drm_vblank.c revision 1.6
1/*	$NetBSD: drm_vblank.c,v 1.6 2021/12/19 11:08:02 riastradh Exp $	*/
2
3/*
4 * drm_irq.c IRQ and vblank support
5 *
6 * \author Rickard E. (Rik) Faith <faith@valinux.com>
7 * \author Gareth Hughes <gareth@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
26 * OTHER DEALINGS IN THE SOFTWARE.
27 */
28
29#include <sys/cdefs.h>
30__KERNEL_RCSID(0, "$NetBSD: drm_vblank.c,v 1.6 2021/12/19 11:08:02 riastradh Exp $");
31
32#include <linux/export.h>
33#include <linux/moduleparam.h>
34#include <linux/math64.h>
35
36#include <drm/drm_crtc.h>
37#include <drm/drm_drv.h>
38#include <drm/drm_framebuffer.h>
39#include <drm/drm_print.h>
40#include <drm/drm_vblank.h>
41
42#include "drm_internal.h"
43#include "drm_trace.h"
44
45/**
46 * DOC: vblank handling
47 *
48 * Vertical blanking plays a major role in graphics rendering. To achieve
49 * tear-free display, users must synchronize page flips and/or rendering to
50 * vertical blanking. The DRM API offers ioctls to perform page flips
51 * synchronized to vertical blanking and wait for vertical blanking.
52 *
53 * The DRM core handles most of the vertical blanking management logic, which
54 * involves filtering out spurious interrupts, keeping race-free blanking
55 * counters, coping with counter wrap-around and resets and keeping use counts.
56 * It relies on the driver to generate vertical blanking interrupts and
57 * optionally provide a hardware vertical blanking counter.
58 *
59 * Drivers must initialize the vertical blanking handling core with a call to
60 * drm_vblank_init(). Minimally, a driver needs to implement
61 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
62 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
63 * support.
64 *
65 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
66 * themselves (for instance to handle page flipping operations).  The DRM core
67 * maintains a vertical blanking use count to ensure that the interrupts are not
68 * disabled while a user still needs them. To increment the use count, drivers
69 * call drm_crtc_vblank_get() and release the vblank reference again with
70 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
71 * guaranteed to be enabled.
72 *
73 * On many hardware disabling the vblank interrupt cannot be done in a race-free
74 * manner, see &drm_driver.vblank_disable_immediate and
75 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
76 * vblanks after a timer has expired, which can be configured through the
77 * ``vblankoffdelay`` module parameter.
78 */
79
80/* Retry timestamp calculation up to 3 times to satisfy
81 * drm_timestamp_precision before giving up.
82 */
83#define DRM_TIMESTAMP_MAXRETRIES 3
84
85/* Threshold in nanoseconds for detection of redundant
86 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
87 */
88#define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
89
90static bool
91drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
92			  ktime_t *tvblank, bool in_vblank_irq);
93
94static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
95
96static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
97
98module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
99module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
100MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
101MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
102
103static void store_vblank(struct drm_device *dev, unsigned int pipe,
104			 u32 vblank_count_inc,
105			 ktime_t t_vblank, u32 last)
106{
107	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
108
109	assert_spin_locked(&dev->vblank_time_lock);
110
111	vblank->last = last;
112
113	write_seqlock(&vblank->seqlock);
114	vblank->time = t_vblank;
115	atomic64_add(vblank_count_inc, &vblank->count);
116	write_sequnlock(&vblank->seqlock);
117}
118
119static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
120{
121	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
122
123	return vblank->max_vblank_count ?: dev->max_vblank_count;
124}
125
126/*
127 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
128 * if there is no useable hardware frame counter available.
129 */
130static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
131{
132	WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0);
133	return 0;
134}
135
136static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
137{
138	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
139		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
140
141		if (WARN_ON(!crtc))
142			return 0;
143
144		if (crtc->funcs->get_vblank_counter)
145			return crtc->funcs->get_vblank_counter(crtc);
146	}
147
148	if (dev->driver->get_vblank_counter)
149		return dev->driver->get_vblank_counter(dev, pipe);
150
151	return drm_vblank_no_hw_counter(dev, pipe);
152}
153
154/*
155 * Reset the stored timestamp for the current vblank count to correspond
156 * to the last vblank occurred.
157 *
158 * Only to be called from drm_crtc_vblank_on().
159 *
160 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
161 * device vblank fields.
162 */
163static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
164{
165	u32 cur_vblank;
166	bool rc;
167	ktime_t t_vblank;
168	int count = DRM_TIMESTAMP_MAXRETRIES;
169
170	assert_spin_locked(&dev->vbl_lock);
171
172	spin_lock(&dev->vblank_time_lock);
173
174	/*
175	 * sample the current counter to avoid random jumps
176	 * when drm_vblank_enable() applies the diff
177	 */
178	do {
179		cur_vblank = __get_vblank_counter(dev, pipe);
180		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
181	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
182
183	/*
184	 * Only reinitialize corresponding vblank timestamp if high-precision query
185	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
186	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
187	 */
188	if (!rc)
189		t_vblank = 0;
190
191	/*
192	 * +1 to make sure user will never see the same
193	 * vblank counter value before and after a modeset
194	 */
195	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
196
197	spin_unlock(&dev->vblank_time_lock);
198}
199
200/*
201 * Call back into the driver to update the appropriate vblank counter
202 * (specified by @pipe).  Deal with wraparound, if it occurred, and
203 * update the last read value so we can deal with wraparound on the next
204 * call if necessary.
205 *
206 * Only necessary when going from off->on, to account for frames we
207 * didn't get an interrupt for.
208 *
209 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
210 * device vblank fields.
211 */
212static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
213				    bool in_vblank_irq)
214{
215	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
216	u32 cur_vblank, diff;
217	bool rc;
218	ktime_t t_vblank;
219	int count = DRM_TIMESTAMP_MAXRETRIES;
220	int framedur_ns = vblank->framedur_ns;
221	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
222
223	assert_spin_locked(&dev->vbl_lock);
224
225	/*
226	 * Interrupts were disabled prior to this call, so deal with counter
227	 * wrap if needed.
228	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
229	 * here if the register is small or we had vblank interrupts off for
230	 * a long time.
231	 *
232	 * We repeat the hardware vblank counter & timestamp query until
233	 * we get consistent results. This to prevent races between gpu
234	 * updating its hardware counter while we are retrieving the
235	 * corresponding vblank timestamp.
236	 */
237	do {
238		cur_vblank = __get_vblank_counter(dev, pipe);
239		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
240	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
241
242	if (max_vblank_count) {
243		/* trust the hw counter when it's around */
244		diff = (cur_vblank - vblank->last) & max_vblank_count;
245	} else if (rc && framedur_ns) {
246		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
247
248		/*
249		 * Figure out how many vblanks we've missed based
250		 * on the difference in the timestamps and the
251		 * frame/field duration.
252		 */
253
254		DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks."
255			      " diff_ns = %lld, framedur_ns = %d)\n",
256			      pipe, (long long) diff_ns, framedur_ns);
257
258		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
259
260		if (diff == 0 && in_vblank_irq)
261			DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n",
262				      pipe);
263	} else {
264		/* some kind of default for drivers w/o accurate vbl timestamping */
265		diff = in_vblank_irq ? 1 : 0;
266	}
267
268	/*
269	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
270	 * interval? If so then vblank irqs keep running and it will likely
271	 * happen that the hardware vblank counter is not trustworthy as it
272	 * might reset at some point in that interval and vblank timestamps
273	 * are not trustworthy either in that interval. Iow. this can result
274	 * in a bogus diff >> 1 which must be avoided as it would cause
275	 * random large forward jumps of the software vblank counter.
276	 */
277	if (diff > 1 && (vblank->inmodeset & 0x2)) {
278		DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
279			      " due to pre-modeset.\n", pipe, diff);
280		diff = 1;
281	}
282
283	DRM_DEBUG_VBL("updating vblank count on crtc %u:"
284		      " current=%"PRIu64", diff=%u, hw=%u hw_last=%u\n",
285		      pipe, atomic64_read(&vblank->count), diff,
286		      cur_vblank, vblank->last);
287
288	if (diff == 0) {
289		WARN_ON_ONCE(cur_vblank != vblank->last);
290		return;
291	}
292
293	/*
294	 * Only reinitialize corresponding vblank timestamp if high-precision query
295	 * available and didn't fail, or we were called from the vblank interrupt.
296	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
297	 * for now, to mark the vblanktimestamp as invalid.
298	 */
299	if (!rc && !in_vblank_irq)
300		t_vblank = 0;
301
302	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
303}
304
305static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
306{
307	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
308	u64 count;
309
310	if (WARN_ON(pipe >= dev->num_crtcs))
311		return 0;
312
313	count = atomic64_read(&vblank->count);
314
315	/*
316	 * This read barrier corresponds to the implicit write barrier of the
317	 * write seqlock in store_vblank(). Note that this is the only place
318	 * where we need an explicit barrier, since all other access goes
319	 * through drm_vblank_count_and_time(), which already has the required
320	 * read barrier curtesy of the read seqlock.
321	 */
322	smp_rmb();
323
324	return count;
325}
326
327/**
328 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
329 * @crtc: which counter to retrieve
330 *
331 * This function is similar to drm_crtc_vblank_count() but this function
332 * interpolates to handle a race with vblank interrupts using the high precision
333 * timestamping support.
334 *
335 * This is mostly useful for hardware that can obtain the scanout position, but
336 * doesn't have a hardware frame counter.
337 */
338u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
339{
340	struct drm_device *dev = crtc->dev;
341	unsigned int pipe = drm_crtc_index(crtc);
342	u64 vblank;
343	unsigned long flags;
344
345	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !dev->driver->get_vblank_timestamp,
346		  "This function requires support for accurate vblank timestamps.");
347
348	spin_lock_irqsave(&dev->vblank_time_lock, flags);
349
350	drm_update_vblank_count(dev, pipe, false);
351	vblank = drm_vblank_count(dev, pipe);
352
353	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
354
355	return vblank;
356}
357EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
358
359static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
360{
361	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
362		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
363
364		if (WARN_ON(!crtc))
365			return;
366
367		if (crtc->funcs->disable_vblank) {
368			crtc->funcs->disable_vblank(crtc);
369			return;
370		}
371	}
372
373	dev->driver->disable_vblank(dev, pipe);
374}
375
376/*
377 * Disable vblank irq's on crtc, make sure that last vblank count
378 * of hardware and corresponding consistent software vblank counter
379 * are preserved, even if there are any spurious vblank irq's after
380 * disable.
381 */
382void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
383{
384	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
385	unsigned long irqflags;
386
387	assert_spin_locked(&dev->vbl_lock);
388
389	/* Prevent vblank irq processing while disabling vblank irqs,
390	 * so no updates of timestamps or count can happen after we've
391	 * disabled. Needed to prevent races in case of delayed irq's.
392	 */
393	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
394
395	/*
396	 * Update vblank count and disable vblank interrupts only if the
397	 * interrupts were enabled. This avoids calling the ->disable_vblank()
398	 * operation in atomic context with the hardware potentially runtime
399	 * suspended.
400	 */
401	if (!vblank->enabled)
402		goto out;
403
404	/*
405	 * Update the count and timestamp to maintain the
406	 * appearance that the counter has been ticking all along until
407	 * this time. This makes the count account for the entire time
408	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
409	 */
410	drm_update_vblank_count(dev, pipe, false);
411	__disable_vblank(dev, pipe);
412	vblank->enabled = false;
413
414out:
415	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
416}
417
418static void vblank_disable_fn(struct timer_list *t)
419{
420	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
421	struct drm_device *dev = vblank->dev;
422	unsigned int pipe = vblank->pipe;
423	unsigned long irqflags;
424
425	spin_lock_irqsave(&dev->vbl_lock, irqflags);
426	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
427		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
428		drm_vblank_disable_and_save(dev, pipe);
429	}
430	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
431}
432
433void drm_vblank_cleanup(struct drm_device *dev)
434{
435	unsigned int pipe;
436
437	/* Bail if the driver didn't call drm_vblank_init() */
438	if (dev->num_crtcs == 0)
439		return;
440
441	for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
442		struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
443
444		WARN_ON(READ_ONCE(vblank->enabled) &&
445			drm_core_check_feature(dev, DRIVER_MODESET));
446
447		del_timer_sync(&vblank->disable_timer);
448#ifdef __NetBSD__
449		teardown_timer(&vblank->disable_timer);
450		seqlock_destroy(&vblank->seqlock);
451#endif
452	}
453
454	kfree(dev->vblank);
455
456	dev->num_crtcs = 0;
457}
458
459/**
460 * drm_vblank_init - initialize vblank support
461 * @dev: DRM device
462 * @num_crtcs: number of CRTCs supported by @dev
463 *
464 * This function initializes vblank support for @num_crtcs display pipelines.
465 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
466 * drivers with a &drm_driver.release callback.
467 *
468 * Returns:
469 * Zero on success or a negative error code on failure.
470 */
471int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
472{
473	int ret = -ENOMEM;
474	unsigned int i;
475
476	spin_lock_init(&dev->vbl_lock);
477	spin_lock_init(&dev->vblank_time_lock);
478
479	dev->num_crtcs = num_crtcs;
480
481	dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
482	if (!dev->vblank)
483		goto err;
484
485	for (i = 0; i < num_crtcs; i++) {
486		struct drm_vblank_crtc *vblank = &dev->vblank[i];
487
488		vblank->dev = dev;
489		vblank->pipe = i;
490#ifdef __NetBSD__
491		DRM_INIT_WAITQUEUE(&vblank->queue, "drmvblnq");
492#else
493		init_waitqueue_head(&vblank->queue);
494#endif
495		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
496		seqlock_init(&vblank->seqlock);
497	}
498
499	DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
500
501	/* Driver specific high-precision vblank timestamping supported? */
502	if (dev->driver->get_vblank_timestamp)
503		DRM_INFO("Driver supports precise vblank timestamp query.\n");
504	else
505		DRM_INFO("No driver support for vblank timestamp query.\n");
506
507	/* Must have precise timestamping for reliable vblank instant disable */
508	if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
509		dev->vblank_disable_immediate = false;
510		DRM_INFO("Setting vblank_disable_immediate to false because "
511			 "get_vblank_timestamp == NULL\n");
512	}
513
514	return 0;
515
516err:
517	dev->num_crtcs = 0;
518	return ret;
519}
520EXPORT_SYMBOL(drm_vblank_init);
521
522/**
523 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
524 * @crtc: which CRTC's vblank waitqueue to retrieve
525 *
526 * This function returns a pointer to the vblank waitqueue for the CRTC.
527 * Drivers can use this to implement vblank waits using wait_event() and related
528 * functions.
529 */
530#ifdef __NetBSD__
531drm_waitqueue_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
532#else
533wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
534#endif
535{
536	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
537}
538EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
539
540
541/**
542 * drm_calc_timestamping_constants - calculate vblank timestamp constants
543 * @crtc: drm_crtc whose timestamp constants should be updated.
544 * @mode: display mode containing the scanout timings
545 *
546 * Calculate and store various constants which are later needed by vblank and
547 * swap-completion timestamping, e.g, by
548 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
549 * scanout timing, so they take things like panel scaling or other adjustments
550 * into account.
551 */
552void drm_calc_timestamping_constants(struct drm_crtc *crtc,
553				     const struct drm_display_mode *mode)
554{
555	struct drm_device *dev = crtc->dev;
556	unsigned int pipe = drm_crtc_index(crtc);
557	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
558	int linedur_ns = 0, framedur_ns = 0;
559	int dotclock = mode->crtc_clock;
560
561	if (!dev->num_crtcs)
562		return;
563
564	if (WARN_ON(pipe >= dev->num_crtcs))
565		return;
566
567	/* Valid dotclock? */
568	if (dotclock > 0) {
569		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
570
571		/*
572		 * Convert scanline length in pixels and video
573		 * dot clock to line duration and frame duration
574		 * in nanoseconds:
575		 */
576		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
577		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
578
579		/*
580		 * Fields of interlaced scanout modes are only half a frame duration.
581		 */
582		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
583			framedur_ns /= 2;
584	} else
585		DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
586			  crtc->base.id);
587
588	vblank->linedur_ns  = linedur_ns;
589	vblank->framedur_ns = framedur_ns;
590	vblank->hwmode = *mode;
591
592	DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
593		  crtc->base.id, mode->crtc_htotal,
594		  mode->crtc_vtotal, mode->crtc_vdisplay);
595	DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
596		  crtc->base.id, dotclock, framedur_ns, linedur_ns);
597}
598EXPORT_SYMBOL(drm_calc_timestamping_constants);
599
600/**
601 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
602 * @dev: DRM device
603 * @pipe: index of CRTC whose vblank timestamp to retrieve
604 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
605 *             On return contains true maximum error of timestamp
606 * @vblank_time: Pointer to time which should receive the timestamp
607 * @in_vblank_irq:
608 *     True when called from drm_crtc_handle_vblank().  Some drivers
609 *     need to apply some workarounds for gpu-specific vblank irq quirks
610 *     if flag is set.
611 *
612 * Implements calculation of exact vblank timestamps from given drm_display_mode
613 * timings and current video scanout position of a CRTC. This can be directly
614 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
615 * if &drm_driver.get_scanout_position is implemented.
616 *
617 * The current implementation only handles standard video modes. For double scan
618 * and interlaced modes the driver is supposed to adjust the hardware mode
619 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
620 * match the scanout position reported.
621 *
622 * Note that atomic drivers must call drm_calc_timestamping_constants() before
623 * enabling a CRTC. The atomic helpers already take care of that in
624 * drm_atomic_helper_update_legacy_modeset_state().
625 *
626 * Returns:
627 *
628 * Returns true on success, and false on failure, i.e. when no accurate
629 * timestamp could be acquired.
630 */
631bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
632					   unsigned int pipe,
633					   int *max_error,
634					   ktime_t *vblank_time,
635					   bool in_vblank_irq)
636{
637	struct timespec64 ts_etime, ts_vblank_time;
638	ktime_t stime, etime;
639	bool vbl_status;
640	struct drm_crtc *crtc;
641	const struct drm_display_mode *mode;
642	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
643	int vpos, hpos, i;
644	int delta_ns, duration_ns;
645
646	if (!drm_core_check_feature(dev, DRIVER_MODESET))
647		return false;
648
649	crtc = drm_crtc_from_index(dev, pipe);
650
651	if (pipe >= dev->num_crtcs || !crtc) {
652		DRM_ERROR("Invalid crtc %u\n", pipe);
653		return false;
654	}
655
656	/* Scanout position query not supported? Should not happen. */
657	if (!dev->driver->get_scanout_position) {
658		DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
659		return false;
660	}
661
662	if (drm_drv_uses_atomic_modeset(dev))
663		mode = &vblank->hwmode;
664	else
665		mode = &crtc->hwmode;
666
667	/* If mode timing undefined, just return as no-op:
668	 * Happens during initial modesetting of a crtc.
669	 */
670	if (mode->crtc_clock == 0) {
671		DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
672		WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
673
674		return false;
675	}
676
677	/* Get current scanout position with system timestamp.
678	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
679	 * if single query takes longer than max_error nanoseconds.
680	 *
681	 * This guarantees a tight bound on maximum error if
682	 * code gets preempted or delayed for some reason.
683	 */
684	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
685		/*
686		 * Get vertical and horizontal scanout position vpos, hpos,
687		 * and bounding timestamps stime, etime, pre/post query.
688		 */
689		vbl_status = dev->driver->get_scanout_position(dev, pipe,
690							       in_vblank_irq,
691							       &vpos, &hpos,
692							       &stime, &etime,
693							       mode);
694
695		/* Return as no-op if scanout query unsupported or failed. */
696		if (!vbl_status) {
697			DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
698				  pipe);
699			return false;
700		}
701
702		/* Compute uncertainty in timestamp of scanout position query. */
703		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
704
705		/* Accept result with <  max_error nsecs timing uncertainty. */
706		if (duration_ns <= *max_error)
707			break;
708	}
709
710	/* Noisy system timing? */
711	if (i == DRM_TIMESTAMP_MAXRETRIES) {
712		DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
713			  pipe, duration_ns/1000, *max_error/1000, i);
714	}
715
716	/* Return upper bound of timestamp precision error. */
717	*max_error = duration_ns;
718
719	/* Convert scanout position into elapsed time at raw_time query
720	 * since start of scanout at first display scanline. delta_ns
721	 * can be negative if start of scanout hasn't happened yet.
722	 */
723	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
724			   mode->crtc_clock);
725
726	/* Subtract time delta from raw timestamp to get final
727	 * vblank_time timestamp for end of vblank.
728	 */
729	*vblank_time = ktime_sub_ns(etime, delta_ns);
730
731	if (!drm_debug_enabled(DRM_UT_VBL))
732		return true;
733
734	ts_etime = ktime_to_timespec64(etime);
735	ts_vblank_time = ktime_to_timespec64(*vblank_time);
736
737	DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %"PRId64".%06ld -> %"PRId64".%06ld [e %d us, %d rep]\n",
738		      pipe, hpos, vpos,
739		      (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
740		      (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
741		      duration_ns / 1000, i);
742
743	return true;
744}
745EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
746
747/**
748 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
749 *                             vblank interval
750 * @dev: DRM device
751 * @pipe: index of CRTC whose vblank timestamp to retrieve
752 * @tvblank: Pointer to target time which should receive the timestamp
753 * @in_vblank_irq:
754 *     True when called from drm_crtc_handle_vblank().  Some drivers
755 *     need to apply some workarounds for gpu-specific vblank irq quirks
756 *     if flag is set.
757 *
758 * Fetches the system timestamp corresponding to the time of the most recent
759 * vblank interval on specified CRTC. May call into kms-driver to
760 * compute the timestamp with a high-precision GPU specific method.
761 *
762 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
763 * call, i.e., it isn't very precisely locked to the true vblank.
764 *
765 * Returns:
766 * True if timestamp is considered to be very precise, false otherwise.
767 */
768static bool
769drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
770			  ktime_t *tvblank, bool in_vblank_irq)
771{
772	bool ret = false;
773
774	/* Define requested maximum error on timestamps (nanoseconds). */
775	int max_error = (int) drm_timestamp_precision * 1000;
776
777	/* Query driver if possible and precision timestamping enabled. */
778	if (dev->driver->get_vblank_timestamp && (max_error > 0))
779		ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
780							tvblank, in_vblank_irq);
781
782	/* GPU high precision timestamp query unsupported or failed.
783	 * Return current monotonic/gettimeofday timestamp as best estimate.
784	 */
785	if (!ret)
786		*tvblank = ktime_get();
787
788	return ret;
789}
790
791/**
792 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
793 * @crtc: which counter to retrieve
794 *
795 * Fetches the "cooked" vblank count value that represents the number of
796 * vblank events since the system was booted, including lost events due to
797 * modesetting activity. Note that this timer isn't correct against a racing
798 * vblank interrupt (since it only reports the software vblank counter), see
799 * drm_crtc_accurate_vblank_count() for such use-cases.
800 *
801 * Note that for a given vblank counter value drm_crtc_handle_vblank()
802 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
803 * provide a barrier: Any writes done before calling
804 * drm_crtc_handle_vblank() will be visible to callers of the later
805 * functions, iff the vblank count is the same or a later one.
806 *
807 * See also &drm_vblank_crtc.count.
808 *
809 * Returns:
810 * The software vblank counter.
811 */
812u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
813{
814	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
815}
816EXPORT_SYMBOL(drm_crtc_vblank_count);
817
818/**
819 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
820 *     system timestamp corresponding to that vblank counter value.
821 * @dev: DRM device
822 * @pipe: index of CRTC whose counter to retrieve
823 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
824 *
825 * Fetches the "cooked" vblank count value that represents the number of
826 * vblank events since the system was booted, including lost events due to
827 * modesetting activity. Returns corresponding system timestamp of the time
828 * of the vblank interval that corresponds to the current vblank counter value.
829 *
830 * This is the legacy version of drm_crtc_vblank_count_and_time().
831 */
832static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
833				     ktime_t *vblanktime)
834{
835	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
836	u64 vblank_count;
837	unsigned int seq;
838
839	if (WARN_ON(pipe >= dev->num_crtcs)) {
840		*vblanktime = 0;
841		return 0;
842	}
843
844	do {
845		seq = read_seqbegin(&vblank->seqlock);
846		vblank_count = atomic64_read(&vblank->count);
847		*vblanktime = vblank->time;
848	} while (read_seqretry(&vblank->seqlock, seq));
849
850	return vblank_count;
851}
852
853/**
854 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
855 *     and the system timestamp corresponding to that vblank counter value
856 * @crtc: which counter to retrieve
857 * @vblanktime: Pointer to time to receive the vblank timestamp.
858 *
859 * Fetches the "cooked" vblank count value that represents the number of
860 * vblank events since the system was booted, including lost events due to
861 * modesetting activity. Returns corresponding system timestamp of the time
862 * of the vblank interval that corresponds to the current vblank counter value.
863 *
864 * Note that for a given vblank counter value drm_crtc_handle_vblank()
865 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
866 * provide a barrier: Any writes done before calling
867 * drm_crtc_handle_vblank() will be visible to callers of the later
868 * functions, iff the vblank count is the same or a later one.
869 *
870 * See also &drm_vblank_crtc.count.
871 */
872u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
873				   ktime_t *vblanktime)
874{
875	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
876					 vblanktime);
877}
878EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
879
880static void send_vblank_event(struct drm_device *dev,
881		struct drm_pending_vblank_event *e,
882		u64 seq, ktime_t now)
883{
884	struct timespec64 tv;
885
886	switch (e->event.base.type) {
887	case DRM_EVENT_VBLANK:
888	case DRM_EVENT_FLIP_COMPLETE:
889		tv = ktime_to_timespec64(now);
890		e->event.vbl.sequence = seq;
891		/*
892		 * e->event is a user space structure, with hardcoded unsigned
893		 * 32-bit seconds/microseconds. This is safe as we always use
894		 * monotonic timestamps since linux-4.15
895		 */
896		e->event.vbl.tv_sec = tv.tv_sec;
897		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
898		break;
899	case DRM_EVENT_CRTC_SEQUENCE:
900		if (seq)
901			e->event.seq.sequence = seq;
902		e->event.seq.time_ns = ktime_to_ns(now);
903		break;
904	}
905	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
906	drm_send_event_locked(dev, &e->base);
907}
908
909/**
910 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
911 * @crtc: the source CRTC of the vblank event
912 * @e: the event to send
913 *
914 * A lot of drivers need to generate vblank events for the very next vblank
915 * interrupt. For example when the page flip interrupt happens when the page
916 * flip gets armed, but not when it actually executes within the next vblank
917 * period. This helper function implements exactly the required vblank arming
918 * behaviour.
919 *
920 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
921 * atomic commit must ensure that the next vblank happens at exactly the same
922 * time as the atomic commit is committed to the hardware. This function itself
923 * does **not** protect against the next vblank interrupt racing with either this
924 * function call or the atomic commit operation. A possible sequence could be:
925 *
926 * 1. Driver commits new hardware state into vblank-synchronized registers.
927 * 2. A vblank happens, committing the hardware state. Also the corresponding
928 *    vblank interrupt is fired off and fully processed by the interrupt
929 *    handler.
930 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
931 * 4. The event is only send out for the next vblank, which is wrong.
932 *
933 * An equivalent race can happen when the driver calls
934 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
935 *
936 * The only way to make this work safely is to prevent the vblank from firing
937 * (and the hardware from committing anything else) until the entire atomic
938 * commit sequence has run to completion. If the hardware does not have such a
939 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
940 * Instead drivers need to manually send out the event from their interrupt
941 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
942 * possible race with the hardware committing the atomic update.
943 *
944 * Caller must hold a vblank reference for the event @e acquired by a
945 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
946 */
947void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
948			       struct drm_pending_vblank_event *e)
949{
950	struct drm_device *dev = crtc->dev;
951	unsigned int pipe = drm_crtc_index(crtc);
952
953	assert_spin_locked(&dev->event_lock);
954
955	e->pipe = pipe;
956	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
957	list_add_tail(&e->base.link, &dev->vblank_event_list);
958}
959EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
960
961/**
962 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
963 * @crtc: the source CRTC of the vblank event
964 * @e: the event to send
965 *
966 * Updates sequence # and timestamp on event for the most recently processed
967 * vblank, and sends it to userspace.  Caller must hold event lock.
968 *
969 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
970 * situation, especially to send out events for atomic commit operations.
971 */
972void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
973				struct drm_pending_vblank_event *e)
974{
975	struct drm_device *dev = crtc->dev;
976	u64 seq;
977	unsigned int pipe = drm_crtc_index(crtc);
978	ktime_t now;
979
980	if (dev->num_crtcs > 0) {
981		seq = drm_vblank_count_and_time(dev, pipe, &now);
982	} else {
983		seq = 0;
984
985		now = ktime_get();
986	}
987	e->pipe = pipe;
988	send_vblank_event(dev, e, seq, now);
989}
990EXPORT_SYMBOL(drm_crtc_send_vblank_event);
991
992static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
993{
994	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
995		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
996
997		if (WARN_ON(!crtc))
998			return 0;
999
1000		if (crtc->funcs->enable_vblank)
1001			return crtc->funcs->enable_vblank(crtc);
1002	}
1003
1004	return dev->driver->enable_vblank(dev, pipe);
1005}
1006
1007static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1008{
1009	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1010	int ret = 0;
1011
1012	assert_spin_locked(&dev->vbl_lock);
1013
1014	spin_lock(&dev->vblank_time_lock);
1015
1016	if (!vblank->enabled) {
1017		/*
1018		 * Enable vblank irqs under vblank_time_lock protection.
1019		 * All vblank count & timestamp updates are held off
1020		 * until we are done reinitializing master counter and
1021		 * timestamps. Filtercode in drm_handle_vblank() will
1022		 * prevent double-accounting of same vblank interval.
1023		 */
1024		ret = __enable_vblank(dev, pipe);
1025		DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
1026		if (ret) {
1027			atomic_dec(&vblank->refcount);
1028		} else {
1029			drm_update_vblank_count(dev, pipe, 0);
1030			/* drm_update_vblank_count() includes a wmb so we just
1031			 * need to ensure that the compiler emits the write
1032			 * to mark the vblank as enabled after the call
1033			 * to drm_update_vblank_count().
1034			 */
1035			WRITE_ONCE(vblank->enabled, true);
1036		}
1037	}
1038
1039	spin_unlock(&dev->vblank_time_lock);
1040
1041	return ret;
1042}
1043
1044static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1045{
1046	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1047	unsigned long irqflags;
1048	int ret = 0;
1049
1050	if (!dev->num_crtcs)
1051		return -EINVAL;
1052
1053	if (WARN_ON(pipe >= dev->num_crtcs))
1054		return -EINVAL;
1055
1056	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1057	/* Going from 0->1 means we have to enable interrupts again */
1058	if (atomic_add_return(1, &vblank->refcount) == 1) {
1059		ret = drm_vblank_enable(dev, pipe);
1060	} else {
1061		if (!vblank->enabled) {
1062			atomic_dec(&vblank->refcount);
1063			ret = -EINVAL;
1064		}
1065	}
1066	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1067
1068	return ret;
1069}
1070
1071/**
1072 * drm_crtc_vblank_get - get a reference count on vblank events
1073 * @crtc: which CRTC to own
1074 *
1075 * Acquire a reference count on vblank events to avoid having them disabled
1076 * while in use.
1077 *
1078 * Returns:
1079 * Zero on success or a negative error code on failure.
1080 */
1081int drm_crtc_vblank_get(struct drm_crtc *crtc)
1082{
1083	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1084}
1085EXPORT_SYMBOL(drm_crtc_vblank_get);
1086
1087static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1088{
1089	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1090
1091	if (WARN_ON(pipe >= dev->num_crtcs))
1092		return;
1093
1094	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1095		return;
1096
1097	/* Last user schedules interrupt disable */
1098	if (atomic_dec_and_test(&vblank->refcount)) {
1099		if (drm_vblank_offdelay == 0)
1100			return;
1101		else if (drm_vblank_offdelay < 0)
1102			vblank_disable_fn(&vblank->disable_timer);
1103		else if (!dev->vblank_disable_immediate)
1104			mod_timer(&vblank->disable_timer,
1105				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1106	}
1107}
1108
1109/**
1110 * drm_crtc_vblank_put - give up ownership of vblank events
1111 * @crtc: which counter to give up
1112 *
1113 * Release ownership of a given vblank counter, turning off interrupts
1114 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1115 */
1116void drm_crtc_vblank_put(struct drm_crtc *crtc)
1117{
1118	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1119}
1120EXPORT_SYMBOL(drm_crtc_vblank_put);
1121
1122/**
1123 * drm_wait_one_vblank - wait for one vblank
1124 * @dev: DRM device
1125 * @pipe: CRTC index
1126 *
1127 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1128 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1129 * due to lack of driver support or because the crtc is off.
1130 *
1131 * This is the legacy version of drm_crtc_wait_one_vblank().
1132 */
1133void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1134{
1135	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1136	int ret;
1137	u64 last;
1138
1139	if (WARN_ON(pipe >= dev->num_crtcs))
1140		return;
1141
1142	ret = drm_vblank_get(dev, pipe);
1143	if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1144		return;
1145
1146#ifdef __NetBSD__
1147	spin_lock(&dev->vbl_lock);
1148	last = drm_vblank_count(dev, pipe);
1149	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &vblank->queue, &dev->vbl_lock,
1150	    msecs_to_jiffies(100),
1151	    last != drm_vblank_count(dev, pipe));
1152	spin_unlock(&dev->vbl_lock);
1153#else
1154	last = drm_vblank_count(dev, pipe);
1155
1156	ret = wait_event_timeout(vblank->queue,
1157				 last != drm_vblank_count(dev, pipe),
1158				 msecs_to_jiffies(100));
1159#endif
1160
1161	WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1162
1163	drm_vblank_put(dev, pipe);
1164}
1165EXPORT_SYMBOL(drm_wait_one_vblank);
1166
1167/**
1168 * drm_crtc_wait_one_vblank - wait for one vblank
1169 * @crtc: DRM crtc
1170 *
1171 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1172 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1173 * due to lack of driver support or because the crtc is off.
1174 */
1175void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1176{
1177	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1178}
1179EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1180
1181/**
1182 * drm_crtc_vblank_off - disable vblank events on a CRTC
1183 * @crtc: CRTC in question
1184 *
1185 * Drivers can use this function to shut down the vblank interrupt handling when
1186 * disabling a crtc. This function ensures that the latest vblank frame count is
1187 * stored so that drm_vblank_on can restore it again.
1188 *
1189 * Drivers must use this function when the hardware vblank counter can get
1190 * reset, e.g. when suspending or disabling the @crtc in general.
1191 */
1192void drm_crtc_vblank_off(struct drm_crtc *crtc)
1193{
1194	struct drm_device *dev = crtc->dev;
1195	unsigned int pipe = drm_crtc_index(crtc);
1196	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1197	struct drm_pending_vblank_event *e, *t;
1198
1199	ktime_t now;
1200	unsigned long irqflags;
1201	u64 seq;
1202
1203	if (WARN_ON(pipe >= dev->num_crtcs))
1204		return;
1205
1206	spin_lock_irqsave(&dev->event_lock, irqflags);
1207
1208	spin_lock(&dev->vbl_lock);
1209	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1210		      pipe, vblank->enabled, vblank->inmodeset);
1211
1212	/* Avoid redundant vblank disables without previous
1213	 * drm_crtc_vblank_on(). */
1214	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1215		drm_vblank_disable_and_save(dev, pipe);
1216
1217#ifdef __NetBSD__
1218	DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->vbl_lock);
1219#else
1220	wake_up(&vblank->queue);
1221#endif
1222
1223	/*
1224	 * Prevent subsequent drm_vblank_get() from re-enabling
1225	 * the vblank interrupt by bumping the refcount.
1226	 */
1227	if (!vblank->inmodeset) {
1228		atomic_inc(&vblank->refcount);
1229		vblank->inmodeset = 1;
1230	}
1231	spin_unlock(&dev->vbl_lock);
1232
1233	/* Send any queued vblank events, lest the natives grow disquiet */
1234	seq = drm_vblank_count_and_time(dev, pipe, &now);
1235
1236	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1237		if (e->pipe != pipe)
1238			continue;
1239		DRM_DEBUG("Sending premature vblank event on disable: "
1240			  "wanted %"PRIu64", current %"PRIu64"\n",
1241			  e->sequence, seq);
1242		list_del(&e->base.link);
1243		drm_vblank_put(dev, pipe);
1244		send_vblank_event(dev, e, seq, now);
1245	}
1246	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1247
1248	/* Will be reset by the modeset helpers when re-enabling the crtc by
1249	 * calling drm_calc_timestamping_constants(). */
1250	vblank->hwmode.crtc_clock = 0;
1251}
1252EXPORT_SYMBOL(drm_crtc_vblank_off);
1253
1254/**
1255 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1256 * @crtc: CRTC in question
1257 *
1258 * Drivers can use this function to reset the vblank state to off at load time.
1259 * Drivers should use this together with the drm_crtc_vblank_off() and
1260 * drm_crtc_vblank_on() functions. The difference compared to
1261 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1262 * and hence doesn't need to call any driver hooks.
1263 *
1264 * This is useful for recovering driver state e.g. on driver load, or on resume.
1265 */
1266void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1267{
1268	struct drm_device *dev = crtc->dev;
1269	unsigned long irqflags;
1270	unsigned int pipe = drm_crtc_index(crtc);
1271	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1272
1273	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1274	/*
1275	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1276	 * interrupt by bumping the refcount.
1277	 */
1278	if (!vblank->inmodeset) {
1279		atomic_inc(&vblank->refcount);
1280		vblank->inmodeset = 1;
1281	}
1282	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1283
1284	WARN_ON(!list_empty(&dev->vblank_event_list));
1285}
1286EXPORT_SYMBOL(drm_crtc_vblank_reset);
1287
1288/**
1289 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1290 * @crtc: CRTC in question
1291 * @max_vblank_count: max hardware vblank counter value
1292 *
1293 * Update the maximum hardware vblank counter value for @crtc
1294 * at runtime. Useful for hardware where the operation of the
1295 * hardware vblank counter depends on the currently active
1296 * display configuration.
1297 *
1298 * For example, if the hardware vblank counter does not work
1299 * when a specific connector is active the maximum can be set
1300 * to zero. And when that specific connector isn't active the
1301 * maximum can again be set to the appropriate non-zero value.
1302 *
1303 * If used, must be called before drm_vblank_on().
1304 */
1305void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1306				   u32 max_vblank_count)
1307{
1308	struct drm_device *dev = crtc->dev;
1309	unsigned int pipe = drm_crtc_index(crtc);
1310	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1311
1312	WARN_ON(dev->max_vblank_count);
1313	WARN_ON(!READ_ONCE(vblank->inmodeset));
1314
1315	vblank->max_vblank_count = max_vblank_count;
1316}
1317EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1318
1319/**
1320 * drm_crtc_vblank_on - enable vblank events on a CRTC
1321 * @crtc: CRTC in question
1322 *
1323 * This functions restores the vblank interrupt state captured with
1324 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1325 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1326 * unbalanced and so can also be unconditionally called in driver load code to
1327 * reflect the current hardware state of the crtc.
1328 */
1329void drm_crtc_vblank_on(struct drm_crtc *crtc)
1330{
1331	struct drm_device *dev = crtc->dev;
1332	unsigned int pipe = drm_crtc_index(crtc);
1333	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1334	unsigned long irqflags;
1335
1336	if (WARN_ON(pipe >= dev->num_crtcs))
1337		return;
1338
1339	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1340	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1341		      pipe, vblank->enabled, vblank->inmodeset);
1342
1343	/* Drop our private "prevent drm_vblank_get" refcount */
1344	if (vblank->inmodeset) {
1345		atomic_dec(&vblank->refcount);
1346		vblank->inmodeset = 0;
1347	}
1348
1349	drm_reset_vblank_timestamp(dev, pipe);
1350
1351	/*
1352	 * re-enable interrupts if there are users left, or the
1353	 * user wishes vblank interrupts to be enabled all the time.
1354	 */
1355	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1356		WARN_ON(drm_vblank_enable(dev, pipe));
1357	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1358}
1359EXPORT_SYMBOL(drm_crtc_vblank_on);
1360
1361/**
1362 * drm_vblank_restore - estimate missed vblanks and update vblank count.
1363 * @dev: DRM device
1364 * @pipe: CRTC index
1365 *
1366 * Power manamement features can cause frame counter resets between vblank
1367 * disable and enable. Drivers can use this function in their
1368 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1369 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1370 * vblank counter.
1371 *
1372 * This function is the legacy version of drm_crtc_vblank_restore().
1373 */
1374void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1375{
1376	ktime_t t_vblank;
1377	struct drm_vblank_crtc *vblank;
1378	int framedur_ns;
1379	u64 diff_ns;
1380	u32 cur_vblank, diff = 1;
1381	int count = DRM_TIMESTAMP_MAXRETRIES;
1382
1383	if (WARN_ON(pipe >= dev->num_crtcs))
1384		return;
1385
1386	assert_spin_locked(&dev->vbl_lock);
1387	assert_spin_locked(&dev->vblank_time_lock);
1388
1389	vblank = &dev->vblank[pipe];
1390	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1391		  "Cannot compute missed vblanks without frame duration\n");
1392	framedur_ns = vblank->framedur_ns;
1393
1394	do {
1395		cur_vblank = __get_vblank_counter(dev, pipe);
1396		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1397	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1398
1399	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1400	if (framedur_ns)
1401		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1402
1403
1404	DRM_DEBUG_VBL("missed %d vblanks in %"PRId64" ns, frame duration=%d ns, hw_diff=%d\n",
1405		      diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1406	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1407}
1408EXPORT_SYMBOL(drm_vblank_restore);
1409
1410/**
1411 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1412 * @crtc: CRTC in question
1413 *
1414 * Power manamement features can cause frame counter resets between vblank
1415 * disable and enable. Drivers can use this function in their
1416 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1417 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1418 * vblank counter.
1419 */
1420void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1421{
1422	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1423}
1424EXPORT_SYMBOL(drm_crtc_vblank_restore);
1425
1426static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1427					  unsigned int pipe)
1428{
1429	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1430
1431	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1432	if (!dev->num_crtcs)
1433		return;
1434
1435	if (WARN_ON(pipe >= dev->num_crtcs))
1436		return;
1437
1438	/*
1439	 * To avoid all the problems that might happen if interrupts
1440	 * were enabled/disabled around or between these calls, we just
1441	 * have the kernel take a reference on the CRTC (just once though
1442	 * to avoid corrupting the count if multiple, mismatch calls occur),
1443	 * so that interrupts remain enabled in the interim.
1444	 */
1445	if (!vblank->inmodeset) {
1446		vblank->inmodeset = 0x1;
1447		if (drm_vblank_get(dev, pipe) == 0)
1448			vblank->inmodeset |= 0x2;
1449	}
1450}
1451
1452static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1453					   unsigned int pipe)
1454{
1455	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1456	unsigned long irqflags;
1457
1458	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1459	if (!dev->num_crtcs)
1460		return;
1461
1462	if (WARN_ON(pipe >= dev->num_crtcs))
1463		return;
1464
1465	if (vblank->inmodeset) {
1466		spin_lock_irqsave(&dev->vbl_lock, irqflags);
1467		drm_reset_vblank_timestamp(dev, pipe);
1468		spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1469
1470		if (vblank->inmodeset & 0x2)
1471			drm_vblank_put(dev, pipe);
1472
1473		vblank->inmodeset = 0;
1474	}
1475}
1476
1477int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1478				 struct drm_file *file_priv)
1479{
1480	struct drm_modeset_ctl *modeset = data;
1481	unsigned int pipe;
1482
1483	/* If drm_vblank_init() hasn't been called yet, just no-op */
1484	if (!dev->num_crtcs)
1485		return 0;
1486
1487	/* KMS drivers handle this internally */
1488	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1489		return 0;
1490
1491	pipe = modeset->crtc;
1492	if (pipe >= dev->num_crtcs)
1493		return -EINVAL;
1494
1495	switch (modeset->cmd) {
1496	case _DRM_PRE_MODESET:
1497		drm_legacy_vblank_pre_modeset(dev, pipe);
1498		break;
1499	case _DRM_POST_MODESET:
1500		drm_legacy_vblank_post_modeset(dev, pipe);
1501		break;
1502	default:
1503		return -EINVAL;
1504	}
1505
1506	return 0;
1507}
1508
1509static inline bool vblank_passed(u64 seq, u64 ref)
1510{
1511	return (seq - ref) <= (1 << 23);
1512}
1513
1514static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1515				  u64 req_seq,
1516				  union drm_wait_vblank *vblwait,
1517				  struct drm_file *file_priv)
1518{
1519	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1520	struct drm_pending_vblank_event *e;
1521	ktime_t now;
1522	unsigned long flags;
1523	u64 seq;
1524	int ret;
1525
1526	e = kzalloc(sizeof(*e), GFP_KERNEL);
1527	if (e == NULL) {
1528		ret = -ENOMEM;
1529		goto err_put;
1530	}
1531
1532	e->pipe = pipe;
1533	e->event.base.type = DRM_EVENT_VBLANK;
1534	e->event.base.length = sizeof(e->event.vbl);
1535	e->event.vbl.user_data = vblwait->request.signal;
1536	e->event.vbl.crtc_id = 0;
1537	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1538		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1539		if (crtc)
1540			e->event.vbl.crtc_id = crtc->base.id;
1541	}
1542
1543	spin_lock_irqsave(&dev->event_lock, flags);
1544
1545	/*
1546	 * drm_crtc_vblank_off() might have been called after we called
1547	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1548	 * vblank disable, so no need for further locking.  The reference from
1549	 * drm_vblank_get() protects against vblank disable from another source.
1550	 */
1551	if (!READ_ONCE(vblank->enabled)) {
1552		ret = -EINVAL;
1553		goto err_unlock;
1554	}
1555
1556	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1557					    &e->event.base);
1558
1559	if (ret)
1560		goto err_unlock;
1561
1562	seq = drm_vblank_count_and_time(dev, pipe, &now);
1563
1564	DRM_DEBUG("event on vblank count %"PRIu64", current %"PRIu64", crtc %u\n",
1565		  req_seq, seq, pipe);
1566
1567	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1568
1569	e->sequence = req_seq;
1570	if (vblank_passed(seq, req_seq)) {
1571		drm_vblank_put(dev, pipe);
1572		send_vblank_event(dev, e, seq, now);
1573		vblwait->reply.sequence = seq;
1574	} else {
1575		/* drm_handle_vblank_events will call drm_vblank_put */
1576		list_add_tail(&e->base.link, &dev->vblank_event_list);
1577		vblwait->reply.sequence = req_seq;
1578	}
1579
1580	spin_unlock_irqrestore(&dev->event_lock, flags);
1581
1582	return 0;
1583
1584err_unlock:
1585	spin_unlock_irqrestore(&dev->event_lock, flags);
1586	kfree(e);
1587err_put:
1588	drm_vblank_put(dev, pipe);
1589	return ret;
1590}
1591
1592static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1593{
1594	if (vblwait->request.sequence)
1595		return false;
1596
1597	return _DRM_VBLANK_RELATIVE ==
1598		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1599					  _DRM_VBLANK_EVENT |
1600					  _DRM_VBLANK_NEXTONMISS));
1601}
1602
1603/*
1604 * Widen a 32-bit param to 64-bits.
1605 *
1606 * \param narrow 32-bit value (missing upper 32 bits)
1607 * \param near 64-bit value that should be 'close' to near
1608 *
1609 * This function returns a 64-bit value using the lower 32-bits from
1610 * 'narrow' and constructing the upper 32-bits so that the result is
1611 * as close as possible to 'near'.
1612 */
1613
1614static u64 widen_32_to_64(u32 narrow, u64 near)
1615{
1616	return near + (s32) (narrow - near);
1617}
1618
1619static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1620				  struct drm_wait_vblank_reply *reply)
1621{
1622	ktime_t now;
1623	struct timespec64 ts;
1624
1625	/*
1626	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1627	 * to store the seconds. This is safe as we always use monotonic
1628	 * timestamps since linux-4.15.
1629	 */
1630	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1631	ts = ktime_to_timespec64(now);
1632	reply->tval_sec = (u32)ts.tv_sec;
1633	reply->tval_usec = ts.tv_nsec / 1000;
1634}
1635
1636int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1637			  struct drm_file *file_priv)
1638{
1639	struct drm_crtc *crtc;
1640	struct drm_vblank_crtc *vblank;
1641	union drm_wait_vblank *vblwait = data;
1642	int ret;
1643	u64 req_seq, seq;
1644	unsigned int pipe_index;
1645	unsigned int flags, pipe, high_pipe;
1646
1647	if (!dev->irq_enabled)
1648		return -EOPNOTSUPP;
1649
1650	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1651		return -EINVAL;
1652
1653	if (vblwait->request.type &
1654	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1655	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1656		DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n",
1657			  vblwait->request.type,
1658			  (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1659			   _DRM_VBLANK_HIGH_CRTC_MASK));
1660		return -EINVAL;
1661	}
1662
1663	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1664	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1665	if (high_pipe)
1666		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1667	else
1668		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1669
1670	/* Convert lease-relative crtc index into global crtc index */
1671	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1672		pipe = 0;
1673		drm_for_each_crtc(crtc, dev) {
1674			if (drm_lease_held(file_priv, crtc->base.id)) {
1675				if (pipe_index == 0)
1676					break;
1677				pipe_index--;
1678			}
1679			pipe++;
1680		}
1681	} else {
1682		pipe = pipe_index;
1683	}
1684
1685	if (pipe >= dev->num_crtcs)
1686		return -EINVAL;
1687
1688	vblank = &dev->vblank[pipe];
1689
1690	/* If the counter is currently enabled and accurate, short-circuit
1691	 * queries to return the cached timestamp of the last vblank.
1692	 */
1693	if (dev->vblank_disable_immediate &&
1694	    drm_wait_vblank_is_query(vblwait) &&
1695	    READ_ONCE(vblank->enabled)) {
1696		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1697		return 0;
1698	}
1699
1700	ret = drm_vblank_get(dev, pipe);
1701	if (ret) {
1702		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1703		return ret;
1704	}
1705	seq = drm_vblank_count(dev, pipe);
1706
1707	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1708	case _DRM_VBLANK_RELATIVE:
1709		req_seq = seq + vblwait->request.sequence;
1710		vblwait->request.sequence = req_seq;
1711		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1712		break;
1713	case _DRM_VBLANK_ABSOLUTE:
1714		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1715		break;
1716	default:
1717		ret = -EINVAL;
1718		goto done;
1719	}
1720
1721	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1722	    vblank_passed(seq, req_seq)) {
1723		req_seq = seq + 1;
1724		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1725		vblwait->request.sequence = req_seq;
1726	}
1727
1728	if (flags & _DRM_VBLANK_EVENT) {
1729		/* must hold on to the vblank ref until the event fires
1730		 * drm_vblank_put will be called asynchronously
1731		 */
1732		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1733	}
1734
1735	if (req_seq != seq) {
1736		int wait;
1737
1738		DRM_DEBUG("waiting on vblank count %"PRIu64", crtc %u\n",
1739			  req_seq, pipe);
1740#ifdef __NetBSD__
1741		DRM_SPIN_TIMED_WAIT_UNTIL(wait, &vblank->queue,
1742		    &dev->vbl_lock, msecs_to_jiffies(3000),
1743		    vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1744				  !READ_ONCE(vblank->enabled));
1745#else
1746		wait = wait_event_interruptible_timeout(vblank->queue,
1747			vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1748				      !READ_ONCE(vblank->enabled),
1749			msecs_to_jiffies(3000));
1750#endif
1751
1752		switch (wait) {
1753		case 0:
1754			/* timeout */
1755			ret = -EBUSY;
1756			break;
1757		case -ERESTARTSYS:
1758			/* interrupted by signal */
1759			ret = -EINTR;
1760			break;
1761		default:
1762			ret = 0;
1763			break;
1764		}
1765	}
1766
1767	if (ret != -EINTR) {
1768		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1769
1770		DRM_DEBUG("crtc %d returning %u to client\n",
1771			  pipe, vblwait->reply.sequence);
1772	} else {
1773		DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1774	}
1775
1776done:
1777	drm_vblank_put(dev, pipe);
1778	return ret;
1779}
1780
1781static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1782{
1783	struct drm_pending_vblank_event *e, *t;
1784	ktime_t now;
1785	u64 seq;
1786
1787	assert_spin_locked(&dev->event_lock);
1788
1789	seq = drm_vblank_count_and_time(dev, pipe, &now);
1790
1791	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1792		if (e->pipe != pipe)
1793			continue;
1794		if (!vblank_passed(seq, e->sequence))
1795			continue;
1796
1797		DRM_DEBUG("vblank event on %"PRIu64", current %"PRIu64"\n",
1798			  e->sequence, seq);
1799
1800		list_del(&e->base.link);
1801		drm_vblank_put(dev, pipe);
1802		send_vblank_event(dev, e, seq, now);
1803	}
1804
1805	trace_drm_vblank_event(pipe, seq, now,
1806			dev->driver->get_vblank_timestamp != NULL);
1807}
1808
1809/**
1810 * drm_handle_vblank - handle a vblank event
1811 * @dev: DRM device
1812 * @pipe: index of CRTC where this event occurred
1813 *
1814 * Drivers should call this routine in their vblank interrupt handlers to
1815 * update the vblank counter and send any signals that may be pending.
1816 *
1817 * This is the legacy version of drm_crtc_handle_vblank().
1818 */
1819bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1820{
1821	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1822	unsigned long irqflags;
1823	bool disable_irq;
1824
1825	if (WARN_ON_ONCE(!dev->num_crtcs))
1826		return false;
1827
1828	if (WARN_ON(pipe >= dev->num_crtcs))
1829		return false;
1830
1831	spin_lock_irqsave(&dev->event_lock, irqflags);
1832
1833	/* Need timestamp lock to prevent concurrent execution with
1834	 * vblank enable/disable, as this would cause inconsistent
1835	 * or corrupted timestamps and vblank counts.
1836	 */
1837	spin_lock(&dev->vblank_time_lock);
1838
1839	spin_lock(&dev->vbl_lock);
1840
1841	/* Vblank irq handling disabled. Nothing to do. */
1842	if (!vblank->enabled) {
1843		spin_unlock(&dev->vbl_lock);
1844		spin_unlock(&dev->vblank_time_lock);
1845		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1846		return false;
1847	}
1848
1849	drm_update_vblank_count(dev, pipe, true);
1850
1851	spin_unlock(&dev->vblank_time_lock);
1852
1853#ifdef __NetBSD__
1854	DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->vbl_lock);
1855#else
1856	wake_up(&vblank->queue);
1857#endif
1858
1859	/* With instant-off, we defer disabling the interrupt until after
1860	 * we finish processing the following vblank after all events have
1861	 * been signaled. The disable has to be last (after
1862	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1863	 */
1864	disable_irq = (dev->vblank_disable_immediate &&
1865		       drm_vblank_offdelay > 0 &&
1866		       !atomic_read(&vblank->refcount));
1867
1868	spin_unlock(&dev->vbl_lock);
1869
1870	drm_handle_vblank_events(dev, pipe);
1871
1872	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1873
1874	if (disable_irq)
1875		vblank_disable_fn(&vblank->disable_timer);
1876
1877	return true;
1878}
1879EXPORT_SYMBOL(drm_handle_vblank);
1880
1881/**
1882 * drm_crtc_handle_vblank - handle a vblank event
1883 * @crtc: where this event occurred
1884 *
1885 * Drivers should call this routine in their vblank interrupt handlers to
1886 * update the vblank counter and send any signals that may be pending.
1887 *
1888 * This is the native KMS version of drm_handle_vblank().
1889 *
1890 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1891 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1892 * provide a barrier: Any writes done before calling
1893 * drm_crtc_handle_vblank() will be visible to callers of the later
1894 * functions, iff the vblank count is the same or a later one.
1895 *
1896 * See also &drm_vblank_crtc.count.
1897 *
1898 * Returns:
1899 * True if the event was successfully handled, false on failure.
1900 */
1901bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1902{
1903	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1904}
1905EXPORT_SYMBOL(drm_crtc_handle_vblank);
1906
1907/*
1908 * Get crtc VBLANK count.
1909 *
1910 * \param dev DRM device
1911 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1912 * \param file_priv drm file private for the user's open file descriptor
1913 */
1914
1915int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1916				struct drm_file *file_priv)
1917{
1918	struct drm_crtc *crtc;
1919	struct drm_vblank_crtc *vblank;
1920	int pipe;
1921	struct drm_crtc_get_sequence *get_seq = data;
1922	ktime_t now;
1923	bool vblank_enabled;
1924	int ret;
1925
1926	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1927		return -EOPNOTSUPP;
1928
1929	if (!dev->irq_enabled)
1930		return -EOPNOTSUPP;
1931
1932	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1933	if (!crtc)
1934		return -ENOENT;
1935
1936	pipe = drm_crtc_index(crtc);
1937
1938	vblank = &dev->vblank[pipe];
1939	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1940
1941	if (!vblank_enabled) {
1942		ret = drm_crtc_vblank_get(crtc);
1943		if (ret) {
1944			DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1945			return ret;
1946		}
1947	}
1948	drm_modeset_lock(&crtc->mutex, NULL);
1949	if (crtc->state)
1950		get_seq->active = crtc->state->enable;
1951	else
1952		get_seq->active = crtc->enabled;
1953	drm_modeset_unlock(&crtc->mutex);
1954	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1955	get_seq->sequence_ns = ktime_to_ns(now);
1956	if (!vblank_enabled)
1957		drm_crtc_vblank_put(crtc);
1958	return 0;
1959}
1960
1961/*
1962 * Queue a event for VBLANK sequence
1963 *
1964 * \param dev DRM device
1965 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1966 * \param file_priv drm file private for the user's open file descriptor
1967 */
1968
1969int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1970				  struct drm_file *file_priv)
1971{
1972	struct drm_crtc *crtc;
1973	struct drm_vblank_crtc *vblank;
1974	int pipe;
1975	struct drm_crtc_queue_sequence *queue_seq = data;
1976	ktime_t now;
1977	struct drm_pending_vblank_event *e;
1978	u32 flags;
1979	u64 seq;
1980	u64 req_seq;
1981	int ret;
1982	unsigned long spin_flags;
1983
1984	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1985		return -EOPNOTSUPP;
1986
1987	if (!dev->irq_enabled)
1988		return -EOPNOTSUPP;
1989
1990	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
1991	if (!crtc)
1992		return -ENOENT;
1993
1994	flags = queue_seq->flags;
1995	/* Check valid flag bits */
1996	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
1997		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
1998		return -EINVAL;
1999
2000	pipe = drm_crtc_index(crtc);
2001
2002	vblank = &dev->vblank[pipe];
2003
2004	e = kzalloc(sizeof(*e), GFP_KERNEL);
2005	if (e == NULL)
2006		return -ENOMEM;
2007
2008	ret = drm_crtc_vblank_get(crtc);
2009	if (ret) {
2010		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
2011		goto err_free;
2012	}
2013
2014	seq = drm_vblank_count_and_time(dev, pipe, &now);
2015	req_seq = queue_seq->sequence;
2016
2017	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2018		req_seq += seq;
2019
2020	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
2021		req_seq = seq + 1;
2022
2023	e->pipe = pipe;
2024	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2025	e->event.base.length = sizeof(e->event.seq);
2026	e->event.seq.user_data = queue_seq->user_data;
2027
2028	spin_lock_irqsave(&dev->event_lock, spin_flags);
2029
2030	/*
2031	 * drm_crtc_vblank_off() might have been called after we called
2032	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2033	 * vblank disable, so no need for further locking.  The reference from
2034	 * drm_crtc_vblank_get() protects against vblank disable from another source.
2035	 */
2036	if (!READ_ONCE(vblank->enabled)) {
2037		ret = -EINVAL;
2038		goto err_unlock;
2039	}
2040
2041	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2042					    &e->event.base);
2043
2044	if (ret)
2045		goto err_unlock;
2046
2047	e->sequence = req_seq;
2048
2049	if (vblank_passed(seq, req_seq)) {
2050		drm_crtc_vblank_put(crtc);
2051		send_vblank_event(dev, e, seq, now);
2052		queue_seq->sequence = seq;
2053	} else {
2054		/* drm_handle_vblank_events will call drm_vblank_put */
2055		list_add_tail(&e->base.link, &dev->vblank_event_list);
2056		queue_seq->sequence = req_seq;
2057	}
2058
2059	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2060	return 0;
2061
2062err_unlock:
2063	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2064	drm_crtc_vblank_put(crtc);
2065err_free:
2066	kfree(e);
2067	return ret;
2068}
2069