
365	if (vma->fence) {
366		fence = vma->fence;
367		GEM_BUG_ON(fence->vma != vma);
368		atomic_inc(&fence->pin_count);
369		if (!fence->dirty) {
370			list_move_tail(&fence->link, &ggtt->fence_list);
371			return 0;
372		}
373	} else if (set) {
374		fence = fence_find(ggtt);
375		if (IS_ERR(fence))
376			return PTR_ERR(fence);
377
378		GEM_BUG_ON(atomic_read(&fence->pin_count));
379		atomic_inc(&fence->pin_count);
380	} else {
381		return 0;
382	}
383
384	err = fence_update(fence, set);
385	if (err)
386		goto out_unpin;
387
388	GEM_BUG_ON(fence->vma != set);
389	GEM_BUG_ON(vma->fence != (set ? fence : NULL));
390
391	if (set)
392		return 0;
393
394out_unpin:
395	atomic_dec(&fence->pin_count);
396	return err;
397}
398
399/**
400 * i915_vma_pin_fence - set up fencing for a vma
401 * @vma: vma to map through a fence reg
402 *
403 * When mapping objects through the GTT, userspace wants to be able to write
404 * to them without having to worry about swizzling if the object is tiled.
405 * This function walks the fence regs looking for a free one for @obj,
406 * stealing one if it can't find any.
407 *
408 * It then sets up the reg based on the object's properties: address, pitch
409 * and tiling format.
410 *
411 * For an untiled surface, this removes any existing fence.
412 *
413 * Returns:
414 *
415 * 0 on success, negative error code on failure.
416 */
417int i915_vma_pin_fence(struct i915_vma *vma)
418{
419	int err;
420
421	if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
422		return 0;
423
424	/*
425	 * Note that we revoke fences on runtime suspend. Therefore the user
426	 * must keep the device awake whilst using the fence.
427	 */
428	assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
429	GEM_BUG_ON(!i915_vma_is_pinned(vma));
430	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
431
432	err = mutex_lock_interruptible(&vma->vm->mutex);
433	if (err)
434		return err;
435
436	err = __i915_vma_pin_fence(vma);
437	mutex_unlock(&vma->vm->mutex);
438
439	return err;
440}
441
442/**
443 * i915_reserve_fence - Reserve a fence for vGPU
444 * @ggtt: Global GTT
445 *
446 * This function walks the fence regs looking for a free one and remove
447 * it from the fence_list. It is used to reserve fence for vGPU to use.
448 */
449struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
450{
451	struct i915_fence_reg *fence;
452	int count;
453	int ret;
454
455	lockdep_assert_held(&ggtt->vm.mutex);
456
457	/* Keep at least one fence available for the display engine. */
458	count = 0;
459	list_for_each_entry(fence, &ggtt->fence_list, link)
460		count += !atomic_read(&fence->pin_count);
461	if (count <= 1)
462		return ERR_PTR(-ENOSPC);
463
464	fence = fence_find(ggtt);
465	if (IS_ERR(fence))
466		return fence;
467
468	if (fence->vma) {
469		/* Force-remove fence from VMA */
470		ret = fence_update(fence, NULL);
471		if (ret)
472			return ERR_PTR(ret);
473	}
474
475	list_del(&fence->link);
476
477	return fence;
478}
479
480/**
481 * i915_unreserve_fence - Reclaim a reserved fence
482 * @fence: the fence reg
483 *
484 * This function add a reserved fence register from vGPU to the fence_list.
485 */
486void i915_unreserve_fence(struct i915_fence_reg *fence)
487{
488	struct i915_ggtt *ggtt = fence->ggtt;
489
490	lockdep_assert_held(&ggtt->vm.mutex);
491
492	list_add(&fence->link, &ggtt->fence_list);
493}
494
495/**
496 * i915_gem_restore_fences - restore fence state
497 * @ggtt: Global GTT
498 *
499 * Restore the hw fence state to match the software tracking again, to be called
500 * after a gpu reset and on resume. Note that on runtime suspend we only cancel
501 * the fences, to be reacquired by the user later.
502 */
503void i915_gem_restore_fences(struct i915_ggtt *ggtt)
504{
505	int i;
506
507	rcu_read_lock(); /* keep obj alive as we dereference */
508	for (i = 0; i < ggtt->num_fences; i++) {
509		struct i915_fence_reg *reg = &ggtt->fence_regs[i];
510		struct i915_vma *vma = READ_ONCE(reg->vma);
511
512		GEM_BUG_ON(vma && vma->fence != reg);
513
514		/*
515		 * Commit delayed tiling changes if we have an object still
516		 * attached to the fence, otherwise just clear the fence.
517		 */
518		if (vma && !i915_gem_object_is_tiled(vma->obj))
519			vma = NULL;
520
521		fence_write(reg, vma);
522	}
523	rcu_read_unlock();
524}
525
526/**
527 * DOC: tiling swizzling details
528 *
529 * The idea behind tiling is to increase cache hit rates by rearranging
530 * pixel data so that a group of pixel accesses are in the same cacheline.
531 * Performance improvement from doing this on the back/depth buffer are on
532 * the order of 30%.
533 *
534 * Intel architectures make this somewhat more complicated, though, by
535 * adjustments made to addressing of data when the memory is in interleaved
536 * mode (matched pairs of DIMMS) to improve memory bandwidth.
537 * For interleaved memory, the CPU sends every sequential 64 bytes
538 * to an alternate memory channel so it can get the bandwidth from both.
539 *
540 * The GPU also rearranges its accesses for increased bandwidth to interleaved
541 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
542 * it does it a little differently, since one walks addresses not just in the
543 * X direction but also Y.  So, along with alternating channels when bit
544 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
545 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
546 * are common to both the 915 and 965-class hardware.
547 *
548 * The CPU also sometimes XORs in higher bits as well, to improve
549 * bandwidth doing strided access like we do so frequently in graphics.  This
550 * is called "Channel XOR Randomization" in the MCH documentation.  The result
551 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
552 * decode.
553 *
554 * All of this bit 6 XORing has an effect on our memory management,
555 * as we need to make sure that the 3d driver can correctly address object
556 * contents.
557 *
558 * If we don't have interleaved memory, all tiling is safe and no swizzling is
559 * required.
560 *
561 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
562 * 17 is not just a page offset, so as we page an object out and back in,
563 * individual pages in it will have different bit 17 addresses, resulting in
564 * each 64 bytes being swapped with its neighbor!
565 *
566 * Otherwise, if interleaved, we have to tell the 3d driver what the address
567 * swizzling it needs to do is, since it's writing with the CPU to the pages
568 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
569 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
570 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
571 * to match what the GPU expects.
572 */
573
574/**
575 * detect_bit_6_swizzle - detect bit 6 swizzling pattern
576 * @ggtt: Global GGTT
577 *
578 * Detects bit 6 swizzling of address lookup between IGD access and CPU
579 * access through main memory.
580 */
581static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
582{
583	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
584	struct drm_i915_private *i915 = ggtt->vm.i915;
585	u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
586	u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
587
588	if (INTEL_GEN(i915) >= 8 || IS_VALLEYVIEW(i915)) {
589		/*
590		 * On BDW+, swizzling is not used. We leave the CPU memory
591		 * controller in charge of optimizing memory accesses without
592		 * the extra address manipulation GPU side.
593		 *
594		 * VLV and CHV don't have GPU swizzling.
595		 */
596		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
597		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
598	} else if (INTEL_GEN(i915) >= 6) {
599		if (i915->preserve_bios_swizzle) {
600			if (intel_uncore_read(uncore, DISP_ARB_CTL) &
601			    DISP_TILE_SURFACE_SWIZZLING) {
602				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
603				swizzle_y = I915_BIT_6_SWIZZLE_9;
604			} else {
605				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
606				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
607			}
608		} else {
609			u32 dimm_c0, dimm_c1;
610			dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
611			dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
612			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
613			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
614			/*
615			 * Enable swizzling when the channels are populated
616			 * with identically sized dimms. We don't need to check
617			 * the 3rd channel because no cpu with gpu attached
618			 * ships in that configuration. Also, swizzling only
619			 * makes sense for 2 channels anyway.
620			 */
621			if (dimm_c0 == dimm_c1) {
622				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
623				swizzle_y = I915_BIT_6_SWIZZLE_9;
624			} else {
625				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
626				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
627			}
628		}
629	} else if (IS_GEN(i915, 5)) {
630		/*
631		 * On Ironlake whatever DRAM config, GPU always do
632		 * same swizzling setup.
633		 */
634		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
635		swizzle_y = I915_BIT_6_SWIZZLE_9;
636	} else if (IS_GEN(i915, 2)) {
637		/*
638		 * As far as we know, the 865 doesn't have these bit 6
639		 * swizzling issues.
640		 */
641		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
642		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
643	} else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
644		/*
645		 * The 965, G33, and newer, have a very flexible memory
646		 * configuration.  It will enable dual-channel mode
647		 * (interleaving) on as much memory as it can, and the GPU
648		 * will additionally sometimes enable different bit 6
649		 * swizzling for tiled objects from the CPU.
650		 *
651		 * Here's what I found on the G965:
652		 *    slot fill         memory size  swizzling
653		 * 0A   0B   1A   1B    1-ch   2-ch
654		 * 512  0    0    0     512    0     O
655		 * 512  0    512  0     16     1008  X
656		 * 512  0    0    512   16     1008  X
657		 * 0    512  0    512   16     1008  X
658		 * 1024 1024 1024 0     2048   1024  O
659		 *
660		 * We could probably detect this based on either the DRB
661		 * matching, which was the case for the swizzling required in
662		 * the table above, or from the 1-ch value being less than
663		 * the minimum size of a rank.
664		 *
665		 * Reports indicate that the swizzling actually
666		 * varies depending upon page placement inside the
667		 * channels, i.e. we see swizzled pages where the
668		 * banks of memory are paired and unswizzled on the
669		 * uneven portion, so leave that as unknown.
670		 */
671		if (intel_uncore_read(uncore, C0DRB3) ==
672		    intel_uncore_read(uncore, C1DRB3)) {
673			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
674			swizzle_y = I915_BIT_6_SWIZZLE_9;
675		}
676	} else {
677		u32 dcc = intel_uncore_read(uncore, DCC);
678
679		/*
680		 * On 9xx chipsets, channel interleave by the CPU is
681		 * determined by DCC.  For single-channel, neither the CPU
682		 * nor the GPU do swizzling.  For dual channel interleaved,
683		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
684		 * 9 for Y tiled.  The CPU's interleave is independent, and
685		 * can be based on either bit 11 (haven't seen this yet) or
686		 * bit 17 (common).
687		 */
688		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
689		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
690		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
691			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
692			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
693			break;
694		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
695			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
696				/*
697				 * This is the base swizzling by the GPU for
698				 * tiled buffers.
699				 */
700				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
701				swizzle_y = I915_BIT_6_SWIZZLE_9;
702			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
703				/* Bit 11 swizzling by the CPU in addition. */
704				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
705				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
706			} else {
707				/* Bit 17 swizzling by the CPU in addition. */
708				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
709				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
710			}
711			break;
712		}
713
714		/* check for L-shaped memory aka modified enhanced addressing */
715		if (IS_GEN(i915, 4) &&
716		    !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
717			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
718			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
719		}
720
721		if (dcc == 0xffffffff) {
722			DRM_ERROR("Couldn't read from MCHBAR.  "
723				  "Disabling tiling.\n");
724			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
725			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
726		}
727	}
728
729	if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
730	    swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
731		/*
732		 * Userspace likes to explode if it sees unknown swizzling,
733		 * so lie. We will finish the lie when reporting through
734		 * the get-tiling-ioctl by reporting the physical swizzle
735		 * mode as unknown instead.
736		 *
737		 * As we don't strictly know what the swizzling is, it may be
738		 * bit17 dependent, and so we need to also prevent the pages
739		 * from being moved.
740		 */
741		i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
742		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
743		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
744	}
745
746	i915->ggtt.bit_6_swizzle_x = swizzle_x;
747	i915->ggtt.bit_6_swizzle_y = swizzle_y;
748}
749
750/*
751 * Swap every 64 bytes of this page around, to account for it having a new
752 * bit 17 of its physical address and therefore being interpreted differently
753 * by the GPU.
754 */
755static void i915_gem_swizzle_page(struct page *page)
756{
757	char temp[64];
758	char *vaddr;
759	int i;
760
761	vaddr = kmap(page);
762
763	for (i = 0; i < PAGE_SIZE; i += 128) {
764		memcpy(temp, &vaddr[i], 64);
765		memcpy(&vaddr[i], &vaddr[i + 64], 64);
766		memcpy(&vaddr[i + 64], temp, 64);
767	}
768
769	kunmap(page);
770}
771
772/**
773 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
774 * @obj: i915 GEM buffer object
775 * @pages: the scattergather list of physical pages
776 *
777 * This function fixes up the swizzling in case any page frame number for this
778 * object has changed in bit 17 since that state has been saved with
779 * i915_gem_object_save_bit_17_swizzle().
780 *
781 * This is called when pinning backing storage again, since the kernel is free
782 * to move unpinned backing storage around (either by directly moving pages or
783 * by swapping them out and back in again).
784 */
785void
786i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
787				  struct sg_table *pages)
788{
789	struct sgt_iter sgt_iter;
790	struct page *page;
791	int i;
792
793	if (obj->bit_17 == NULL)
794		return;
795
796	i = 0;
797	for_each_sgt_page(page, sgt_iter, pages) {
798		char new_bit_17 = page_to_phys(page) >> 17;
799		if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
800			i915_gem_swizzle_page(page);
801			set_page_dirty(page);
802		}
803		i++;
804	}
805}
806
807/**
808 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
809 * @obj: i915 GEM buffer object
810 * @pages: the scattergather list of physical pages
811 *
812 * This function saves the bit 17 of each page frame number so that swizzling
813 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
814 * be called before the backing storage can be unpinned.
815 */
816void
817i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
818				    struct sg_table *pages)
819{
820	const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
821	struct sgt_iter sgt_iter;
822	struct page *page;
823	int i;
824
825	if (obj->bit_17 == NULL) {
826		obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
827		if (obj->bit_17 == NULL) {
828			DRM_ERROR("Failed to allocate memory for bit 17 "
829				  "record\n");
830			return;
831		}
832	}
833
834	i = 0;
835
836	for_each_sgt_page(page, sgt_iter, pages) {
837		if (page_to_phys(page) & (1 << 17))
838			__set_bit(i, obj->bit_17);
839		else
840			__clear_bit(i, obj->bit_17);
841		i++;
842	}
843}
844
845void i915_ggtt_init_fences(struct i915_ggtt *ggtt)
846{
847	struct drm_i915_private *i915 = ggtt->vm.i915;
848	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
849	int num_fences;
850	int i;
851
852	INIT_LIST_HEAD(&ggtt->fence_list);
853	INIT_LIST_HEAD(&ggtt->userfault_list);
854	intel_wakeref_auto_init(&ggtt->userfault_wakeref, uncore->rpm);
855
856	detect_bit_6_swizzle(ggtt);
857
858	if (!i915_ggtt_has_aperture(ggtt))
859		num_fences = 0;
860	else if (INTEL_GEN(i915) >= 7 &&
861		 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
862		num_fences = 32;
863	else if (INTEL_GEN(i915) >= 4 ||
864		 IS_I945G(i915) || IS_I945GM(i915) ||
865		 IS_G33(i915) || IS_PINEVIEW(i915))
866		num_fences = 16;
867	else
868		num_fences = 8;
869
870	if (intel_vgpu_active(i915))
871		num_fences = intel_uncore_read(uncore,
872					       vgtif_reg(avail_rs.fence_num));
873
874	/* Initialize fence registers to zero */
875	for (i = 0; i < num_fences; i++) {
876		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
877
878		fence->ggtt = ggtt;
879		fence->id = i;
880		list_add_tail(&fence->link, &ggtt->fence_list);
881	}
882	ggtt->num_fences = num_fences;
883
884	i915_gem_restore_fences(ggtt);
885}
886
887void intel_gt_init_swizzling(struct intel_gt *gt)
888{
889	struct drm_i915_private *i915 = gt->i915;
890	struct intel_uncore *uncore = gt->uncore;
891
892	if (INTEL_GEN(i915) < 5 ||
893	    i915->ggtt.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
894		return;
895
896	intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
897
898	if (IS_GEN(i915, 5))
899		return;
900
901	intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
902
903	if (IS_GEN(i915, 6))
904		intel_uncore_write(uncore,
905				   ARB_MODE,
906				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
907	else if (IS_GEN(i915, 7))
908		intel_uncore_write(uncore,
909				   ARB_MODE,
910				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
911	else if (IS_GEN(i915, 8))
912		intel_uncore_write(uncore,
913				   GAMTARBMODE,
914				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
915	else
916		MISSING_CASE(INTEL_GEN(i915));
917}
918