drm_vblank.c revision 1.2
1/*	$NetBSD: drm_vblank.c,v 1.2 2021/12/18 23:44:57 riastradh Exp $	*/
2
3/*
4 * drm_irq.c IRQ and vblank support
5 *
6 * \author Rickard E. (Rik) Faith <faith@valinux.com>
7 * \author Gareth Hughes <gareth@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
26 * OTHER DEALINGS IN THE SOFTWARE.
27 */
28
29#include <sys/cdefs.h>
30__KERNEL_RCSID(0, "$NetBSD: drm_vblank.c,v 1.2 2021/12/18 23:44:57 riastradh Exp $");
31
32#include <linux/export.h>
33#include <linux/moduleparam.h>
34
35#include <drm/drm_crtc.h>
36#include <drm/drm_drv.h>
37#include <drm/drm_framebuffer.h>
38#include <drm/drm_print.h>
39#include <drm/drm_vblank.h>
40
41#include "drm_internal.h"
42#include "drm_trace.h"
43
44/**
45 * DOC: vblank handling
46 *
47 * Vertical blanking plays a major role in graphics rendering. To achieve
48 * tear-free display, users must synchronize page flips and/or rendering to
49 * vertical blanking. The DRM API offers ioctls to perform page flips
50 * synchronized to vertical blanking and wait for vertical blanking.
51 *
52 * The DRM core handles most of the vertical blanking management logic, which
53 * involves filtering out spurious interrupts, keeping race-free blanking
54 * counters, coping with counter wrap-around and resets and keeping use counts.
55 * It relies on the driver to generate vertical blanking interrupts and
56 * optionally provide a hardware vertical blanking counter.
57 *
58 * Drivers must initialize the vertical blanking handling core with a call to
59 * drm_vblank_init(). Minimally, a driver needs to implement
60 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
61 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
62 * support.
63 *
64 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
65 * themselves (for instance to handle page flipping operations).  The DRM core
66 * maintains a vertical blanking use count to ensure that the interrupts are not
67 * disabled while a user still needs them. To increment the use count, drivers
68 * call drm_crtc_vblank_get() and release the vblank reference again with
69 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
70 * guaranteed to be enabled.
71 *
72 * On many hardware disabling the vblank interrupt cannot be done in a race-free
73 * manner, see &drm_driver.vblank_disable_immediate and
74 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
75 * vblanks after a timer has expired, which can be configured through the
76 * ``vblankoffdelay`` module parameter.
77 */
78
79/* Retry timestamp calculation up to 3 times to satisfy
80 * drm_timestamp_precision before giving up.
81 */
82#define DRM_TIMESTAMP_MAXRETRIES 3
83
84/* Threshold in nanoseconds for detection of redundant
85 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
86 */
87#define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
88
89static bool
90drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
91			  ktime_t *tvblank, bool in_vblank_irq);
92
93static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
94
95static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
96
97module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
98module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
99MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
100MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
101
102static void store_vblank(struct drm_device *dev, unsigned int pipe,
103			 u32 vblank_count_inc,
104			 ktime_t t_vblank, u32 last)
105{
106	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
107
108	assert_spin_locked(&dev->vblank_time_lock);
109
110	vblank->last = last;
111
112	write_seqlock(&vblank->seqlock);
113	vblank->time = t_vblank;
114	atomic64_add(vblank_count_inc, &vblank->count);
115	write_sequnlock(&vblank->seqlock);
116}
117
118static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
119{
120	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
121
122	return vblank->max_vblank_count ?: dev->max_vblank_count;
123}
124
125/*
126 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
127 * if there is no useable hardware frame counter available.
128 */
129static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
130{
131	WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0);
132	return 0;
133}
134
135static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
136{
137	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
138		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
139
140		if (WARN_ON(!crtc))
141			return 0;
142
143		if (crtc->funcs->get_vblank_counter)
144			return crtc->funcs->get_vblank_counter(crtc);
145	}
146
147	if (dev->driver->get_vblank_counter)
148		return dev->driver->get_vblank_counter(dev, pipe);
149
150	return drm_vblank_no_hw_counter(dev, pipe);
151}
152
153/*
154 * Reset the stored timestamp for the current vblank count to correspond
155 * to the last vblank occurred.
156 *
157 * Only to be called from drm_crtc_vblank_on().
158 *
159 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
160 * device vblank fields.
161 */
162static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
163{
164	u32 cur_vblank;
165	bool rc;
166	ktime_t t_vblank;
167	int count = DRM_TIMESTAMP_MAXRETRIES;
168
169	spin_lock(&dev->vblank_time_lock);
170
171	/*
172	 * sample the current counter to avoid random jumps
173	 * when drm_vblank_enable() applies the diff
174	 */
175	do {
176		cur_vblank = __get_vblank_counter(dev, pipe);
177		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
178	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
179
180	/*
181	 * Only reinitialize corresponding vblank timestamp if high-precision query
182	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
183	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
184	 */
185	if (!rc)
186		t_vblank = 0;
187
188	/*
189	 * +1 to make sure user will never see the same
190	 * vblank counter value before and after a modeset
191	 */
192	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
193
194	spin_unlock(&dev->vblank_time_lock);
195}
196
197/*
198 * Call back into the driver to update the appropriate vblank counter
199 * (specified by @pipe).  Deal with wraparound, if it occurred, and
200 * update the last read value so we can deal with wraparound on the next
201 * call if necessary.
202 *
203 * Only necessary when going from off->on, to account for frames we
204 * didn't get an interrupt for.
205 *
206 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
207 * device vblank fields.
208 */
209static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
210				    bool in_vblank_irq)
211{
212	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
213	u32 cur_vblank, diff;
214	bool rc;
215	ktime_t t_vblank;
216	int count = DRM_TIMESTAMP_MAXRETRIES;
217	int framedur_ns = vblank->framedur_ns;
218	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
219
220	/*
221	 * Interrupts were disabled prior to this call, so deal with counter
222	 * wrap if needed.
223	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
224	 * here if the register is small or we had vblank interrupts off for
225	 * a long time.
226	 *
227	 * We repeat the hardware vblank counter & timestamp query until
228	 * we get consistent results. This to prevent races between gpu
229	 * updating its hardware counter while we are retrieving the
230	 * corresponding vblank timestamp.
231	 */
232	do {
233		cur_vblank = __get_vblank_counter(dev, pipe);
234		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
235	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
236
237	if (max_vblank_count) {
238		/* trust the hw counter when it's around */
239		diff = (cur_vblank - vblank->last) & max_vblank_count;
240	} else if (rc && framedur_ns) {
241		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
242
243		/*
244		 * Figure out how many vblanks we've missed based
245		 * on the difference in the timestamps and the
246		 * frame/field duration.
247		 */
248
249		DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks."
250			      " diff_ns = %lld, framedur_ns = %d)\n",
251			      pipe, (long long) diff_ns, framedur_ns);
252
253		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
254
255		if (diff == 0 && in_vblank_irq)
256			DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n",
257				      pipe);
258	} else {
259		/* some kind of default for drivers w/o accurate vbl timestamping */
260		diff = in_vblank_irq ? 1 : 0;
261	}
262
263	/*
264	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
265	 * interval? If so then vblank irqs keep running and it will likely
266	 * happen that the hardware vblank counter is not trustworthy as it
267	 * might reset at some point in that interval and vblank timestamps
268	 * are not trustworthy either in that interval. Iow. this can result
269	 * in a bogus diff >> 1 which must be avoided as it would cause
270	 * random large forward jumps of the software vblank counter.
271	 */
272	if (diff > 1 && (vblank->inmodeset & 0x2)) {
273		DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
274			      " due to pre-modeset.\n", pipe, diff);
275		diff = 1;
276	}
277
278	DRM_DEBUG_VBL("updating vblank count on crtc %u:"
279		      " current=%llu, diff=%u, hw=%u hw_last=%u\n",
280		      pipe, atomic64_read(&vblank->count), diff,
281		      cur_vblank, vblank->last);
282
283	if (diff == 0) {
284		WARN_ON_ONCE(cur_vblank != vblank->last);
285		return;
286	}
287
288	/*
289	 * Only reinitialize corresponding vblank timestamp if high-precision query
290	 * available and didn't fail, or we were called from the vblank interrupt.
291	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
292	 * for now, to mark the vblanktimestamp as invalid.
293	 */
294	if (!rc && !in_vblank_irq)
295		t_vblank = 0;
296
297	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
298}
299
300static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
301{
302	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
303	u64 count;
304
305	if (WARN_ON(pipe >= dev->num_crtcs))
306		return 0;
307
308	count = atomic64_read(&vblank->count);
309
310	/*
311	 * This read barrier corresponds to the implicit write barrier of the
312	 * write seqlock in store_vblank(). Note that this is the only place
313	 * where we need an explicit barrier, since all other access goes
314	 * through drm_vblank_count_and_time(), which already has the required
315	 * read barrier curtesy of the read seqlock.
316	 */
317	smp_rmb();
318
319	return count;
320}
321
322/**
323 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
324 * @crtc: which counter to retrieve
325 *
326 * This function is similar to drm_crtc_vblank_count() but this function
327 * interpolates to handle a race with vblank interrupts using the high precision
328 * timestamping support.
329 *
330 * This is mostly useful for hardware that can obtain the scanout position, but
331 * doesn't have a hardware frame counter.
332 */
333u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
334{
335	struct drm_device *dev = crtc->dev;
336	unsigned int pipe = drm_crtc_index(crtc);
337	u64 vblank;
338	unsigned long flags;
339
340	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !dev->driver->get_vblank_timestamp,
341		  "This function requires support for accurate vblank timestamps.");
342
343	spin_lock_irqsave(&dev->vblank_time_lock, flags);
344
345	drm_update_vblank_count(dev, pipe, false);
346	vblank = drm_vblank_count(dev, pipe);
347
348	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
349
350	return vblank;
351}
352EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
353
354static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
355{
356	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
357		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
358
359		if (WARN_ON(!crtc))
360			return;
361
362		if (crtc->funcs->disable_vblank) {
363			crtc->funcs->disable_vblank(crtc);
364			return;
365		}
366	}
367
368	dev->driver->disable_vblank(dev, pipe);
369}
370
371/*
372 * Disable vblank irq's on crtc, make sure that last vblank count
373 * of hardware and corresponding consistent software vblank counter
374 * are preserved, even if there are any spurious vblank irq's after
375 * disable.
376 */
377void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
378{
379	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
380	unsigned long irqflags;
381
382	assert_spin_locked(&dev->vbl_lock);
383
384	/* Prevent vblank irq processing while disabling vblank irqs,
385	 * so no updates of timestamps or count can happen after we've
386	 * disabled. Needed to prevent races in case of delayed irq's.
387	 */
388	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
389
390	/*
391	 * Update vblank count and disable vblank interrupts only if the
392	 * interrupts were enabled. This avoids calling the ->disable_vblank()
393	 * operation in atomic context with the hardware potentially runtime
394	 * suspended.
395	 */
396	if (!vblank->enabled)
397		goto out;
398
399	/*
400	 * Update the count and timestamp to maintain the
401	 * appearance that the counter has been ticking all along until
402	 * this time. This makes the count account for the entire time
403	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
404	 */
405	drm_update_vblank_count(dev, pipe, false);
406	__disable_vblank(dev, pipe);
407	vblank->enabled = false;
408
409out:
410	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
411}
412
413static void vblank_disable_fn(struct timer_list *t)
414{
415	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
416	struct drm_device *dev = vblank->dev;
417	unsigned int pipe = vblank->pipe;
418	unsigned long irqflags;
419
420	spin_lock_irqsave(&dev->vbl_lock, irqflags);
421	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
422		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
423		drm_vblank_disable_and_save(dev, pipe);
424	}
425	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
426}
427
428void drm_vblank_cleanup(struct drm_device *dev)
429{
430	unsigned int pipe;
431
432	/* Bail if the driver didn't call drm_vblank_init() */
433	if (dev->num_crtcs == 0)
434		return;
435
436	for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
437		struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
438
439		WARN_ON(READ_ONCE(vblank->enabled) &&
440			drm_core_check_feature(dev, DRIVER_MODESET));
441
442		del_timer_sync(&vblank->disable_timer);
443	}
444
445	kfree(dev->vblank);
446
447	dev->num_crtcs = 0;
448}
449
450/**
451 * drm_vblank_init - initialize vblank support
452 * @dev: DRM device
453 * @num_crtcs: number of CRTCs supported by @dev
454 *
455 * This function initializes vblank support for @num_crtcs display pipelines.
456 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
457 * drivers with a &drm_driver.release callback.
458 *
459 * Returns:
460 * Zero on success or a negative error code on failure.
461 */
462int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
463{
464	int ret = -ENOMEM;
465	unsigned int i;
466
467	spin_lock_init(&dev->vbl_lock);
468	spin_lock_init(&dev->vblank_time_lock);
469
470	dev->num_crtcs = num_crtcs;
471
472	dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
473	if (!dev->vblank)
474		goto err;
475
476	for (i = 0; i < num_crtcs; i++) {
477		struct drm_vblank_crtc *vblank = &dev->vblank[i];
478
479		vblank->dev = dev;
480		vblank->pipe = i;
481		init_waitqueue_head(&vblank->queue);
482		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
483		seqlock_init(&vblank->seqlock);
484	}
485
486	DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
487
488	/* Driver specific high-precision vblank timestamping supported? */
489	if (dev->driver->get_vblank_timestamp)
490		DRM_INFO("Driver supports precise vblank timestamp query.\n");
491	else
492		DRM_INFO("No driver support for vblank timestamp query.\n");
493
494	/* Must have precise timestamping for reliable vblank instant disable */
495	if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
496		dev->vblank_disable_immediate = false;
497		DRM_INFO("Setting vblank_disable_immediate to false because "
498			 "get_vblank_timestamp == NULL\n");
499	}
500
501	return 0;
502
503err:
504	dev->num_crtcs = 0;
505	return ret;
506}
507EXPORT_SYMBOL(drm_vblank_init);
508
509/**
510 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
511 * @crtc: which CRTC's vblank waitqueue to retrieve
512 *
513 * This function returns a pointer to the vblank waitqueue for the CRTC.
514 * Drivers can use this to implement vblank waits using wait_event() and related
515 * functions.
516 */
517wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
518{
519	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
520}
521EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
522
523
524/**
525 * drm_calc_timestamping_constants - calculate vblank timestamp constants
526 * @crtc: drm_crtc whose timestamp constants should be updated.
527 * @mode: display mode containing the scanout timings
528 *
529 * Calculate and store various constants which are later needed by vblank and
530 * swap-completion timestamping, e.g, by
531 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
532 * scanout timing, so they take things like panel scaling or other adjustments
533 * into account.
534 */
535void drm_calc_timestamping_constants(struct drm_crtc *crtc,
536				     const struct drm_display_mode *mode)
537{
538	struct drm_device *dev = crtc->dev;
539	unsigned int pipe = drm_crtc_index(crtc);
540	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
541	int linedur_ns = 0, framedur_ns = 0;
542	int dotclock = mode->crtc_clock;
543
544	if (!dev->num_crtcs)
545		return;
546
547	if (WARN_ON(pipe >= dev->num_crtcs))
548		return;
549
550	/* Valid dotclock? */
551	if (dotclock > 0) {
552		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
553
554		/*
555		 * Convert scanline length in pixels and video
556		 * dot clock to line duration and frame duration
557		 * in nanoseconds:
558		 */
559		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
560		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
561
562		/*
563		 * Fields of interlaced scanout modes are only half a frame duration.
564		 */
565		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
566			framedur_ns /= 2;
567	} else
568		DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
569			  crtc->base.id);
570
571	vblank->linedur_ns  = linedur_ns;
572	vblank->framedur_ns = framedur_ns;
573	vblank->hwmode = *mode;
574
575	DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
576		  crtc->base.id, mode->crtc_htotal,
577		  mode->crtc_vtotal, mode->crtc_vdisplay);
578	DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
579		  crtc->base.id, dotclock, framedur_ns, linedur_ns);
580}
581EXPORT_SYMBOL(drm_calc_timestamping_constants);
582
583/**
584 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
585 * @dev: DRM device
586 * @pipe: index of CRTC whose vblank timestamp to retrieve
587 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
588 *             On return contains true maximum error of timestamp
589 * @vblank_time: Pointer to time which should receive the timestamp
590 * @in_vblank_irq:
591 *     True when called from drm_crtc_handle_vblank().  Some drivers
592 *     need to apply some workarounds for gpu-specific vblank irq quirks
593 *     if flag is set.
594 *
595 * Implements calculation of exact vblank timestamps from given drm_display_mode
596 * timings and current video scanout position of a CRTC. This can be directly
597 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
598 * if &drm_driver.get_scanout_position is implemented.
599 *
600 * The current implementation only handles standard video modes. For double scan
601 * and interlaced modes the driver is supposed to adjust the hardware mode
602 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
603 * match the scanout position reported.
604 *
605 * Note that atomic drivers must call drm_calc_timestamping_constants() before
606 * enabling a CRTC. The atomic helpers already take care of that in
607 * drm_atomic_helper_update_legacy_modeset_state().
608 *
609 * Returns:
610 *
611 * Returns true on success, and false on failure, i.e. when no accurate
612 * timestamp could be acquired.
613 */
614bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
615					   unsigned int pipe,
616					   int *max_error,
617					   ktime_t *vblank_time,
618					   bool in_vblank_irq)
619{
620	struct timespec64 ts_etime, ts_vblank_time;
621	ktime_t stime, etime;
622	bool vbl_status;
623	struct drm_crtc *crtc;
624	const struct drm_display_mode *mode;
625	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
626	int vpos, hpos, i;
627	int delta_ns, duration_ns;
628
629	if (!drm_core_check_feature(dev, DRIVER_MODESET))
630		return false;
631
632	crtc = drm_crtc_from_index(dev, pipe);
633
634	if (pipe >= dev->num_crtcs || !crtc) {
635		DRM_ERROR("Invalid crtc %u\n", pipe);
636		return false;
637	}
638
639	/* Scanout position query not supported? Should not happen. */
640	if (!dev->driver->get_scanout_position) {
641		DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
642		return false;
643	}
644
645	if (drm_drv_uses_atomic_modeset(dev))
646		mode = &vblank->hwmode;
647	else
648		mode = &crtc->hwmode;
649
650	/* If mode timing undefined, just return as no-op:
651	 * Happens during initial modesetting of a crtc.
652	 */
653	if (mode->crtc_clock == 0) {
654		DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
655		WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
656
657		return false;
658	}
659
660	/* Get current scanout position with system timestamp.
661	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
662	 * if single query takes longer than max_error nanoseconds.
663	 *
664	 * This guarantees a tight bound on maximum error if
665	 * code gets preempted or delayed for some reason.
666	 */
667	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
668		/*
669		 * Get vertical and horizontal scanout position vpos, hpos,
670		 * and bounding timestamps stime, etime, pre/post query.
671		 */
672		vbl_status = dev->driver->get_scanout_position(dev, pipe,
673							       in_vblank_irq,
674							       &vpos, &hpos,
675							       &stime, &etime,
676							       mode);
677
678		/* Return as no-op if scanout query unsupported or failed. */
679		if (!vbl_status) {
680			DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
681				  pipe);
682			return false;
683		}
684
685		/* Compute uncertainty in timestamp of scanout position query. */
686		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
687
688		/* Accept result with <  max_error nsecs timing uncertainty. */
689		if (duration_ns <= *max_error)
690			break;
691	}
692
693	/* Noisy system timing? */
694	if (i == DRM_TIMESTAMP_MAXRETRIES) {
695		DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
696			  pipe, duration_ns/1000, *max_error/1000, i);
697	}
698
699	/* Return upper bound of timestamp precision error. */
700	*max_error = duration_ns;
701
702	/* Convert scanout position into elapsed time at raw_time query
703	 * since start of scanout at first display scanline. delta_ns
704	 * can be negative if start of scanout hasn't happened yet.
705	 */
706	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
707			   mode->crtc_clock);
708
709	/* Subtract time delta from raw timestamp to get final
710	 * vblank_time timestamp for end of vblank.
711	 */
712	*vblank_time = ktime_sub_ns(etime, delta_ns);
713
714	if (!drm_debug_enabled(DRM_UT_VBL))
715		return true;
716
717	ts_etime = ktime_to_timespec64(etime);
718	ts_vblank_time = ktime_to_timespec64(*vblank_time);
719
720	DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
721		      pipe, hpos, vpos,
722		      (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
723		      (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
724		      duration_ns / 1000, i);
725
726	return true;
727}
728EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
729
730/**
731 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
732 *                             vblank interval
733 * @dev: DRM device
734 * @pipe: index of CRTC whose vblank timestamp to retrieve
735 * @tvblank: Pointer to target time which should receive the timestamp
736 * @in_vblank_irq:
737 *     True when called from drm_crtc_handle_vblank().  Some drivers
738 *     need to apply some workarounds for gpu-specific vblank irq quirks
739 *     if flag is set.
740 *
741 * Fetches the system timestamp corresponding to the time of the most recent
742 * vblank interval on specified CRTC. May call into kms-driver to
743 * compute the timestamp with a high-precision GPU specific method.
744 *
745 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
746 * call, i.e., it isn't very precisely locked to the true vblank.
747 *
748 * Returns:
749 * True if timestamp is considered to be very precise, false otherwise.
750 */
751static bool
752drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
753			  ktime_t *tvblank, bool in_vblank_irq)
754{
755	bool ret = false;
756
757	/* Define requested maximum error on timestamps (nanoseconds). */
758	int max_error = (int) drm_timestamp_precision * 1000;
759
760	/* Query driver if possible and precision timestamping enabled. */
761	if (dev->driver->get_vblank_timestamp && (max_error > 0))
762		ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
763							tvblank, in_vblank_irq);
764
765	/* GPU high precision timestamp query unsupported or failed.
766	 * Return current monotonic/gettimeofday timestamp as best estimate.
767	 */
768	if (!ret)
769		*tvblank = ktime_get();
770
771	return ret;
772}
773
774/**
775 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
776 * @crtc: which counter to retrieve
777 *
778 * Fetches the "cooked" vblank count value that represents the number of
779 * vblank events since the system was booted, including lost events due to
780 * modesetting activity. Note that this timer isn't correct against a racing
781 * vblank interrupt (since it only reports the software vblank counter), see
782 * drm_crtc_accurate_vblank_count() for such use-cases.
783 *
784 * Note that for a given vblank counter value drm_crtc_handle_vblank()
785 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
786 * provide a barrier: Any writes done before calling
787 * drm_crtc_handle_vblank() will be visible to callers of the later
788 * functions, iff the vblank count is the same or a later one.
789 *
790 * See also &drm_vblank_crtc.count.
791 *
792 * Returns:
793 * The software vblank counter.
794 */
795u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
796{
797	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
798}
799EXPORT_SYMBOL(drm_crtc_vblank_count);
800
801/**
802 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
803 *     system timestamp corresponding to that vblank counter value.
804 * @dev: DRM device
805 * @pipe: index of CRTC whose counter to retrieve
806 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
807 *
808 * Fetches the "cooked" vblank count value that represents the number of
809 * vblank events since the system was booted, including lost events due to
810 * modesetting activity. Returns corresponding system timestamp of the time
811 * of the vblank interval that corresponds to the current vblank counter value.
812 *
813 * This is the legacy version of drm_crtc_vblank_count_and_time().
814 */
815static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
816				     ktime_t *vblanktime)
817{
818	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
819	u64 vblank_count;
820	unsigned int seq;
821
822	if (WARN_ON(pipe >= dev->num_crtcs)) {
823		*vblanktime = 0;
824		return 0;
825	}
826
827	do {
828		seq = read_seqbegin(&vblank->seqlock);
829		vblank_count = atomic64_read(&vblank->count);
830		*vblanktime = vblank->time;
831	} while (read_seqretry(&vblank->seqlock, seq));
832
833	return vblank_count;
834}
835
836/**
837 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
838 *     and the system timestamp corresponding to that vblank counter value
839 * @crtc: which counter to retrieve
840 * @vblanktime: Pointer to time to receive the vblank timestamp.
841 *
842 * Fetches the "cooked" vblank count value that represents the number of
843 * vblank events since the system was booted, including lost events due to
844 * modesetting activity. Returns corresponding system timestamp of the time
845 * of the vblank interval that corresponds to the current vblank counter value.
846 *
847 * Note that for a given vblank counter value drm_crtc_handle_vblank()
848 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
849 * provide a barrier: Any writes done before calling
850 * drm_crtc_handle_vblank() will be visible to callers of the later
851 * functions, iff the vblank count is the same or a later one.
852 *
853 * See also &drm_vblank_crtc.count.
854 */
855u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
856				   ktime_t *vblanktime)
857{
858	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
859					 vblanktime);
860}
861EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
862
863static void send_vblank_event(struct drm_device *dev,
864		struct drm_pending_vblank_event *e,
865		u64 seq, ktime_t now)
866{
867	struct timespec64 tv;
868
869	switch (e->event.base.type) {
870	case DRM_EVENT_VBLANK:
871	case DRM_EVENT_FLIP_COMPLETE:
872		tv = ktime_to_timespec64(now);
873		e->event.vbl.sequence = seq;
874		/*
875		 * e->event is a user space structure, with hardcoded unsigned
876		 * 32-bit seconds/microseconds. This is safe as we always use
877		 * monotonic timestamps since linux-4.15
878		 */
879		e->event.vbl.tv_sec = tv.tv_sec;
880		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
881		break;
882	case DRM_EVENT_CRTC_SEQUENCE:
883		if (seq)
884			e->event.seq.sequence = seq;
885		e->event.seq.time_ns = ktime_to_ns(now);
886		break;
887	}
888	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
889	drm_send_event_locked(dev, &e->base);
890}
891
892/**
893 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
894 * @crtc: the source CRTC of the vblank event
895 * @e: the event to send
896 *
897 * A lot of drivers need to generate vblank events for the very next vblank
898 * interrupt. For example when the page flip interrupt happens when the page
899 * flip gets armed, but not when it actually executes within the next vblank
900 * period. This helper function implements exactly the required vblank arming
901 * behaviour.
902 *
903 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
904 * atomic commit must ensure that the next vblank happens at exactly the same
905 * time as the atomic commit is committed to the hardware. This function itself
906 * does **not** protect against the next vblank interrupt racing with either this
907 * function call or the atomic commit operation. A possible sequence could be:
908 *
909 * 1. Driver commits new hardware state into vblank-synchronized registers.
910 * 2. A vblank happens, committing the hardware state. Also the corresponding
911 *    vblank interrupt is fired off and fully processed by the interrupt
912 *    handler.
913 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
914 * 4. The event is only send out for the next vblank, which is wrong.
915 *
916 * An equivalent race can happen when the driver calls
917 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
918 *
919 * The only way to make this work safely is to prevent the vblank from firing
920 * (and the hardware from committing anything else) until the entire atomic
921 * commit sequence has run to completion. If the hardware does not have such a
922 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
923 * Instead drivers need to manually send out the event from their interrupt
924 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
925 * possible race with the hardware committing the atomic update.
926 *
927 * Caller must hold a vblank reference for the event @e acquired by a
928 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
929 */
930void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
931			       struct drm_pending_vblank_event *e)
932{
933	struct drm_device *dev = crtc->dev;
934	unsigned int pipe = drm_crtc_index(crtc);
935
936	assert_spin_locked(&dev->event_lock);
937
938	e->pipe = pipe;
939	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
940	list_add_tail(&e->base.link, &dev->vblank_event_list);
941}
942EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
943
944/**
945 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
946 * @crtc: the source CRTC of the vblank event
947 * @e: the event to send
948 *
949 * Updates sequence # and timestamp on event for the most recently processed
950 * vblank, and sends it to userspace.  Caller must hold event lock.
951 *
952 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
953 * situation, especially to send out events for atomic commit operations.
954 */
955void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
956				struct drm_pending_vblank_event *e)
957{
958	struct drm_device *dev = crtc->dev;
959	u64 seq;
960	unsigned int pipe = drm_crtc_index(crtc);
961	ktime_t now;
962
963	if (dev->num_crtcs > 0) {
964		seq = drm_vblank_count_and_time(dev, pipe, &now);
965	} else {
966		seq = 0;
967
968		now = ktime_get();
969	}
970	e->pipe = pipe;
971	send_vblank_event(dev, e, seq, now);
972}
973EXPORT_SYMBOL(drm_crtc_send_vblank_event);
974
975static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
976{
977	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
978		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
979
980		if (WARN_ON(!crtc))
981			return 0;
982
983		if (crtc->funcs->enable_vblank)
984			return crtc->funcs->enable_vblank(crtc);
985	}
986
987	return dev->driver->enable_vblank(dev, pipe);
988}
989
990static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
991{
992	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
993	int ret = 0;
994
995	assert_spin_locked(&dev->vbl_lock);
996
997	spin_lock(&dev->vblank_time_lock);
998
999	if (!vblank->enabled) {
1000		/*
1001		 * Enable vblank irqs under vblank_time_lock protection.
1002		 * All vblank count & timestamp updates are held off
1003		 * until we are done reinitializing master counter and
1004		 * timestamps. Filtercode in drm_handle_vblank() will
1005		 * prevent double-accounting of same vblank interval.
1006		 */
1007		ret = __enable_vblank(dev, pipe);
1008		DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
1009		if (ret) {
1010			atomic_dec(&vblank->refcount);
1011		} else {
1012			drm_update_vblank_count(dev, pipe, 0);
1013			/* drm_update_vblank_count() includes a wmb so we just
1014			 * need to ensure that the compiler emits the write
1015			 * to mark the vblank as enabled after the call
1016			 * to drm_update_vblank_count().
1017			 */
1018			WRITE_ONCE(vblank->enabled, true);
1019		}
1020	}
1021
1022	spin_unlock(&dev->vblank_time_lock);
1023
1024	return ret;
1025}
1026
1027static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1028{
1029	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1030	unsigned long irqflags;
1031	int ret = 0;
1032
1033	if (!dev->num_crtcs)
1034		return -EINVAL;
1035
1036	if (WARN_ON(pipe >= dev->num_crtcs))
1037		return -EINVAL;
1038
1039	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1040	/* Going from 0->1 means we have to enable interrupts again */
1041	if (atomic_add_return(1, &vblank->refcount) == 1) {
1042		ret = drm_vblank_enable(dev, pipe);
1043	} else {
1044		if (!vblank->enabled) {
1045			atomic_dec(&vblank->refcount);
1046			ret = -EINVAL;
1047		}
1048	}
1049	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1050
1051	return ret;
1052}
1053
1054/**
1055 * drm_crtc_vblank_get - get a reference count on vblank events
1056 * @crtc: which CRTC to own
1057 *
1058 * Acquire a reference count on vblank events to avoid having them disabled
1059 * while in use.
1060 *
1061 * Returns:
1062 * Zero on success or a negative error code on failure.
1063 */
1064int drm_crtc_vblank_get(struct drm_crtc *crtc)
1065{
1066	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1067}
1068EXPORT_SYMBOL(drm_crtc_vblank_get);
1069
1070static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1071{
1072	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1073
1074	if (WARN_ON(pipe >= dev->num_crtcs))
1075		return;
1076
1077	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1078		return;
1079
1080	/* Last user schedules interrupt disable */
1081	if (atomic_dec_and_test(&vblank->refcount)) {
1082		if (drm_vblank_offdelay == 0)
1083			return;
1084		else if (drm_vblank_offdelay < 0)
1085			vblank_disable_fn(&vblank->disable_timer);
1086		else if (!dev->vblank_disable_immediate)
1087			mod_timer(&vblank->disable_timer,
1088				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
1089	}
1090}
1091
1092/**
1093 * drm_crtc_vblank_put - give up ownership of vblank events
1094 * @crtc: which counter to give up
1095 *
1096 * Release ownership of a given vblank counter, turning off interrupts
1097 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1098 */
1099void drm_crtc_vblank_put(struct drm_crtc *crtc)
1100{
1101	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1102}
1103EXPORT_SYMBOL(drm_crtc_vblank_put);
1104
1105/**
1106 * drm_wait_one_vblank - wait for one vblank
1107 * @dev: DRM device
1108 * @pipe: CRTC index
1109 *
1110 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1111 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1112 * due to lack of driver support or because the crtc is off.
1113 *
1114 * This is the legacy version of drm_crtc_wait_one_vblank().
1115 */
1116void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1117{
1118	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1119	int ret;
1120	u64 last;
1121
1122	if (WARN_ON(pipe >= dev->num_crtcs))
1123		return;
1124
1125	ret = drm_vblank_get(dev, pipe);
1126	if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1127		return;
1128
1129	last = drm_vblank_count(dev, pipe);
1130
1131	ret = wait_event_timeout(vblank->queue,
1132				 last != drm_vblank_count(dev, pipe),
1133				 msecs_to_jiffies(100));
1134
1135	WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1136
1137	drm_vblank_put(dev, pipe);
1138}
1139EXPORT_SYMBOL(drm_wait_one_vblank);
1140
1141/**
1142 * drm_crtc_wait_one_vblank - wait for one vblank
1143 * @crtc: DRM crtc
1144 *
1145 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1146 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1147 * due to lack of driver support or because the crtc is off.
1148 */
1149void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1150{
1151	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1152}
1153EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1154
1155/**
1156 * drm_crtc_vblank_off - disable vblank events on a CRTC
1157 * @crtc: CRTC in question
1158 *
1159 * Drivers can use this function to shut down the vblank interrupt handling when
1160 * disabling a crtc. This function ensures that the latest vblank frame count is
1161 * stored so that drm_vblank_on can restore it again.
1162 *
1163 * Drivers must use this function when the hardware vblank counter can get
1164 * reset, e.g. when suspending or disabling the @crtc in general.
1165 */
1166void drm_crtc_vblank_off(struct drm_crtc *crtc)
1167{
1168	struct drm_device *dev = crtc->dev;
1169	unsigned int pipe = drm_crtc_index(crtc);
1170	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1171	struct drm_pending_vblank_event *e, *t;
1172
1173	ktime_t now;
1174	unsigned long irqflags;
1175	u64 seq;
1176
1177	if (WARN_ON(pipe >= dev->num_crtcs))
1178		return;
1179
1180	spin_lock_irqsave(&dev->event_lock, irqflags);
1181
1182	spin_lock(&dev->vbl_lock);
1183	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1184		      pipe, vblank->enabled, vblank->inmodeset);
1185
1186	/* Avoid redundant vblank disables without previous
1187	 * drm_crtc_vblank_on(). */
1188	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1189		drm_vblank_disable_and_save(dev, pipe);
1190
1191	wake_up(&vblank->queue);
1192
1193	/*
1194	 * Prevent subsequent drm_vblank_get() from re-enabling
1195	 * the vblank interrupt by bumping the refcount.
1196	 */
1197	if (!vblank->inmodeset) {
1198		atomic_inc(&vblank->refcount);
1199		vblank->inmodeset = 1;
1200	}
1201	spin_unlock(&dev->vbl_lock);
1202
1203	/* Send any queued vblank events, lest the natives grow disquiet */
1204	seq = drm_vblank_count_and_time(dev, pipe, &now);
1205
1206	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1207		if (e->pipe != pipe)
1208			continue;
1209		DRM_DEBUG("Sending premature vblank event on disable: "
1210			  "wanted %llu, current %llu\n",
1211			  e->sequence, seq);
1212		list_del(&e->base.link);
1213		drm_vblank_put(dev, pipe);
1214		send_vblank_event(dev, e, seq, now);
1215	}
1216	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1217
1218	/* Will be reset by the modeset helpers when re-enabling the crtc by
1219	 * calling drm_calc_timestamping_constants(). */
1220	vblank->hwmode.crtc_clock = 0;
1221}
1222EXPORT_SYMBOL(drm_crtc_vblank_off);
1223
1224/**
1225 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1226 * @crtc: CRTC in question
1227 *
1228 * Drivers can use this function to reset the vblank state to off at load time.
1229 * Drivers should use this together with the drm_crtc_vblank_off() and
1230 * drm_crtc_vblank_on() functions. The difference compared to
1231 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1232 * and hence doesn't need to call any driver hooks.
1233 *
1234 * This is useful for recovering driver state e.g. on driver load, or on resume.
1235 */
1236void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1237{
1238	struct drm_device *dev = crtc->dev;
1239	unsigned long irqflags;
1240	unsigned int pipe = drm_crtc_index(crtc);
1241	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1242
1243	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1244	/*
1245	 * Prevent subsequent drm_vblank_get() from enabling the vblank
1246	 * interrupt by bumping the refcount.
1247	 */
1248	if (!vblank->inmodeset) {
1249		atomic_inc(&vblank->refcount);
1250		vblank->inmodeset = 1;
1251	}
1252	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1253
1254	WARN_ON(!list_empty(&dev->vblank_event_list));
1255}
1256EXPORT_SYMBOL(drm_crtc_vblank_reset);
1257
1258/**
1259 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1260 * @crtc: CRTC in question
1261 * @max_vblank_count: max hardware vblank counter value
1262 *
1263 * Update the maximum hardware vblank counter value for @crtc
1264 * at runtime. Useful for hardware where the operation of the
1265 * hardware vblank counter depends on the currently active
1266 * display configuration.
1267 *
1268 * For example, if the hardware vblank counter does not work
1269 * when a specific connector is active the maximum can be set
1270 * to zero. And when that specific connector isn't active the
1271 * maximum can again be set to the appropriate non-zero value.
1272 *
1273 * If used, must be called before drm_vblank_on().
1274 */
1275void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1276				   u32 max_vblank_count)
1277{
1278	struct drm_device *dev = crtc->dev;
1279	unsigned int pipe = drm_crtc_index(crtc);
1280	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1281
1282	WARN_ON(dev->max_vblank_count);
1283	WARN_ON(!READ_ONCE(vblank->inmodeset));
1284
1285	vblank->max_vblank_count = max_vblank_count;
1286}
1287EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1288
1289/**
1290 * drm_crtc_vblank_on - enable vblank events on a CRTC
1291 * @crtc: CRTC in question
1292 *
1293 * This functions restores the vblank interrupt state captured with
1294 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1295 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1296 * unbalanced and so can also be unconditionally called in driver load code to
1297 * reflect the current hardware state of the crtc.
1298 */
1299void drm_crtc_vblank_on(struct drm_crtc *crtc)
1300{
1301	struct drm_device *dev = crtc->dev;
1302	unsigned int pipe = drm_crtc_index(crtc);
1303	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1304	unsigned long irqflags;
1305
1306	if (WARN_ON(pipe >= dev->num_crtcs))
1307		return;
1308
1309	spin_lock_irqsave(&dev->vbl_lock, irqflags);
1310	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1311		      pipe, vblank->enabled, vblank->inmodeset);
1312
1313	/* Drop our private "prevent drm_vblank_get" refcount */
1314	if (vblank->inmodeset) {
1315		atomic_dec(&vblank->refcount);
1316		vblank->inmodeset = 0;
1317	}
1318
1319	drm_reset_vblank_timestamp(dev, pipe);
1320
1321	/*
1322	 * re-enable interrupts if there are users left, or the
1323	 * user wishes vblank interrupts to be enabled all the time.
1324	 */
1325	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1326		WARN_ON(drm_vblank_enable(dev, pipe));
1327	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1328}
1329EXPORT_SYMBOL(drm_crtc_vblank_on);
1330
1331/**
1332 * drm_vblank_restore - estimate missed vblanks and update vblank count.
1333 * @dev: DRM device
1334 * @pipe: CRTC index
1335 *
1336 * Power manamement features can cause frame counter resets between vblank
1337 * disable and enable. Drivers can use this function in their
1338 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1339 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1340 * vblank counter.
1341 *
1342 * This function is the legacy version of drm_crtc_vblank_restore().
1343 */
1344void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1345{
1346	ktime_t t_vblank;
1347	struct drm_vblank_crtc *vblank;
1348	int framedur_ns;
1349	u64 diff_ns;
1350	u32 cur_vblank, diff = 1;
1351	int count = DRM_TIMESTAMP_MAXRETRIES;
1352
1353	if (WARN_ON(pipe >= dev->num_crtcs))
1354		return;
1355
1356	assert_spin_locked(&dev->vbl_lock);
1357	assert_spin_locked(&dev->vblank_time_lock);
1358
1359	vblank = &dev->vblank[pipe];
1360	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1361		  "Cannot compute missed vblanks without frame duration\n");
1362	framedur_ns = vblank->framedur_ns;
1363
1364	do {
1365		cur_vblank = __get_vblank_counter(dev, pipe);
1366		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1367	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1368
1369	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1370	if (framedur_ns)
1371		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1372
1373
1374	DRM_DEBUG_VBL("missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1375		      diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1376	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1377}
1378EXPORT_SYMBOL(drm_vblank_restore);
1379
1380/**
1381 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1382 * @crtc: CRTC in question
1383 *
1384 * Power manamement features can cause frame counter resets between vblank
1385 * disable and enable. Drivers can use this function in their
1386 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1387 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1388 * vblank counter.
1389 */
1390void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1391{
1392	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1393}
1394EXPORT_SYMBOL(drm_crtc_vblank_restore);
1395
1396static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1397					  unsigned int pipe)
1398{
1399	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1400
1401	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1402	if (!dev->num_crtcs)
1403		return;
1404
1405	if (WARN_ON(pipe >= dev->num_crtcs))
1406		return;
1407
1408	/*
1409	 * To avoid all the problems that might happen if interrupts
1410	 * were enabled/disabled around or between these calls, we just
1411	 * have the kernel take a reference on the CRTC (just once though
1412	 * to avoid corrupting the count if multiple, mismatch calls occur),
1413	 * so that interrupts remain enabled in the interim.
1414	 */
1415	if (!vblank->inmodeset) {
1416		vblank->inmodeset = 0x1;
1417		if (drm_vblank_get(dev, pipe) == 0)
1418			vblank->inmodeset |= 0x2;
1419	}
1420}
1421
1422static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1423					   unsigned int pipe)
1424{
1425	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1426	unsigned long irqflags;
1427
1428	/* vblank is not initialized (IRQ not installed ?), or has been freed */
1429	if (!dev->num_crtcs)
1430		return;
1431
1432	if (WARN_ON(pipe >= dev->num_crtcs))
1433		return;
1434
1435	if (vblank->inmodeset) {
1436		spin_lock_irqsave(&dev->vbl_lock, irqflags);
1437		drm_reset_vblank_timestamp(dev, pipe);
1438		spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1439
1440		if (vblank->inmodeset & 0x2)
1441			drm_vblank_put(dev, pipe);
1442
1443		vblank->inmodeset = 0;
1444	}
1445}
1446
1447int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1448				 struct drm_file *file_priv)
1449{
1450	struct drm_modeset_ctl *modeset = data;
1451	unsigned int pipe;
1452
1453	/* If drm_vblank_init() hasn't been called yet, just no-op */
1454	if (!dev->num_crtcs)
1455		return 0;
1456
1457	/* KMS drivers handle this internally */
1458	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1459		return 0;
1460
1461	pipe = modeset->crtc;
1462	if (pipe >= dev->num_crtcs)
1463		return -EINVAL;
1464
1465	switch (modeset->cmd) {
1466	case _DRM_PRE_MODESET:
1467		drm_legacy_vblank_pre_modeset(dev, pipe);
1468		break;
1469	case _DRM_POST_MODESET:
1470		drm_legacy_vblank_post_modeset(dev, pipe);
1471		break;
1472	default:
1473		return -EINVAL;
1474	}
1475
1476	return 0;
1477}
1478
1479static inline bool vblank_passed(u64 seq, u64 ref)
1480{
1481	return (seq - ref) <= (1 << 23);
1482}
1483
1484static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1485				  u64 req_seq,
1486				  union drm_wait_vblank *vblwait,
1487				  struct drm_file *file_priv)
1488{
1489	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1490	struct drm_pending_vblank_event *e;
1491	ktime_t now;
1492	unsigned long flags;
1493	u64 seq;
1494	int ret;
1495
1496	e = kzalloc(sizeof(*e), GFP_KERNEL);
1497	if (e == NULL) {
1498		ret = -ENOMEM;
1499		goto err_put;
1500	}
1501
1502	e->pipe = pipe;
1503	e->event.base.type = DRM_EVENT_VBLANK;
1504	e->event.base.length = sizeof(e->event.vbl);
1505	e->event.vbl.user_data = vblwait->request.signal;
1506	e->event.vbl.crtc_id = 0;
1507	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1508		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1509		if (crtc)
1510			e->event.vbl.crtc_id = crtc->base.id;
1511	}
1512
1513	spin_lock_irqsave(&dev->event_lock, flags);
1514
1515	/*
1516	 * drm_crtc_vblank_off() might have been called after we called
1517	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1518	 * vblank disable, so no need for further locking.  The reference from
1519	 * drm_vblank_get() protects against vblank disable from another source.
1520	 */
1521	if (!READ_ONCE(vblank->enabled)) {
1522		ret = -EINVAL;
1523		goto err_unlock;
1524	}
1525
1526	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1527					    &e->event.base);
1528
1529	if (ret)
1530		goto err_unlock;
1531
1532	seq = drm_vblank_count_and_time(dev, pipe, &now);
1533
1534	DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n",
1535		  req_seq, seq, pipe);
1536
1537	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1538
1539	e->sequence = req_seq;
1540	if (vblank_passed(seq, req_seq)) {
1541		drm_vblank_put(dev, pipe);
1542		send_vblank_event(dev, e, seq, now);
1543		vblwait->reply.sequence = seq;
1544	} else {
1545		/* drm_handle_vblank_events will call drm_vblank_put */
1546		list_add_tail(&e->base.link, &dev->vblank_event_list);
1547		vblwait->reply.sequence = req_seq;
1548	}
1549
1550	spin_unlock_irqrestore(&dev->event_lock, flags);
1551
1552	return 0;
1553
1554err_unlock:
1555	spin_unlock_irqrestore(&dev->event_lock, flags);
1556	kfree(e);
1557err_put:
1558	drm_vblank_put(dev, pipe);
1559	return ret;
1560}
1561
1562static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1563{
1564	if (vblwait->request.sequence)
1565		return false;
1566
1567	return _DRM_VBLANK_RELATIVE ==
1568		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1569					  _DRM_VBLANK_EVENT |
1570					  _DRM_VBLANK_NEXTONMISS));
1571}
1572
1573/*
1574 * Widen a 32-bit param to 64-bits.
1575 *
1576 * \param narrow 32-bit value (missing upper 32 bits)
1577 * \param near 64-bit value that should be 'close' to near
1578 *
1579 * This function returns a 64-bit value using the lower 32-bits from
1580 * 'narrow' and constructing the upper 32-bits so that the result is
1581 * as close as possible to 'near'.
1582 */
1583
1584static u64 widen_32_to_64(u32 narrow, u64 near)
1585{
1586	return near + (s32) (narrow - near);
1587}
1588
1589static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1590				  struct drm_wait_vblank_reply *reply)
1591{
1592	ktime_t now;
1593	struct timespec64 ts;
1594
1595	/*
1596	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1597	 * to store the seconds. This is safe as we always use monotonic
1598	 * timestamps since linux-4.15.
1599	 */
1600	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1601	ts = ktime_to_timespec64(now);
1602	reply->tval_sec = (u32)ts.tv_sec;
1603	reply->tval_usec = ts.tv_nsec / 1000;
1604}
1605
1606int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1607			  struct drm_file *file_priv)
1608{
1609	struct drm_crtc *crtc;
1610	struct drm_vblank_crtc *vblank;
1611	union drm_wait_vblank *vblwait = data;
1612	int ret;
1613	u64 req_seq, seq;
1614	unsigned int pipe_index;
1615	unsigned int flags, pipe, high_pipe;
1616
1617	if (!dev->irq_enabled)
1618		return -EOPNOTSUPP;
1619
1620	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1621		return -EINVAL;
1622
1623	if (vblwait->request.type &
1624	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1625	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
1626		DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n",
1627			  vblwait->request.type,
1628			  (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1629			   _DRM_VBLANK_HIGH_CRTC_MASK));
1630		return -EINVAL;
1631	}
1632
1633	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1634	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1635	if (high_pipe)
1636		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1637	else
1638		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1639
1640	/* Convert lease-relative crtc index into global crtc index */
1641	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1642		pipe = 0;
1643		drm_for_each_crtc(crtc, dev) {
1644			if (drm_lease_held(file_priv, crtc->base.id)) {
1645				if (pipe_index == 0)
1646					break;
1647				pipe_index--;
1648			}
1649			pipe++;
1650		}
1651	} else {
1652		pipe = pipe_index;
1653	}
1654
1655	if (pipe >= dev->num_crtcs)
1656		return -EINVAL;
1657
1658	vblank = &dev->vblank[pipe];
1659
1660	/* If the counter is currently enabled and accurate, short-circuit
1661	 * queries to return the cached timestamp of the last vblank.
1662	 */
1663	if (dev->vblank_disable_immediate &&
1664	    drm_wait_vblank_is_query(vblwait) &&
1665	    READ_ONCE(vblank->enabled)) {
1666		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1667		return 0;
1668	}
1669
1670	ret = drm_vblank_get(dev, pipe);
1671	if (ret) {
1672		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1673		return ret;
1674	}
1675	seq = drm_vblank_count(dev, pipe);
1676
1677	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1678	case _DRM_VBLANK_RELATIVE:
1679		req_seq = seq + vblwait->request.sequence;
1680		vblwait->request.sequence = req_seq;
1681		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1682		break;
1683	case _DRM_VBLANK_ABSOLUTE:
1684		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1685		break;
1686	default:
1687		ret = -EINVAL;
1688		goto done;
1689	}
1690
1691	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1692	    vblank_passed(seq, req_seq)) {
1693		req_seq = seq + 1;
1694		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1695		vblwait->request.sequence = req_seq;
1696	}
1697
1698	if (flags & _DRM_VBLANK_EVENT) {
1699		/* must hold on to the vblank ref until the event fires
1700		 * drm_vblank_put will be called asynchronously
1701		 */
1702		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1703	}
1704
1705	if (req_seq != seq) {
1706		int wait;
1707
1708		DRM_DEBUG("waiting on vblank count %llu, crtc %u\n",
1709			  req_seq, pipe);
1710		wait = wait_event_interruptible_timeout(vblank->queue,
1711			vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1712				      !READ_ONCE(vblank->enabled),
1713			msecs_to_jiffies(3000));
1714
1715		switch (wait) {
1716		case 0:
1717			/* timeout */
1718			ret = -EBUSY;
1719			break;
1720		case -ERESTARTSYS:
1721			/* interrupted by signal */
1722			ret = -EINTR;
1723			break;
1724		default:
1725			ret = 0;
1726			break;
1727		}
1728	}
1729
1730	if (ret != -EINTR) {
1731		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1732
1733		DRM_DEBUG("crtc %d returning %u to client\n",
1734			  pipe, vblwait->reply.sequence);
1735	} else {
1736		DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1737	}
1738
1739done:
1740	drm_vblank_put(dev, pipe);
1741	return ret;
1742}
1743
1744static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1745{
1746	struct drm_pending_vblank_event *e, *t;
1747	ktime_t now;
1748	u64 seq;
1749
1750	assert_spin_locked(&dev->event_lock);
1751
1752	seq = drm_vblank_count_and_time(dev, pipe, &now);
1753
1754	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1755		if (e->pipe != pipe)
1756			continue;
1757		if (!vblank_passed(seq, e->sequence))
1758			continue;
1759
1760		DRM_DEBUG("vblank event on %llu, current %llu\n",
1761			  e->sequence, seq);
1762
1763		list_del(&e->base.link);
1764		drm_vblank_put(dev, pipe);
1765		send_vblank_event(dev, e, seq, now);
1766	}
1767
1768	trace_drm_vblank_event(pipe, seq, now,
1769			dev->driver->get_vblank_timestamp != NULL);
1770}
1771
1772/**
1773 * drm_handle_vblank - handle a vblank event
1774 * @dev: DRM device
1775 * @pipe: index of CRTC where this event occurred
1776 *
1777 * Drivers should call this routine in their vblank interrupt handlers to
1778 * update the vblank counter and send any signals that may be pending.
1779 *
1780 * This is the legacy version of drm_crtc_handle_vblank().
1781 */
1782bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1783{
1784	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1785	unsigned long irqflags;
1786	bool disable_irq;
1787
1788	if (WARN_ON_ONCE(!dev->num_crtcs))
1789		return false;
1790
1791	if (WARN_ON(pipe >= dev->num_crtcs))
1792		return false;
1793
1794	spin_lock_irqsave(&dev->event_lock, irqflags);
1795
1796	/* Need timestamp lock to prevent concurrent execution with
1797	 * vblank enable/disable, as this would cause inconsistent
1798	 * or corrupted timestamps and vblank counts.
1799	 */
1800	spin_lock(&dev->vblank_time_lock);
1801
1802	/* Vblank irq handling disabled. Nothing to do. */
1803	if (!vblank->enabled) {
1804		spin_unlock(&dev->vblank_time_lock);
1805		spin_unlock_irqrestore(&dev->event_lock, irqflags);
1806		return false;
1807	}
1808
1809	drm_update_vblank_count(dev, pipe, true);
1810
1811	spin_unlock(&dev->vblank_time_lock);
1812
1813	wake_up(&vblank->queue);
1814
1815	/* With instant-off, we defer disabling the interrupt until after
1816	 * we finish processing the following vblank after all events have
1817	 * been signaled. The disable has to be last (after
1818	 * drm_handle_vblank_events) so that the timestamp is always accurate.
1819	 */
1820	disable_irq = (dev->vblank_disable_immediate &&
1821		       drm_vblank_offdelay > 0 &&
1822		       !atomic_read(&vblank->refcount));
1823
1824	drm_handle_vblank_events(dev, pipe);
1825
1826	spin_unlock_irqrestore(&dev->event_lock, irqflags);
1827
1828	if (disable_irq)
1829		vblank_disable_fn(&vblank->disable_timer);
1830
1831	return true;
1832}
1833EXPORT_SYMBOL(drm_handle_vblank);
1834
1835/**
1836 * drm_crtc_handle_vblank - handle a vblank event
1837 * @crtc: where this event occurred
1838 *
1839 * Drivers should call this routine in their vblank interrupt handlers to
1840 * update the vblank counter and send any signals that may be pending.
1841 *
1842 * This is the native KMS version of drm_handle_vblank().
1843 *
1844 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1845 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1846 * provide a barrier: Any writes done before calling
1847 * drm_crtc_handle_vblank() will be visible to callers of the later
1848 * functions, iff the vblank count is the same or a later one.
1849 *
1850 * See also &drm_vblank_crtc.count.
1851 *
1852 * Returns:
1853 * True if the event was successfully handled, false on failure.
1854 */
1855bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1856{
1857	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1858}
1859EXPORT_SYMBOL(drm_crtc_handle_vblank);
1860
1861/*
1862 * Get crtc VBLANK count.
1863 *
1864 * \param dev DRM device
1865 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1866 * \param file_priv drm file private for the user's open file descriptor
1867 */
1868
1869int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1870				struct drm_file *file_priv)
1871{
1872	struct drm_crtc *crtc;
1873	struct drm_vblank_crtc *vblank;
1874	int pipe;
1875	struct drm_crtc_get_sequence *get_seq = data;
1876	ktime_t now;
1877	bool vblank_enabled;
1878	int ret;
1879
1880	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1881		return -EOPNOTSUPP;
1882
1883	if (!dev->irq_enabled)
1884		return -EOPNOTSUPP;
1885
1886	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1887	if (!crtc)
1888		return -ENOENT;
1889
1890	pipe = drm_crtc_index(crtc);
1891
1892	vblank = &dev->vblank[pipe];
1893	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1894
1895	if (!vblank_enabled) {
1896		ret = drm_crtc_vblank_get(crtc);
1897		if (ret) {
1898			DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1899			return ret;
1900		}
1901	}
1902	drm_modeset_lock(&crtc->mutex, NULL);
1903	if (crtc->state)
1904		get_seq->active = crtc->state->enable;
1905	else
1906		get_seq->active = crtc->enabled;
1907	drm_modeset_unlock(&crtc->mutex);
1908	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1909	get_seq->sequence_ns = ktime_to_ns(now);
1910	if (!vblank_enabled)
1911		drm_crtc_vblank_put(crtc);
1912	return 0;
1913}
1914
1915/*
1916 * Queue a event for VBLANK sequence
1917 *
1918 * \param dev DRM device
1919 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1920 * \param file_priv drm file private for the user's open file descriptor
1921 */
1922
1923int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1924				  struct drm_file *file_priv)
1925{
1926	struct drm_crtc *crtc;
1927	struct drm_vblank_crtc *vblank;
1928	int pipe;
1929	struct drm_crtc_queue_sequence *queue_seq = data;
1930	ktime_t now;
1931	struct drm_pending_vblank_event *e;
1932	u32 flags;
1933	u64 seq;
1934	u64 req_seq;
1935	int ret;
1936	unsigned long spin_flags;
1937
1938	if (!drm_core_check_feature(dev, DRIVER_MODESET))
1939		return -EOPNOTSUPP;
1940
1941	if (!dev->irq_enabled)
1942		return -EOPNOTSUPP;
1943
1944	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
1945	if (!crtc)
1946		return -ENOENT;
1947
1948	flags = queue_seq->flags;
1949	/* Check valid flag bits */
1950	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
1951		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
1952		return -EINVAL;
1953
1954	pipe = drm_crtc_index(crtc);
1955
1956	vblank = &dev->vblank[pipe];
1957
1958	e = kzalloc(sizeof(*e), GFP_KERNEL);
1959	if (e == NULL)
1960		return -ENOMEM;
1961
1962	ret = drm_crtc_vblank_get(crtc);
1963	if (ret) {
1964		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1965		goto err_free;
1966	}
1967
1968	seq = drm_vblank_count_and_time(dev, pipe, &now);
1969	req_seq = queue_seq->sequence;
1970
1971	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
1972		req_seq += seq;
1973
1974	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
1975		req_seq = seq + 1;
1976
1977	e->pipe = pipe;
1978	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
1979	e->event.base.length = sizeof(e->event.seq);
1980	e->event.seq.user_data = queue_seq->user_data;
1981
1982	spin_lock_irqsave(&dev->event_lock, spin_flags);
1983
1984	/*
1985	 * drm_crtc_vblank_off() might have been called after we called
1986	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1987	 * vblank disable, so no need for further locking.  The reference from
1988	 * drm_crtc_vblank_get() protects against vblank disable from another source.
1989	 */
1990	if (!READ_ONCE(vblank->enabled)) {
1991		ret = -EINVAL;
1992		goto err_unlock;
1993	}
1994
1995	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1996					    &e->event.base);
1997
1998	if (ret)
1999		goto err_unlock;
2000
2001	e->sequence = req_seq;
2002
2003	if (vblank_passed(seq, req_seq)) {
2004		drm_crtc_vblank_put(crtc);
2005		send_vblank_event(dev, e, seq, now);
2006		queue_seq->sequence = seq;
2007	} else {
2008		/* drm_handle_vblank_events will call drm_vblank_put */
2009		list_add_tail(&e->base.link, &dev->vblank_event_list);
2010		queue_seq->sequence = req_seq;
2011	}
2012
2013	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2014	return 0;
2015
2016err_unlock:
2017	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2018	drm_crtc_vblank_put(crtc);
2019err_free:
2020	kfree(e);
2021	return ret;
2022}
2023