1/*	$NetBSD: if_upgt.c,v 1.33 2022/07/01 01:07:32 riastradh Exp $	*/
2/*	$OpenBSD: if_upgt.c,v 1.49 2010/04/20 22:05:43 tedu Exp $ */
3
4/*
5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/cdefs.h>
21__KERNEL_RCSID(0, "$NetBSD: if_upgt.c,v 1.33 2022/07/01 01:07:32 riastradh Exp $");
22
23#ifdef _KERNEL_OPT
24#include "opt_usb.h"
25#endif
26
27#include <sys/param.h>
28#include <sys/callout.h>
29#include <sys/device.h>
30#include <sys/errno.h>
31#include <sys/kernel.h>
32#include <sys/kthread.h>
33#include <sys/mbuf.h>
34#include <sys/proc.h>
35#include <sys/sockio.h>
36#include <sys/systm.h>
37#include <sys/vnode.h>
38#include <sys/bus.h>
39#include <sys/endian.h>
40#include <sys/intr.h>
41
42#include <net/bpf.h>
43#include <net/if.h>
44#include <net/if_arp.h>
45#include <net/if_dl.h>
46#include <net/if_ether.h>
47#include <net/if_media.h>
48#include <net/if_types.h>
49
50#include <net80211/ieee80211_var.h>
51#include <net80211/ieee80211_radiotap.h>
52
53#include <dev/firmload.h>
54
55#include <dev/usb/usb.h>
56#include <dev/usb/usbdi.h>
57#include <dev/usb/usbdi_util.h>
58#include <dev/usb/usbdivar.h>
59#include <dev/usb/usbdevs.h>
60
61#include <dev/usb/if_upgtvar.h>
62
63/*
64 * Driver for the USB PrismGT devices.
65 *
66 * For now just USB 2.0 devices with the GW3887 chipset are supported.
67 * The driver has been written based on the firmware version 2.13.1.0_LM87.
68 *
69 * TODO's:
70 * - Fix MONITOR mode (MAC filter).
71 * - Add HOSTAP mode.
72 * - Add IBSS mode.
73 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
74 *
75 * Parts of this driver has been influenced by reading the p54u driver
76 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
77 * Sebastien Bourdeauducq <lekernel@prism54.org>.
78 */
79
80#ifdef UPGT_DEBUG
81int upgt_debug = 2;
82#define DPRINTF(l, x...) do { if ((l) <= upgt_debug) printf(x); } while (0)
83#else
84#define DPRINTF(l, x...)
85#endif
86
87/*
88 * Prototypes.
89 */
90static int	upgt_match(device_t, cfdata_t, void *);
91static void	upgt_attach(device_t, device_t, void *);
92static int	upgt_detach(device_t, int);
93static int	upgt_activate(device_t, devact_t);
94
95static void	upgt_attach_hook(device_t);
96static int	upgt_device_type(struct upgt_softc *, uint16_t, uint16_t);
97static int	upgt_device_init(struct upgt_softc *);
98static int	upgt_mem_init(struct upgt_softc *);
99static uint32_t	upgt_mem_alloc(struct upgt_softc *);
100static void	upgt_mem_free(struct upgt_softc *, uint32_t);
101static int	upgt_fw_alloc(struct upgt_softc *);
102static void	upgt_fw_free(struct upgt_softc *);
103static int	upgt_fw_verify(struct upgt_softc *);
104static int	upgt_fw_load(struct upgt_softc *);
105static int	upgt_fw_copy(char *, char *, int);
106static int	upgt_eeprom_read(struct upgt_softc *);
107static int	upgt_eeprom_parse(struct upgt_softc *);
108static void	upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
109static void	upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
110static void	upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
111static void	upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
112
113static int	upgt_ioctl(struct ifnet *, u_long, void *);
114static int	upgt_init(struct ifnet *);
115static void	upgt_stop(struct upgt_softc *);
116static int	upgt_media_change(struct ifnet *);
117static void	upgt_newassoc(struct ieee80211_node *, int);
118static int	upgt_newstate(struct ieee80211com *, enum ieee80211_state,
119		    int);
120static void	upgt_newstate_task(void *);
121static void	upgt_next_scan(void *);
122static void	upgt_start(struct ifnet *);
123static void	upgt_watchdog(struct ifnet *);
124static void	upgt_tx_task(void *);
125static void	upgt_tx_done(struct upgt_softc *, uint8_t *);
126static void	upgt_rx_cb(struct usbd_xfer *, void *, usbd_status);
127static void	upgt_rx(struct upgt_softc *, uint8_t *, int);
128static void	upgt_setup_rates(struct upgt_softc *);
129static uint8_t	upgt_rx_rate(struct upgt_softc *, const int);
130static int	upgt_set_macfilter(struct upgt_softc *, uint8_t);
131static int	upgt_set_channel(struct upgt_softc *, unsigned);
132static void	upgt_set_led(struct upgt_softc *, int);
133static void	upgt_set_led_blink(void *);
134static int	upgt_get_stats(struct upgt_softc *);
135
136static int	upgt_alloc_tx(struct upgt_softc *);
137static int	upgt_alloc_rx(struct upgt_softc *);
138static int	upgt_alloc_cmd(struct upgt_softc *);
139static void	upgt_free_tx(struct upgt_softc *);
140static void	upgt_free_rx(struct upgt_softc *);
141static void	upgt_free_cmd(struct upgt_softc *);
142static int	upgt_bulk_xmit(struct upgt_softc *, struct upgt_data *,
143		    struct usbd_pipe *, uint32_t *, int);
144
145#if 0
146static void	upgt_hexdump(void *, int);
147#endif
148static uint32_t	upgt_crc32_le(const void *, size_t);
149static uint32_t	upgt_chksum_le(const uint32_t *, size_t);
150
151CFATTACH_DECL_NEW(upgt, sizeof(struct upgt_softc),
152	upgt_match, upgt_attach, upgt_detach, upgt_activate);
153
154static const struct usb_devno upgt_devs_1[] = {
155	/* version 1 devices */
156	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST120G },
157	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG_V1 }
158};
159
160static const struct usb_devno upgt_devs_2[] = {
161	/* version 2 devices */
162	{ USB_VENDOR_ACCTON,		USB_PRODUCT_ACCTON_PRISM_GT },
163	{ USB_VENDOR_ALCATELT,		USB_PRODUCT_ALCATELT_ST121G },
164	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
165	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54AG },
166	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GV2 },
167	{ USB_VENDOR_CONCEPTRONIC2,	USB_PRODUCT_CONCEPTRONIC2_PRISM_GT },
168	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GTST },
169	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_1 },
170	{ USB_VENDOR_DELL,		USB_PRODUCT_DELL_PRISM_GT_2 },
171	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122A2 },
172	{ USB_VENDOR_FSC,		USB_PRODUCT_FSC_E5400 },
173	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_1 },
174	{ USB_VENDOR_GLOBESPAN,		USB_PRODUCT_GLOBESPAN_PRISM_GT_2 },
175	{ USB_VENDOR_INTERSIL,		USB_PRODUCT_INTERSIL_PRISM_GT },
176	{ USB_VENDOR_PHEENET,		USB_PRODUCT_PHEENET_GWU513 },
177	{ USB_VENDOR_PHILIPS,		USB_PRODUCT_PHILIPS_CPWUA054 },
178	{ USB_VENDOR_SHARP,		USB_PRODUCT_SHARP_RUITZ1016YCZZ },
179	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
180	{ USB_VENDOR_USR,		USB_PRODUCT_USR_USR5422 },
181	{ USB_VENDOR_WISTRONNEWEB,	USB_PRODUCT_WISTRONNEWEB_UR045G },
182	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_1 },
183	{ USB_VENDOR_CONEXANT,		USB_PRODUCT_CONEXANT_PRISM_GT_2 },
184	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_MD40900 },
185	{ USB_VENDOR_ZCOM,		USB_PRODUCT_ZCOM_XG703A }
186};
187
188static int
189firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
190    size_t *sizep)
191{
192	firmware_handle_t fh;
193	int error;
194
195	if ((error = firmware_open(dname, iname, &fh)) != 0)
196		return error;
197	*sizep = firmware_get_size(fh);
198	if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
199		firmware_close(fh);
200		return ENOMEM;
201	}
202	if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
203		firmware_free(*ucodep, *sizep);
204	firmware_close(fh);
205
206	return error;
207}
208
209static int
210upgt_match(device_t parent, cfdata_t match, void *aux)
211{
212	struct usb_attach_arg *uaa = aux;
213
214	if (usb_lookup(upgt_devs_1, uaa->uaa_vendor, uaa->uaa_product) != NULL)
215		return UMATCH_VENDOR_PRODUCT;
216
217	if (usb_lookup(upgt_devs_2, uaa->uaa_vendor, uaa->uaa_product) != NULL)
218		return UMATCH_VENDOR_PRODUCT;
219
220	return UMATCH_NONE;
221}
222
223static void
224upgt_attach(device_t parent, device_t self, void *aux)
225{
226	struct upgt_softc *sc = device_private(self);
227	struct usb_attach_arg *uaa = aux;
228	usb_interface_descriptor_t *id;
229	usb_endpoint_descriptor_t *ed;
230	usbd_status error;
231	char *devinfop;
232	int i;
233
234	aprint_naive("\n");
235	aprint_normal("\n");
236
237	/*
238	 * Attach USB device.
239	 */
240	sc->sc_dev = self;
241	sc->sc_udev = uaa->uaa_device;
242	sc->sc_init_state = UPGT_INIT_NONE;
243
244	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
245	aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
246	usbd_devinfo_free(devinfop);
247
248	/* check device type */
249	if (upgt_device_type(sc, uaa->uaa_vendor, uaa->uaa_product) != 0)
250		return;
251
252	/* set configuration number */
253	error = usbd_set_config_no(sc->sc_udev, UPGT_CONFIG_NO, 0);
254	if (error != 0) {
255		aprint_error_dev(sc->sc_dev, "failed to set configuration"
256		    ", err=%s\n", usbd_errstr(error));
257		return;
258	}
259
260	/* get the first interface handle */
261	error = usbd_device2interface_handle(sc->sc_udev, UPGT_IFACE_INDEX,
262	    &sc->sc_iface);
263	if (error != 0) {
264		aprint_error_dev(sc->sc_dev,
265		    "could not get interface handle\n");
266		return;
267	}
268
269	/* find endpoints */
270	id = usbd_get_interface_descriptor(sc->sc_iface);
271	sc->sc_rx_no = sc->sc_tx_no = -1;
272	for (i = 0; i < id->bNumEndpoints; i++) {
273		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
274		if (ed == NULL) {
275			aprint_error_dev(sc->sc_dev,
276			    "no endpoint descriptor for iface %d\n", i);
277			return;
278		}
279
280		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
281		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
282			sc->sc_tx_no = ed->bEndpointAddress;
283		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
284		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
285			sc->sc_rx_no = ed->bEndpointAddress;
286
287		/*
288		 * 0x01 TX pipe
289		 * 0x81 RX pipe
290		 *
291		 * Deprecated scheme (not used with fw version >2.5.6.x):
292		 * 0x02 TX MGMT pipe
293		 * 0x82 TX MGMT pipe
294		 */
295		if (sc->sc_tx_no != -1 && sc->sc_rx_no != -1)
296			break;
297	}
298	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
299		aprint_error_dev(sc->sc_dev, "missing endpoint\n");
300		return;
301	}
302
303	/* setup tasks and timeouts */
304	usb_init_task(&sc->sc_task_newstate, upgt_newstate_task, sc, 0);
305	usb_init_task(&sc->sc_task_tx, upgt_tx_task, sc, 0);
306	callout_init(&sc->scan_to, 0);
307	callout_setfunc(&sc->scan_to, upgt_next_scan, sc);
308	callout_init(&sc->led_to, 0);
309	callout_setfunc(&sc->led_to, upgt_set_led_blink, sc);
310	sc->sc_init_state = UPGT_INIT_INITED;
311
312	/*
313	 * Open TX and RX USB bulk pipes.
314	 */
315	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
316	    &sc->sc_tx_pipeh);
317	if (error != 0) {
318		aprint_error_dev(sc->sc_dev,
319		    "could not open TX pipe: %s\n", usbd_errstr(error));
320		goto fail;
321	}
322	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
323	    &sc->sc_rx_pipeh);
324	if (error != 0) {
325		aprint_error_dev(sc->sc_dev, "could not open RX pipe: %s\n",
326		    usbd_errstr(error));
327		goto fail;
328	}
329
330	/*
331	 * Allocate TX, RX, and CMD xfers.
332	 */
333	if (upgt_alloc_tx(sc) != 0)
334		goto fail;
335	if (upgt_alloc_rx(sc) != 0)
336		goto fail;
337	if (upgt_alloc_cmd(sc) != 0)
338		goto fail;
339
340	/*
341	 * We need the firmware loaded from file system to complete the attach.
342	 */
343	config_mountroot(self, upgt_attach_hook);
344
345	return;
346fail:
347	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
348}
349
350static void
351upgt_attach_hook(device_t arg)
352{
353	struct upgt_softc *sc = device_private(arg);
354	struct ieee80211com *ic = &sc->sc_ic;
355	struct ifnet *ifp = &sc->sc_if;
356	usbd_status error;
357	int i;
358
359	/*
360	 * Load firmware file into memory.
361	 */
362	if (upgt_fw_alloc(sc) != 0)
363		goto fail;
364
365	/*
366	 * Initialize the device.
367	 */
368	if (upgt_device_init(sc) != 0)
369		goto fail;
370
371	/*
372	 * Verify the firmware.
373	 */
374	if (upgt_fw_verify(sc) != 0)
375		goto fail;
376
377	/*
378	 * Calculate device memory space.
379	 */
380	if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
381		aprint_error_dev(sc->sc_dev,
382		    "could not find memory space addresses on FW\n");
383		goto fail;
384	}
385	sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
386	sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
387
388	DPRINTF(1, "%s: memory address frame start=0x%08x\n",
389	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_start);
390	DPRINTF(1, "%s: memory address frame end=0x%08x\n",
391	    device_xname(sc->sc_dev), sc->sc_memaddr_frame_end);
392	DPRINTF(1, "%s: memory address rx start=0x%08x\n",
393	    device_xname(sc->sc_dev), sc->sc_memaddr_rx_start);
394
395	upgt_mem_init(sc);
396
397	/*
398	 * Load the firmware.
399	 */
400	if (upgt_fw_load(sc) != 0)
401		goto fail;
402
403	/*
404	 * Startup the RX pipe.
405	 */
406	struct upgt_data *data_rx = &sc->rx_data;
407
408	usbd_setup_xfer(data_rx->xfer, data_rx, data_rx->buf,
409	    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
410	error = usbd_transfer(data_rx->xfer);
411	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
412		aprint_error_dev(sc->sc_dev,
413		    "could not queue RX transfer\n");
414		goto fail;
415	}
416	usbd_delay_ms(sc->sc_udev, 100);
417
418	/*
419	 * Read the whole EEPROM content and parse it.
420	 */
421	if (upgt_eeprom_read(sc) != 0)
422		goto fail;
423	if (upgt_eeprom_parse(sc) != 0)
424		goto fail;
425
426	/*
427	 * Setup the 802.11 device.
428	 */
429	ic->ic_ifp = ifp;
430	ic->ic_phytype = IEEE80211_T_OFDM;
431	ic->ic_opmode = IEEE80211_M_STA;
432	ic->ic_state = IEEE80211_S_INIT;
433	ic->ic_caps =
434	    IEEE80211_C_MONITOR |
435	    IEEE80211_C_SHPREAMBLE |
436	    IEEE80211_C_SHSLOT;
437
438	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
439	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
440
441	for (i = 1; i <= 14; i++) {
442		ic->ic_channels[i].ic_freq =
443		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
444		ic->ic_channels[i].ic_flags =
445		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
446		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
447	}
448
449	ifp->if_softc = sc;
450	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
451	ifp->if_init = upgt_init;
452	ifp->if_ioctl = upgt_ioctl;
453	ifp->if_start = upgt_start;
454	ifp->if_watchdog = upgt_watchdog;
455	IFQ_SET_READY(&ifp->if_snd);
456	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
457
458	if_attach(ifp);
459	ieee80211_ifattach(ic);
460	ic->ic_newassoc = upgt_newassoc;
461
462	sc->sc_newstate = ic->ic_newstate;
463	ic->ic_newstate = upgt_newstate;
464
465	/* XXX media locking needs revisiting */
466	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
467	ieee80211_media_init_with_lock(ic,
468	    upgt_media_change, ieee80211_media_status, &sc->sc_media_mtx);
469
470	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
471	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
472	    &sc->sc_drvbpf);
473
474	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
475	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
476	sc->sc_rxtap.wr_ihdr.it_present = htole32(UPGT_RX_RADIOTAP_PRESENT);
477
478	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
479	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
480	sc->sc_txtap.wt_ihdr.it_present = htole32(UPGT_TX_RADIOTAP_PRESENT);
481
482	aprint_normal_dev(sc->sc_dev, "address %s\n",
483	    ether_sprintf(ic->ic_myaddr));
484
485	ieee80211_announce(ic);
486
487	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
488
489	/* device attached */
490	sc->sc_flags |= UPGT_DEVICE_ATTACHED;
491
492	return;
493fail:
494	aprint_error_dev(sc->sc_dev, "%s failed\n", __func__);
495}
496
497static int
498upgt_detach(device_t self, int flags)
499{
500	struct upgt_softc *sc = device_private(self);
501	struct ifnet *ifp = &sc->sc_if;
502	struct ieee80211com *ic = &sc->sc_ic;
503	int s;
504
505	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
506
507	if (sc->sc_init_state < UPGT_INIT_INITED)
508		return 0;
509
510	s = splnet();
511
512	if (ifp->if_flags & IFF_RUNNING)
513		upgt_stop(sc);
514
515	/* remove tasks and timeouts */
516	callout_halt(&sc->scan_to, NULL);
517	callout_halt(&sc->led_to, NULL);
518	usb_rem_task_wait(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER,
519	    NULL);
520	usb_rem_task_wait(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER,
521	    NULL);
522	callout_destroy(&sc->scan_to);
523	callout_destroy(&sc->led_to);
524
525	/* abort and close TX / RX pipes */
526	if (sc->sc_tx_pipeh != NULL) {
527		usbd_abort_pipe(sc->sc_tx_pipeh);
528	}
529	if (sc->sc_rx_pipeh != NULL) {
530		usbd_abort_pipe(sc->sc_rx_pipeh);
531	}
532
533	/* free xfers */
534	upgt_free_tx(sc);
535	upgt_free_rx(sc);
536	upgt_free_cmd(sc);
537
538	/* Close TX / RX pipes */
539	if (sc->sc_tx_pipeh != NULL) {
540		usbd_close_pipe(sc->sc_tx_pipeh);
541	}
542	if (sc->sc_rx_pipeh != NULL) {
543		usbd_close_pipe(sc->sc_rx_pipeh);
544	}
545
546	/* free firmware */
547	upgt_fw_free(sc);
548
549	if (sc->sc_flags & UPGT_DEVICE_ATTACHED) {
550		/* detach interface */
551		bpf_detach(ifp);
552		ieee80211_ifdetach(ic);
553		if_detach(ifp);
554	}
555
556	splx(s);
557
558	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
559
560	return 0;
561}
562
563static int
564upgt_activate(device_t self, devact_t act)
565{
566	struct upgt_softc *sc = device_private(self);
567
568	switch (act) {
569	case DVACT_DEACTIVATE:
570		if_deactivate(&sc->sc_if);
571		return 0;
572	default:
573		return EOPNOTSUPP;
574	}
575}
576
577static int
578upgt_device_type(struct upgt_softc *sc, uint16_t vendor, uint16_t product)
579{
580
581	if (usb_lookup(upgt_devs_1, vendor, product) != NULL) {
582		sc->sc_device_type = 1;
583		/* XXX */
584		aprint_error_dev(sc->sc_dev,
585		    "version 1 devices not supported yet\n");
586		return 1;
587	} else
588		sc->sc_device_type = 2;
589
590	return 0;
591}
592
593static int
594upgt_device_init(struct upgt_softc *sc)
595{
596	struct upgt_data *data_cmd = &sc->cmd_data;
597	const uint8_t init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
598	int len;
599
600	len = sizeof(init_cmd);
601	memcpy(data_cmd->buf, init_cmd, len);
602	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
603		aprint_error_dev(sc->sc_dev,
604		    "could not send device init string\n");
605		return EIO;
606	}
607	usbd_delay_ms(sc->sc_udev, 100);
608
609	DPRINTF(1, "%s: device initialized\n", device_xname(sc->sc_dev));
610
611	return 0;
612}
613
614static int
615upgt_mem_init(struct upgt_softc *sc)
616{
617	int i;
618
619	for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
620		sc->sc_memory.page[i].used = 0;
621
622		if (i == 0) {
623			/*
624			 * The first memory page is always reserved for
625			 * command data.
626			 */
627			sc->sc_memory.page[i].addr =
628			    sc->sc_memaddr_frame_start + MCLBYTES;
629		} else {
630			sc->sc_memory.page[i].addr =
631			    sc->sc_memory.page[i - 1].addr + MCLBYTES;
632		}
633
634		if (sc->sc_memory.page[i].addr + MCLBYTES >=
635		    sc->sc_memaddr_frame_end)
636			break;
637
638		DPRINTF(2, "%s: memory address page %d=0x%08x\n",
639		    device_xname(sc->sc_dev), i, sc->sc_memory.page[i].addr);
640	}
641
642	sc->sc_memory.pages = i;
643
644	DPRINTF(2, "%s: memory pages=%d\n",
645	    device_xname(sc->sc_dev), sc->sc_memory.pages);
646
647	return 0;
648}
649
650static uint32_t
651upgt_mem_alloc(struct upgt_softc *sc)
652{
653	int i;
654
655	for (i = 0; i < sc->sc_memory.pages; i++) {
656		if (sc->sc_memory.page[i].used == 0) {
657			sc->sc_memory.page[i].used = 1;
658			return sc->sc_memory.page[i].addr;
659		}
660	}
661
662	return 0;
663}
664
665static void
666upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
667{
668	int i;
669
670	for (i = 0; i < sc->sc_memory.pages; i++) {
671		if (sc->sc_memory.page[i].addr == addr) {
672			sc->sc_memory.page[i].used = 0;
673			return;
674		}
675	}
676
677	aprint_error_dev(sc->sc_dev, "could not free memory address 0x%08x\n",
678	    addr);
679}
680
681
682static int
683upgt_fw_alloc(struct upgt_softc *sc)
684{
685	const char *name = "upgt-gw3887";
686	int error;
687
688	if (sc->sc_fw == NULL) {
689		error = firmware_load("upgt", name, &sc->sc_fw,
690		    &sc->sc_fw_size);
691		if (error != 0) {
692			if (error == ENOENT) {
693				/*
694				 * The firmware file for upgt(4) is not in
695				 * the default distribution due to its lisence
696				 * so explicitly notify it if the firmware file
697				 * is not found.
698				 */
699				aprint_error_dev(sc->sc_dev,
700				    "firmware file %s is not installed\n",
701				    name);
702				aprint_error_dev(sc->sc_dev,
703				    "(it is not included in the default"
704				    " distribution)\n");
705				aprint_error_dev(sc->sc_dev,
706				    "see upgt(4) man page for details about "
707				    "firmware installation\n");
708			} else {
709				aprint_error_dev(sc->sc_dev,
710				    "could not read firmware %s\n", name);
711			}
712			return EIO;
713		}
714	}
715
716	DPRINTF(1, "%s: firmware %s allocated\n", device_xname(sc->sc_dev),
717	    name);
718
719	return 0;
720}
721
722static void
723upgt_fw_free(struct upgt_softc *sc)
724{
725
726	if (sc->sc_fw != NULL) {
727		firmware_free(sc->sc_fw, sc->sc_fw_size);
728		sc->sc_fw = NULL;
729		DPRINTF(1, "%s: firmware freed\n", device_xname(sc->sc_dev));
730	}
731}
732
733static int
734upgt_fw_verify(struct upgt_softc *sc)
735{
736	struct upgt_fw_bra_option *bra_option;
737	uint32_t bra_option_type, bra_option_len;
738	uint32_t *uc;
739	int offset, bra_end = 0;
740
741	/*
742	 * Seek to beginning of Boot Record Area (BRA).
743	 */
744	for (offset = 0; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
745		uc = (uint32_t *)(sc->sc_fw + offset);
746		if (*uc == 0)
747			break;
748	}
749	for (; offset < sc->sc_fw_size; offset += sizeof(*uc)) {
750		uc = (uint32_t *)(sc->sc_fw + offset);
751		if (*uc != 0)
752			break;
753	}
754	if (offset == sc->sc_fw_size) {
755		aprint_error_dev(sc->sc_dev,
756		    "firmware Boot Record Area not found\n");
757		return EIO;
758	}
759	DPRINTF(1, "%s: firmware Boot Record Area found at offset %d\n",
760	    device_xname(sc->sc_dev), offset);
761
762	/*
763	 * Parse Boot Record Area (BRA) options.
764	 */
765	while (offset < sc->sc_fw_size && bra_end == 0) {
766		/* get current BRA option */
767		bra_option = (struct upgt_fw_bra_option *)(sc->sc_fw + offset);
768		bra_option_type = le32toh(bra_option->type);
769		bra_option_len = le32toh(bra_option->len) * sizeof(*uc);
770
771		switch (bra_option_type) {
772		case UPGT_BRA_TYPE_FW:
773			DPRINTF(1, "%s: UPGT_BRA_TYPE_FW len=%d\n",
774			    device_xname(sc->sc_dev), bra_option_len);
775
776			if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
777				aprint_error_dev(sc->sc_dev,
778				    "wrong UPGT_BRA_TYPE_FW len\n");
779				return EIO;
780			}
781			if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_option->data,
782			    bra_option_len) == 0) {
783				sc->sc_fw_type = UPGT_FWTYPE_LM86;
784				break;
785			}
786			if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_option->data,
787			    bra_option_len) == 0) {
788				sc->sc_fw_type = UPGT_FWTYPE_LM87;
789				break;
790			}
791			if (memcmp(UPGT_BRA_FWTYPE_FMAC, bra_option->data,
792			    bra_option_len) == 0) {
793				sc->sc_fw_type = UPGT_FWTYPE_FMAC;
794				break;
795			}
796			aprint_error_dev(sc->sc_dev,
797			    "unsupported firmware type\n");
798			return EIO;
799		case UPGT_BRA_TYPE_VERSION:
800			DPRINTF(1, "%s: UPGT_BRA_TYPE_VERSION len=%d\n",
801			    device_xname(sc->sc_dev), bra_option_len);
802			break;
803		case UPGT_BRA_TYPE_DEPIF:
804			DPRINTF(1, "%s: UPGT_BRA_TYPE_DEPIF len=%d\n",
805			    device_xname(sc->sc_dev), bra_option_len);
806			break;
807		case UPGT_BRA_TYPE_EXPIF:
808			DPRINTF(1, "%s: UPGT_BRA_TYPE_EXPIF len=%d\n",
809			    device_xname(sc->sc_dev), bra_option_len);
810			break;
811		case UPGT_BRA_TYPE_DESCR:
812			DPRINTF(1, "%s: UPGT_BRA_TYPE_DESCR len=%d\n",
813			    device_xname(sc->sc_dev), bra_option_len);
814
815			struct upgt_fw_bra_descr *descr =
816				(struct upgt_fw_bra_descr *)bra_option->data;
817
818			sc->sc_memaddr_frame_start =
819			    le32toh(descr->memaddr_space_start);
820			sc->sc_memaddr_frame_end =
821			    le32toh(descr->memaddr_space_end);
822
823			DPRINTF(2, "%s: memory address space start=0x%08x\n",
824			    device_xname(sc->sc_dev),
825			    sc->sc_memaddr_frame_start);
826			DPRINTF(2, "%s: memory address space end=0x%08x\n",
827			    device_xname(sc->sc_dev),
828			    sc->sc_memaddr_frame_end);
829			break;
830		case UPGT_BRA_TYPE_END:
831			DPRINTF(1, "%s: UPGT_BRA_TYPE_END len=%d\n",
832			    device_xname(sc->sc_dev), bra_option_len);
833			bra_end = 1;
834			break;
835		default:
836			DPRINTF(1, "%s: unknown BRA option len=%d\n",
837			    device_xname(sc->sc_dev), bra_option_len);
838			return EIO;
839		}
840
841		/* jump to next BRA option */
842		offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
843	}
844
845	DPRINTF(1, "%s: firmware verified\n", device_xname(sc->sc_dev));
846
847	return 0;
848}
849
850static int
851upgt_fw_load(struct upgt_softc *sc)
852{
853	struct upgt_data *data_cmd = &sc->cmd_data;
854	struct upgt_data *data_rx = &sc->rx_data;
855	struct upgt_fw_x2_header *x2;
856	const uint8_t start_fwload_cmd[] = { 0x3c, 0x0d };
857	int offset, bsize, n, i, len;
858	uint32_t crc;
859
860	/* send firmware start load command */
861	len = sizeof(start_fwload_cmd);
862	memcpy(data_cmd->buf, start_fwload_cmd, len);
863	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
864		aprint_error_dev(sc->sc_dev,
865		    "could not send start_firmware_load command\n");
866		return EIO;
867	}
868
869	/* send X2 header */
870	len = sizeof(struct upgt_fw_x2_header);
871	x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
872	memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE);
873	x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
874	x2->len = htole32(sc->sc_fw_size);
875	x2->crc = upgt_crc32_le(data_cmd->buf + UPGT_X2_SIGNATURE_SIZE,
876	    sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
877	    sizeof(uint32_t));
878	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
879		aprint_error_dev(sc->sc_dev,
880		    "could not send firmware X2 header\n");
881		return EIO;
882	}
883
884	/* download firmware */
885	for (offset = 0; offset < sc->sc_fw_size; offset += bsize) {
886		if (sc->sc_fw_size - offset > UPGT_FW_BLOCK_SIZE)
887			bsize = UPGT_FW_BLOCK_SIZE;
888		else
889			bsize = sc->sc_fw_size - offset;
890
891		n = upgt_fw_copy(sc->sc_fw + offset, data_cmd->buf, bsize);
892
893		DPRINTF(1, "%s: FW offset=%d, read=%d, sent=%d\n",
894		    device_xname(sc->sc_dev), offset, n, bsize);
895
896		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &bsize, 0)
897		    != 0) {
898			aprint_error_dev(sc->sc_dev,
899			    "error while downloading firmware block\n");
900			return EIO;
901		}
902
903		bsize = n;
904	}
905	DPRINTF(1, "%s: firmware downloaded\n", device_xname(sc->sc_dev));
906
907	/* load firmware */
908	crc = upgt_crc32_le(sc->sc_fw, sc->sc_fw_size);
909	*((uint32_t *)(data_cmd->buf)    ) = crc;
910	*((uint8_t  *)(data_cmd->buf) + 4) = 'g';
911	*((uint8_t  *)(data_cmd->buf) + 5) = '\r';
912	len = 6;
913	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
914		aprint_error_dev(sc->sc_dev,
915		    "could not send load_firmware command\n");
916		return EIO;
917	}
918
919	for (i = 0; i < UPGT_FIRMWARE_TIMEOUT; i++) {
920		len = UPGT_FW_BLOCK_SIZE;
921		memset(data_rx->buf, 0, 2);
922		if (upgt_bulk_xmit(sc, data_rx, sc->sc_rx_pipeh, &len,
923		    USBD_SHORT_XFER_OK) != 0) {
924			aprint_error_dev(sc->sc_dev,
925			    "could not read firmware response\n");
926			return EIO;
927		}
928
929		if (memcmp(data_rx->buf, "OK", 2) == 0)
930			break;	/* firmware load was successful */
931	}
932	if (i == UPGT_FIRMWARE_TIMEOUT) {
933		aprint_error_dev(sc->sc_dev, "firmware load failed\n");
934		return EIO;
935	}
936	DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
937
938	return 0;
939}
940
941/*
942 * While copying the version 2 firmware, we need to replace two characters:
943 *
944 * 0x7e -> 0x7d 0x5e
945 * 0x7d -> 0x7d 0x5d
946 */
947static int
948upgt_fw_copy(char *src, char *dst, int size)
949{
950	int i, j;
951
952	for (i = 0, j = 0; i < size && j < size; i++) {
953		switch (src[i]) {
954		case 0x7e:
955			dst[j] = 0x7d;
956			j++;
957			dst[j] = 0x5e;
958			j++;
959			break;
960		case 0x7d:
961			dst[j] = 0x7d;
962			j++;
963			dst[j] = 0x5d;
964			j++;
965			break;
966		default:
967			dst[j] = src[i];
968			j++;
969			break;
970		}
971	}
972
973	return i;
974}
975
976static int
977upgt_eeprom_read(struct upgt_softc *sc)
978{
979	struct upgt_data *data_cmd = &sc->cmd_data;
980	struct upgt_lmac_mem *mem;
981	struct upgt_lmac_eeprom	*eeprom;
982	int offset, block, len;
983
984	offset = 0;
985	block = UPGT_EEPROM_BLOCK_SIZE;
986	while (offset < UPGT_EEPROM_SIZE) {
987		DPRINTF(1, "%s: request EEPROM block (offset=%d, len=%d)\n",
988		    device_xname(sc->sc_dev), offset, block);
989
990		/*
991		 * Transmit the URB containing the CMD data.
992		 */
993		len = sizeof(*mem) + sizeof(*eeprom) + block;
994
995		memset(data_cmd->buf, 0, len);
996
997		mem = (struct upgt_lmac_mem *)data_cmd->buf;
998		mem->addr = htole32(sc->sc_memaddr_frame_start +
999		    UPGT_MEMSIZE_FRAME_HEAD);
1000
1001		eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1002		eeprom->header1.flags = 0;
1003		eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1004		eeprom->header1.len = htole16((
1005		    sizeof(struct upgt_lmac_eeprom) -
1006		    sizeof(struct upgt_lmac_header)) + block);
1007
1008		eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1009		eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1010		eeprom->header2.flags = 0;
1011
1012		eeprom->offset = htole16(offset);
1013		eeprom->len = htole16(block);
1014
1015		mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1016		    len - sizeof(*mem));
1017
1018		if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len,
1019		    USBD_FORCE_SHORT_XFER) != 0) {
1020			aprint_error_dev(sc->sc_dev,
1021			    "could not transmit EEPROM data URB\n");
1022			return EIO;
1023		}
1024
1025		mutex_enter(&sc->sc_mtx);
1026		int res = cv_timedwait(&sc->sc_cv, &sc->sc_mtx, UPGT_USB_TIMEOUT);
1027		mutex_exit(&sc->sc_mtx);
1028		if (res) {
1029			aprint_error_dev(sc->sc_dev,
1030			    "timeout while waiting for EEPROM data\n");
1031			return EIO;
1032		}
1033
1034		offset += block;
1035		if (UPGT_EEPROM_SIZE - offset < block)
1036			block = UPGT_EEPROM_SIZE - offset;
1037	}
1038
1039	return 0;
1040}
1041
1042static int
1043upgt_eeprom_parse(struct upgt_softc *sc)
1044{
1045	struct ieee80211com *ic = &sc->sc_ic;
1046	struct upgt_eeprom_header *eeprom_header;
1047	struct upgt_eeprom_option *eeprom_option;
1048	uint16_t option_len;
1049	uint16_t option_type;
1050	uint16_t preamble_len;
1051	int option_end = 0;
1052
1053	/* calculate eeprom options start offset */
1054	eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1055	preamble_len = le16toh(eeprom_header->preamble_len);
1056	eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1057	    (sizeof(struct upgt_eeprom_header) + preamble_len));
1058
1059	while (!option_end) {
1060		/* the eeprom option length is stored in words */
1061		option_len =
1062		    (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1063		option_type =
1064		    le16toh(eeprom_option->type);
1065
1066		switch (option_type) {
1067		case UPGT_EEPROM_TYPE_NAME:
1068			DPRINTF(1, "%s: EEPROM name len=%d\n",
1069			    device_xname(sc->sc_dev), option_len);
1070			break;
1071		case UPGT_EEPROM_TYPE_SERIAL:
1072			DPRINTF(1, "%s: EEPROM serial len=%d\n",
1073			    device_xname(sc->sc_dev), option_len);
1074			break;
1075		case UPGT_EEPROM_TYPE_MAC:
1076			DPRINTF(1, "%s: EEPROM mac len=%d\n",
1077			    device_xname(sc->sc_dev), option_len);
1078
1079			IEEE80211_ADDR_COPY(ic->ic_myaddr, eeprom_option->data);
1080			break;
1081		case UPGT_EEPROM_TYPE_HWRX:
1082			DPRINTF(1, "%s: EEPROM hwrx len=%d\n",
1083			    device_xname(sc->sc_dev), option_len);
1084
1085			upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1086			break;
1087		case UPGT_EEPROM_TYPE_CHIP:
1088			DPRINTF(1, "%s: EEPROM chip len=%d\n",
1089			    device_xname(sc->sc_dev), option_len);
1090			break;
1091		case UPGT_EEPROM_TYPE_FREQ3:
1092			DPRINTF(1, "%s: EEPROM freq3 len=%d\n",
1093			    device_xname(sc->sc_dev), option_len);
1094
1095			upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1096			    option_len);
1097			break;
1098		case UPGT_EEPROM_TYPE_FREQ4:
1099			DPRINTF(1, "%s: EEPROM freq4 len=%d\n",
1100			    device_xname(sc->sc_dev), option_len);
1101
1102			upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1103			    option_len);
1104			break;
1105		case UPGT_EEPROM_TYPE_FREQ5:
1106			DPRINTF(1, "%s: EEPROM freq5 len=%d\n",
1107			    device_xname(sc->sc_dev), option_len);
1108			break;
1109		case UPGT_EEPROM_TYPE_FREQ6:
1110			DPRINTF(1, "%s: EEPROM freq6 len=%d\n",
1111			    device_xname(sc->sc_dev), option_len);
1112
1113			upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1114			    option_len);
1115			break;
1116		case UPGT_EEPROM_TYPE_END:
1117			DPRINTF(1, "%s: EEPROM end len=%d\n",
1118			    device_xname(sc->sc_dev), option_len);
1119			option_end = 1;
1120			break;
1121		case UPGT_EEPROM_TYPE_OFF:
1122			DPRINTF(1, "%s: EEPROM off without end option\n",
1123			    device_xname(sc->sc_dev));
1124			return EIO;
1125		default:
1126			DPRINTF(1, "%s: EEPROM unknown type 0x%04x len=%d\n",
1127			    device_xname(sc->sc_dev), option_type, option_len);
1128			break;
1129		}
1130
1131		/* jump to next EEPROM option */
1132		eeprom_option = (struct upgt_eeprom_option *)
1133		    (eeprom_option->data + option_len);
1134	}
1135
1136	return 0;
1137}
1138
1139static void
1140upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1141{
1142	struct upgt_eeprom_option_hwrx *option_hwrx;
1143
1144	option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1145
1146	sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1147
1148	DPRINTF(2, "%s: hwrx option value=0x%04x\n",
1149	    device_xname(sc->sc_dev), sc->sc_eeprom_hwrx);
1150}
1151
1152static void
1153upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1154{
1155	struct upgt_eeprom_freq3_header *freq3_header;
1156	struct upgt_lmac_freq3 *freq3;
1157	int i, elements, flags;
1158	unsigned channel;
1159
1160	freq3_header = (struct upgt_eeprom_freq3_header *)data;
1161	freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1162
1163	flags = freq3_header->flags;
1164	elements = freq3_header->elements;
1165
1166	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1167	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1168	__USE(flags);
1169
1170	for (i = 0; i < elements; i++) {
1171		channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1172
1173		sc->sc_eeprom_freq3[channel] = freq3[i];
1174
1175		DPRINTF(2, "%s: frequency=%d, channel=%d\n",
1176		    device_xname(sc->sc_dev),
1177		    le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1178	}
1179}
1180
1181static void
1182upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1183{
1184	struct upgt_eeprom_freq4_header *freq4_header;
1185	struct upgt_eeprom_freq4_1 *freq4_1;
1186	struct upgt_eeprom_freq4_2 *freq4_2;
1187	int i, j, elements, settings, flags;
1188	unsigned channel;
1189
1190	freq4_header = (struct upgt_eeprom_freq4_header *)data;
1191	freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1192
1193	flags = freq4_header->flags;
1194	elements = freq4_header->elements;
1195	settings = freq4_header->settings;
1196
1197	/* we need this value later */
1198	sc->sc_eeprom_freq6_settings = freq4_header->settings;
1199
1200	DPRINTF(2, "%s: flags=0x%02x\n", device_xname(sc->sc_dev), flags);
1201	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1202	DPRINTF(2, "%s: settings=%d\n", device_xname(sc->sc_dev), settings);
1203	__USE(flags);
1204
1205	for (i = 0; i < elements; i++) {
1206		channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1207
1208		freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1209
1210		for (j = 0; j < settings; j++) {
1211			sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1212			sc->sc_eeprom_freq4[channel][j].pad = 0;
1213		}
1214
1215		DPRINTF(2, "%s: frequency=%d, channel=%d\n",
1216		    device_xname(sc->sc_dev),
1217		    le16toh(freq4_1[i].freq), channel);
1218	}
1219}
1220
1221static void
1222upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1223{
1224	struct upgt_lmac_freq6 *freq6;
1225	int i, elements;
1226	unsigned channel;
1227
1228	freq6 = (struct upgt_lmac_freq6 *)data;
1229
1230	elements = len / sizeof(struct upgt_lmac_freq6);
1231
1232	DPRINTF(2, "%s: elements=%d\n", device_xname(sc->sc_dev), elements);
1233
1234	for (i = 0; i < elements; i++) {
1235		channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1236
1237		sc->sc_eeprom_freq6[channel] = freq6[i];
1238
1239		DPRINTF(2, "%s: frequency=%d, channel=%d\n",
1240		    device_xname(sc->sc_dev),
1241		    le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1242	}
1243}
1244
1245static int
1246upgt_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1247{
1248	struct upgt_softc *sc = ifp->if_softc;
1249	struct ieee80211com *ic = &sc->sc_ic;
1250	int s, error = 0;
1251
1252	s = splnet();
1253
1254	switch (cmd) {
1255	case SIOCSIFFLAGS:
1256		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1257			break;
1258		if (ifp->if_flags & IFF_UP) {
1259			if ((ifp->if_flags & IFF_RUNNING) == 0)
1260				upgt_init(ifp);
1261		} else {
1262			if (ifp->if_flags & IFF_RUNNING)
1263				upgt_stop(sc);
1264		}
1265		break;
1266	case SIOCADDMULTI:
1267	case SIOCDELMULTI:
1268		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1269			/* setup multicast filter, etc */
1270			error = 0;
1271		}
1272		break;
1273	default:
1274		error = ieee80211_ioctl(ic, cmd, data);
1275		break;
1276	}
1277
1278	if (error == ENETRESET) {
1279		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1280		    (IFF_UP | IFF_RUNNING))
1281			upgt_init(ifp);
1282		error = 0;
1283	}
1284
1285	splx(s);
1286
1287	return error;
1288}
1289
1290static int
1291upgt_init(struct ifnet *ifp)
1292{
1293	struct upgt_softc *sc = ifp->if_softc;
1294	struct ieee80211com *ic = &sc->sc_ic;
1295
1296	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1297
1298	if (ifp->if_flags & IFF_RUNNING)
1299		upgt_stop(sc);
1300
1301	ifp->if_flags |= IFF_RUNNING;
1302	ifp->if_flags &= ~IFF_OACTIVE;
1303
1304	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1305
1306	/* setup device rates */
1307	upgt_setup_rates(sc);
1308
1309	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1310		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1311	else
1312		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1313
1314	return 0;
1315}
1316
1317static void
1318upgt_stop(struct upgt_softc *sc)
1319{
1320	struct ieee80211com *ic = &sc->sc_ic;
1321	struct ifnet *ifp = &sc->sc_if;
1322
1323	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1324
1325	/* device down */
1326	ifp->if_timer = 0;
1327	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1328
1329	/* change device back to initial state */
1330	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1331}
1332
1333static int
1334upgt_media_change(struct ifnet *ifp)
1335{
1336	struct upgt_softc *sc = ifp->if_softc;
1337	int error;
1338
1339	DPRINTF(1, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1340
1341	if ((error = ieee80211_media_change(ifp)) != ENETRESET)
1342		return error;
1343
1344	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1345	    (IFF_UP | IFF_RUNNING)) {
1346		/* give pending USB transfers a chance to finish */
1347		usbd_delay_ms(sc->sc_udev, 100);
1348		upgt_init(ifp);
1349	}
1350
1351	return 0;
1352}
1353
1354static void
1355upgt_newassoc(struct ieee80211_node *ni, int isnew)
1356{
1357
1358	ni->ni_txrate = 0;
1359}
1360
1361static int
1362upgt_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1363{
1364	struct upgt_softc *sc = ic->ic_ifp->if_softc;
1365
1366	/*
1367	 * XXXSMP: This does not wait for the task, if it is in flight,
1368	 * to complete.  If this code works at all, it must rely on the
1369	 * kernel lock to serialize with the USB task thread.
1370	 */
1371	usb_rem_task(sc->sc_udev, &sc->sc_task_newstate);
1372	callout_stop(&sc->scan_to);
1373
1374	/* do it in a process context */
1375	sc->sc_state = nstate;
1376	sc->sc_arg = arg;
1377	usb_add_task(sc->sc_udev, &sc->sc_task_newstate, USB_TASKQ_DRIVER);
1378
1379	return 0;
1380}
1381
1382static void
1383upgt_newstate_task(void *arg)
1384{
1385	struct upgt_softc *sc = arg;
1386	struct ieee80211com *ic = &sc->sc_ic;
1387	struct ieee80211_node *ni;
1388	unsigned channel;
1389
1390	mutex_enter(&sc->sc_mtx);
1391
1392	switch (sc->sc_state) {
1393	case IEEE80211_S_INIT:
1394		DPRINTF(1, "%s: newstate is IEEE80211_S_INIT\n",
1395		    device_xname(sc->sc_dev));
1396
1397		/* do not accept any frames if the device is down */
1398		upgt_set_macfilter(sc, IEEE80211_S_INIT);
1399		upgt_set_led(sc, UPGT_LED_OFF);
1400		break;
1401	case IEEE80211_S_SCAN:
1402		DPRINTF(1, "%s: newstate is IEEE80211_S_SCAN\n",
1403		    device_xname(sc->sc_dev));
1404
1405		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1406		upgt_set_channel(sc, channel);
1407		upgt_set_macfilter(sc, IEEE80211_S_SCAN);
1408		callout_schedule(&sc->scan_to, hz / 5);
1409		break;
1410	case IEEE80211_S_AUTH:
1411		DPRINTF(1, "%s: newstate is IEEE80211_S_AUTH\n",
1412		    device_xname(sc->sc_dev));
1413
1414		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1415		upgt_set_channel(sc, channel);
1416		break;
1417	case IEEE80211_S_ASSOC:
1418		DPRINTF(1, "%s: newstate is IEEE80211_S_ASSOC\n",
1419		    device_xname(sc->sc_dev));
1420
1421		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1422		upgt_set_channel(sc, channel);
1423		break;
1424	case IEEE80211_S_RUN:
1425		DPRINTF(1, "%s: newstate is IEEE80211_S_RUN\n",
1426		    device_xname(sc->sc_dev));
1427
1428		channel = ieee80211_chan2ieee(ic, ic->ic_curchan);
1429		upgt_set_channel(sc, channel);
1430
1431		ni = ic->ic_bss;
1432
1433		/*
1434		 * TX rate control is done by the firmware.
1435		 * Report the maximum rate which is available therefore.
1436		 */
1437		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
1438
1439		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1440			upgt_set_macfilter(sc, IEEE80211_S_RUN);
1441		upgt_set_led(sc, UPGT_LED_ON);
1442		break;
1443	}
1444
1445	mutex_exit(&sc->sc_mtx);
1446
1447	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
1448}
1449
1450static void
1451upgt_next_scan(void *arg)
1452{
1453	struct upgt_softc *sc = arg;
1454	struct ieee80211com *ic = &sc->sc_ic;
1455
1456	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1457
1458	if (ic->ic_state == IEEE80211_S_SCAN)
1459		ieee80211_next_scan(ic);
1460}
1461
1462static void
1463upgt_start(struct ifnet *ifp)
1464{
1465	struct upgt_softc *sc = ifp->if_softc;
1466	struct ieee80211com *ic = &sc->sc_ic;
1467	struct ether_header *eh;
1468	struct ieee80211_node *ni;
1469	struct mbuf *m;
1470	int i;
1471
1472	/* don't transmit packets if interface is busy or down */
1473	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1474		return;
1475
1476	DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1477
1478	for (i = 0; i < UPGT_TX_COUNT; i++) {
1479		struct upgt_data *data_tx = &sc->tx_data[i];
1480
1481		if (data_tx->m != NULL)
1482			continue;
1483
1484		IF_POLL(&ic->ic_mgtq, m);
1485		if (m != NULL) {
1486			/* management frame */
1487			IF_DEQUEUE(&ic->ic_mgtq, m);
1488
1489			ni = M_GETCTX(m, struct ieee80211_node *);
1490			M_CLEARCTX(m);
1491
1492			bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1493
1494			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1495				aprint_error_dev(sc->sc_dev,
1496				    "no free prism memory\n");
1497				m_freem(m);
1498				if_statinc(ifp, if_oerrors);
1499				break;
1500			}
1501			data_tx->ni = ni;
1502			data_tx->m = m;
1503			sc->tx_queued++;
1504		} else {
1505			/* data frame */
1506			if (ic->ic_state != IEEE80211_S_RUN)
1507				break;
1508
1509			IFQ_POLL(&ifp->if_snd, m);
1510			if (m == NULL)
1511				break;
1512
1513			IFQ_DEQUEUE(&ifp->if_snd, m);
1514			if (m->m_len < sizeof(struct ether_header) &&
1515			    !(m = m_pullup(m, sizeof(struct ether_header))))
1516				continue;
1517
1518			eh = mtod(m, struct ether_header *);
1519			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1520			if (ni == NULL) {
1521				m_freem(m);
1522				continue;
1523			}
1524
1525			bpf_mtap(ifp, m, BPF_D_OUT);
1526
1527			m = ieee80211_encap(ic, m, ni);
1528			if (m == NULL) {
1529				ieee80211_free_node(ni);
1530				continue;
1531			}
1532
1533			bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
1534
1535			if ((data_tx->addr = upgt_mem_alloc(sc)) == 0) {
1536				aprint_error_dev(sc->sc_dev,
1537				    "no free prism memory\n");
1538				m_freem(m);
1539				ieee80211_free_node(ni);
1540				if_statinc(ifp, if_oerrors);
1541				break;
1542			}
1543			data_tx->ni = ni;
1544			data_tx->m = m;
1545			sc->tx_queued++;
1546		}
1547	}
1548
1549	if (sc->tx_queued > 0) {
1550		DPRINTF(2, "%s: tx_queued=%d\n",
1551		    device_xname(sc->sc_dev), sc->tx_queued);
1552		/* process the TX queue in process context */
1553		ifp->if_timer = 5;
1554		ifp->if_flags |= IFF_OACTIVE;
1555		usb_rem_task(sc->sc_udev, &sc->sc_task_tx);
1556		usb_add_task(sc->sc_udev, &sc->sc_task_tx, USB_TASKQ_DRIVER);
1557	}
1558}
1559
1560static void
1561upgt_watchdog(struct ifnet *ifp)
1562{
1563	struct upgt_softc *sc = ifp->if_softc;
1564	struct ieee80211com *ic = &sc->sc_ic;
1565
1566	if (ic->ic_state == IEEE80211_S_INIT)
1567		return;
1568
1569	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1570
1571	/* TODO: what shall we do on TX timeout? */
1572
1573	ieee80211_watchdog(ic);
1574}
1575
1576static void
1577upgt_tx_task(void *arg)
1578{
1579	struct upgt_softc *sc = arg;
1580	struct ieee80211com *ic = &sc->sc_ic;
1581	struct ieee80211_frame *wh;
1582	struct ieee80211_key *k;
1583	struct ifnet *ifp = &sc->sc_if;
1584	struct upgt_lmac_mem *mem;
1585	struct upgt_lmac_tx_desc *txdesc;
1586	struct mbuf *m;
1587	uint32_t addr;
1588	int i, len, pad, s;
1589	usbd_status error;
1590
1591	mutex_enter(&sc->sc_mtx);
1592	upgt_set_led(sc, UPGT_LED_BLINK);
1593	mutex_exit(&sc->sc_mtx);
1594
1595	s = splnet();
1596
1597	for (i = 0; i < UPGT_TX_COUNT; i++) {
1598		struct upgt_data *data_tx = &sc->tx_data[i];
1599
1600		if (data_tx->m == NULL)
1601			continue;
1602
1603		m = data_tx->m;
1604		addr = data_tx->addr + UPGT_MEMSIZE_FRAME_HEAD;
1605
1606		/*
1607		 * Software crypto.
1608		 */
1609		wh = mtod(m, struct ieee80211_frame *);
1610
1611		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1612			k = ieee80211_crypto_encap(ic, data_tx->ni, m);
1613			if (k == NULL) {
1614				m_freem(m);
1615				data_tx->m = NULL;
1616				ieee80211_free_node(data_tx->ni);
1617				data_tx->ni = NULL;
1618				if_statinc(ifp, if_oerrors);
1619				break;
1620			}
1621
1622			/* in case packet header moved, reset pointer */
1623			wh = mtod(m, struct ieee80211_frame *);
1624		}
1625
1626		/*
1627		 * Transmit the URB containing the TX data.
1628		 */
1629		memset(data_tx->buf, 0, sizeof(*mem) + sizeof(*txdesc));
1630
1631		mem = (struct upgt_lmac_mem *)data_tx->buf;
1632		mem->addr = htole32(addr);
1633
1634		txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
1635
1636		/* XXX differ between data and mgmt frames? */
1637		txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
1638		txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
1639		txdesc->header1.len = htole16(m->m_pkthdr.len);
1640
1641		txdesc->header2.reqid = htole32(data_tx->addr);
1642		txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
1643		txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
1644
1645		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1646		    IEEE80211_FC0_TYPE_MGT) {
1647			/* always send mgmt frames at lowest rate (DS1) */
1648			memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
1649		} else {
1650			memcpy(txdesc->rates, sc->sc_cur_rateset,
1651			    sizeof(txdesc->rates));
1652		}
1653		txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
1654		txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
1655
1656		if (sc->sc_drvbpf != NULL) {
1657			struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
1658
1659			tap->wt_flags = 0;
1660			tap->wt_rate = 0;	/* TODO: where to get from? */
1661			tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1662			tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1663
1664			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
1665			    BPF_D_OUT);
1666		}
1667
1668		/* copy frame below our TX descriptor header */
1669		m_copydata(m, 0, m->m_pkthdr.len,
1670		    data_tx->buf + sizeof(*mem) + sizeof(*txdesc));
1671
1672		/* calculate frame size */
1673		len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
1674
1675		if (len & 3) {
1676			/* we need to align the frame to a 4 byte boundary */
1677			pad = 4 - (len & 3);
1678			memset(data_tx->buf + len, 0, pad);
1679			len += pad;
1680		}
1681
1682		/* calculate frame checksum */
1683		mem->chksum = upgt_chksum_le((uint32_t *)txdesc,
1684		    len - sizeof(*mem));
1685
1686		/* we do not need the mbuf anymore */
1687		m_freem(m);
1688		data_tx->m = NULL;
1689
1690		ieee80211_free_node(data_tx->ni);
1691		data_tx->ni = NULL;
1692
1693		DPRINTF(2, "%s: TX start data sending\n",
1694		    device_xname(sc->sc_dev));
1695
1696		usbd_setup_xfer(data_tx->xfer, data_tx, data_tx->buf, len,
1697		    USBD_FORCE_SHORT_XFER, UPGT_USB_TIMEOUT, NULL);
1698		error = usbd_transfer(data_tx->xfer);
1699		if (error != USBD_NORMAL_COMPLETION &&
1700		    error != USBD_IN_PROGRESS) {
1701			aprint_error_dev(sc->sc_dev,
1702			    "could not transmit TX data URB\n");
1703			if_statinc(ifp, if_oerrors);
1704			break;
1705		}
1706
1707		DPRINTF(2, "%s: TX sent (%d bytes)\n",
1708		    device_xname(sc->sc_dev), len);
1709	}
1710
1711	splx(s);
1712
1713	/*
1714	 * If we don't regulary read the device statistics, the RX queue
1715	 * will stall.  It's strange, but it works, so we keep reading
1716	 * the statistics here.  *shrug*
1717	 */
1718	mutex_enter(&sc->sc_mtx);
1719	upgt_get_stats(sc);
1720	mutex_exit(&sc->sc_mtx);
1721}
1722
1723static void
1724upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1725{
1726	struct ifnet *ifp = &sc->sc_if;
1727	struct upgt_lmac_tx_done_desc *desc;
1728	int i, s;
1729
1730	s = splnet();
1731
1732	desc = (struct upgt_lmac_tx_done_desc *)data;
1733
1734	for (i = 0; i < UPGT_TX_COUNT; i++) {
1735		struct upgt_data *data_tx = &sc->tx_data[i];
1736
1737		if (data_tx->addr == le32toh(desc->header2.reqid)) {
1738			upgt_mem_free(sc, data_tx->addr);
1739			data_tx->addr = 0;
1740
1741			sc->tx_queued--;
1742			if_statinc(ifp, if_opackets);
1743
1744			DPRINTF(2, "%s: TX done: ", device_xname(sc->sc_dev));
1745			DPRINTF(2, "memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1746			    le32toh(desc->header2.reqid),
1747			    le16toh(desc->status),
1748			    le16toh(desc->rssi));
1749			DPRINTF(2, "seq=%d\n", le16toh(desc->seq));
1750			break;
1751		}
1752	}
1753
1754	if (sc->tx_queued == 0) {
1755		/* TX queued was processed, continue */
1756		ifp->if_timer = 0;
1757		ifp->if_flags &= ~IFF_OACTIVE;
1758		upgt_start(ifp);
1759	}
1760
1761	splx(s);
1762}
1763
1764static void
1765upgt_rx_cb(struct usbd_xfer *xfer, void * priv, usbd_status status)
1766{
1767	struct upgt_data *data_rx = priv;
1768	struct upgt_softc *sc = data_rx->sc;
1769	int len;
1770	struct upgt_lmac_header *header;
1771	struct upgt_lmac_eeprom *eeprom;
1772	uint8_t h1_type;
1773	uint16_t h2_type;
1774
1775	DPRINTF(3, "%s: %s\n", device_xname(sc->sc_dev), __func__);
1776
1777	if (status != USBD_NORMAL_COMPLETION) {
1778		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1779			return;
1780		if (status == USBD_STALLED)
1781			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
1782		goto skip;
1783	}
1784	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
1785
1786	/*
1787	 * Check what type of frame came in.
1788	 */
1789	header = (struct upgt_lmac_header *)(data_rx->buf + 4);
1790
1791	h1_type = header->header1.type;
1792	h2_type = le16toh(header->header2.type);
1793
1794	if (h1_type == UPGT_H1_TYPE_CTRL &&
1795	    h2_type == UPGT_H2_TYPE_EEPROM) {
1796		eeprom = (struct upgt_lmac_eeprom *)(data_rx->buf + 4);
1797		uint16_t eeprom_offset = le16toh(eeprom->offset);
1798		uint16_t eeprom_len = le16toh(eeprom->len);
1799
1800		DPRINTF(2, "%s: received EEPROM block (offset=%d, len=%d)\n",
1801			device_xname(sc->sc_dev), eeprom_offset, eeprom_len);
1802
1803		mutex_enter(&sc->sc_mtx);
1804		memcpy(sc->sc_eeprom + eeprom_offset,
1805		    data_rx->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1806		    eeprom_len);
1807
1808		/* EEPROM data has arrived in time, wakeup upgt_eeprom_read */
1809		/* Note eeprom data arrived */
1810		cv_broadcast(&sc->sc_cv);
1811		mutex_exit(&sc->sc_mtx);
1812	} else
1813	if (h1_type == UPGT_H1_TYPE_CTRL &&
1814	    h2_type == UPGT_H2_TYPE_TX_DONE) {
1815		DPRINTF(2, "%s: received 802.11 TX done\n",
1816		    device_xname(sc->sc_dev));
1817
1818		upgt_tx_done(sc, data_rx->buf + 4);
1819	} else
1820	if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1821	    h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1822		DPRINTF(3, "%s: received 802.11 RX data\n",
1823		    device_xname(sc->sc_dev));
1824
1825		upgt_rx(sc, data_rx->buf + 4, le16toh(header->header1.len));
1826	} else
1827	if (h1_type == UPGT_H1_TYPE_CTRL &&
1828	    h2_type == UPGT_H2_TYPE_STATS) {
1829		DPRINTF(2, "%s: received statistic data\n",
1830		    device_xname(sc->sc_dev));
1831
1832		/* TODO: what could we do with the statistic data? */
1833	} else {
1834		/* ignore unknown frame types */
1835		DPRINTF(1, "%s: received unknown frame type 0x%02x\n",
1836		    device_xname(sc->sc_dev), header->header1.type);
1837	}
1838
1839skip:	/* setup new transfer */
1840	usbd_setup_xfer(xfer, data_rx, data_rx->buf, MCLBYTES,
1841	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, upgt_rx_cb);
1842	(void)usbd_transfer(xfer);
1843}
1844
1845static void
1846upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen)
1847{
1848	struct ieee80211com *ic = &sc->sc_ic;
1849	struct ifnet *ifp = &sc->sc_if;
1850	struct upgt_lmac_rx_desc *rxdesc;
1851	struct ieee80211_frame *wh;
1852	struct ieee80211_node *ni;
1853	struct mbuf *m;
1854	int s;
1855
1856	/* access RX packet descriptor */
1857	rxdesc = (struct upgt_lmac_rx_desc *)data;
1858
1859	/* create mbuf which is suitable for strict alignment archs */
1860	m = m_devget(rxdesc->data, pkglen, 0, ifp);
1861	if (m == NULL) {
1862		DPRINTF(1, "%s: could not create RX mbuf\n",
1863		   device_xname(sc->sc_dev));
1864		if_statinc(ifp, if_ierrors);
1865		return;
1866	}
1867
1868	s = splnet();
1869
1870	if (sc->sc_drvbpf != NULL) {
1871		struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1872
1873		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1874		tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1875		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1876		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1877		tap->wr_antsignal = rxdesc->rssi;
1878
1879		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1880	}
1881
1882	/* trim FCS */
1883	m_adj(m, -IEEE80211_CRC_LEN);
1884
1885	wh = mtod(m, struct ieee80211_frame *);
1886	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1887
1888	/* push the frame up to the 802.11 stack */
1889	ieee80211_input(ic, m, ni, rxdesc->rssi, 0);
1890
1891	/* node is no longer needed */
1892	ieee80211_free_node(ni);
1893
1894	splx(s);
1895
1896	DPRINTF(3, "%s: RX done\n", device_xname(sc->sc_dev));
1897}
1898
1899static void
1900upgt_setup_rates(struct upgt_softc *sc)
1901{
1902	struct ieee80211com *ic = &sc->sc_ic;
1903
1904	/*
1905	 * 0x01 = OFMD6   0x10 = DS1
1906	 * 0x04 = OFDM9   0x11 = DS2
1907	 * 0x06 = OFDM12  0x12 = DS5
1908	 * 0x07 = OFDM18  0x13 = DS11
1909	 * 0x08 = OFDM24
1910	 * 0x09 = OFDM36
1911	 * 0x0a = OFDM48
1912	 * 0x0b = OFDM54
1913	 */
1914	const uint8_t rateset_auto_11b[] =
1915	    { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
1916	const uint8_t rateset_auto_11g[] =
1917	    { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
1918	const uint8_t rateset_fix_11bg[] =
1919	    { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
1920	      0x08, 0x09, 0x0a, 0x0b };
1921
1922	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1923		/*
1924		 * Automatic rate control is done by the device.
1925		 * We just pass the rateset from which the device
1926		 * will pickup a rate.
1927		 */
1928		if (ic->ic_curmode == IEEE80211_MODE_11B)
1929			memcpy(sc->sc_cur_rateset, rateset_auto_11b,
1930			    sizeof(sc->sc_cur_rateset));
1931		if (ic->ic_curmode == IEEE80211_MODE_11G ||
1932		    ic->ic_curmode == IEEE80211_MODE_AUTO)
1933			memcpy(sc->sc_cur_rateset, rateset_auto_11g,
1934			    sizeof(sc->sc_cur_rateset));
1935	} else {
1936		/* set a fixed rate */
1937		memset(sc->sc_cur_rateset, rateset_fix_11bg[ic->ic_fixed_rate],
1938		    sizeof(sc->sc_cur_rateset));
1939	}
1940}
1941
1942static uint8_t
1943upgt_rx_rate(struct upgt_softc *sc, const int rate)
1944{
1945	struct ieee80211com *ic = &sc->sc_ic;
1946
1947	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1948		if (rate < 0 || rate > 3)
1949			/* invalid rate */
1950			return 0;
1951
1952		switch (rate) {
1953		case 0:
1954			return 2;
1955		case 1:
1956			return 4;
1957		case 2:
1958			return 11;
1959		case 3:
1960			return 22;
1961		default:
1962			return 0;
1963		}
1964	}
1965
1966	if (ic->ic_curmode == IEEE80211_MODE_11G) {
1967		if (rate < 0 || rate > 11)
1968			/* invalid rate */
1969			return 0;
1970
1971		switch (rate) {
1972		case 0:
1973			return 2;
1974		case 1:
1975			return 4;
1976		case 2:
1977			return 11;
1978		case 3:
1979			return 22;
1980		case 4:
1981			return 12;
1982		case 5:
1983			return 18;
1984		case 6:
1985			return 24;
1986		case 7:
1987			return 36;
1988		case 8:
1989			return 48;
1990		case 9:
1991			return 72;
1992		case 10:
1993			return 96;
1994		case 11:
1995			return 108;
1996		default:
1997			return 0;
1998		}
1999	}
2000
2001	return 0;
2002}
2003
2004static int
2005upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
2006{
2007	struct ieee80211com *ic = &sc->sc_ic;
2008	struct ieee80211_node *ni = ic->ic_bss;
2009	struct upgt_data *data_cmd = &sc->cmd_data;
2010	struct upgt_lmac_mem *mem;
2011	struct upgt_lmac_filter *filter;
2012	int len;
2013	const uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2014
2015	/*
2016	 * Transmit the URB containing the CMD data.
2017	 */
2018	len = sizeof(*mem) + sizeof(*filter);
2019
2020	memset(data_cmd->buf, 0, len);
2021
2022	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2023	mem->addr = htole32(sc->sc_memaddr_frame_start +
2024	    UPGT_MEMSIZE_FRAME_HEAD);
2025
2026	filter = (struct upgt_lmac_filter *)(mem + 1);
2027
2028	filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2029	filter->header1.type = UPGT_H1_TYPE_CTRL;
2030	filter->header1.len = htole16(
2031	    sizeof(struct upgt_lmac_filter) -
2032	    sizeof(struct upgt_lmac_header));
2033
2034	filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2035	filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
2036	filter->header2.flags = 0;
2037
2038	switch (state) {
2039	case IEEE80211_S_INIT:
2040		DPRINTF(1, "%s: set MAC filter to INIT\n",
2041		    device_xname(sc->sc_dev));
2042
2043		filter->type = htole16(UPGT_FILTER_TYPE_RESET);
2044		break;
2045	case IEEE80211_S_SCAN:
2046		DPRINTF(1, "%s: set MAC filter to SCAN (bssid %s)\n",
2047		    device_xname(sc->sc_dev), ether_sprintf(broadcast));
2048
2049		filter->type = htole16(UPGT_FILTER_TYPE_NONE);
2050		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2051		IEEE80211_ADDR_COPY(filter->src, broadcast);
2052		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2053		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2054		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2055		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2056		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2057		break;
2058	case IEEE80211_S_RUN:
2059		DPRINTF(1, "%s: set MAC filter to RUN (bssid %s)\n",
2060		    device_xname(sc->sc_dev), ether_sprintf(ni->ni_bssid));
2061
2062		filter->type = htole16(UPGT_FILTER_TYPE_STA);
2063		IEEE80211_ADDR_COPY(filter->dst, ic->ic_myaddr);
2064		IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
2065		filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
2066		filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
2067		filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
2068		filter->rxhw = htole32(sc->sc_eeprom_hwrx);
2069		filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
2070		break;
2071	default:
2072		aprint_error_dev(sc->sc_dev,
2073		    "MAC filter does not know that state\n");
2074		break;
2075	}
2076
2077	mem->chksum = upgt_chksum_le((uint32_t *)filter, sizeof(*filter));
2078
2079	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2080		aprint_error_dev(sc->sc_dev,
2081		    "could not transmit macfilter CMD data URB\n");
2082		return EIO;
2083	}
2084
2085	return 0;
2086}
2087
2088static int
2089upgt_set_channel(struct upgt_softc *sc, unsigned channel)
2090{
2091	struct upgt_data *data_cmd = &sc->cmd_data;
2092	struct upgt_lmac_mem *mem;
2093	struct upgt_lmac_channel *chan;
2094	int len;
2095
2096	DPRINTF(1, "%s: %s: %d\n", device_xname(sc->sc_dev), __func__,
2097	    channel);
2098
2099	/*
2100	 * Transmit the URB containing the CMD data.
2101	 */
2102	len = sizeof(*mem) + sizeof(*chan);
2103
2104	memset(data_cmd->buf, 0, len);
2105
2106	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2107	mem->addr = htole32(sc->sc_memaddr_frame_start +
2108	    UPGT_MEMSIZE_FRAME_HEAD);
2109
2110	chan = (struct upgt_lmac_channel *)(mem + 1);
2111
2112	chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2113	chan->header1.type = UPGT_H1_TYPE_CTRL;
2114	chan->header1.len = htole16(
2115	    sizeof(struct upgt_lmac_channel) -
2116	    sizeof(struct upgt_lmac_header));
2117
2118	chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2119	chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
2120	chan->header2.flags = 0;
2121
2122	chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
2123	chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
2124	chan->freq6 = sc->sc_eeprom_freq6[channel];
2125	chan->settings = sc->sc_eeprom_freq6_settings;
2126	chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
2127
2128	memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data,
2129	    sizeof(chan->freq3_1));
2130
2131	memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel],
2132	    sizeof(sc->sc_eeprom_freq4[channel]));
2133
2134	memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data,
2135	    sizeof(chan->freq3_2));
2136
2137	mem->chksum = upgt_chksum_le((uint32_t *)chan, sizeof(*chan));
2138
2139	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2140		aprint_error_dev(sc->sc_dev,
2141		    "could not transmit channel CMD data URB\n");
2142		return EIO;
2143	}
2144
2145	return 0;
2146}
2147
2148static void
2149upgt_set_led(struct upgt_softc *sc, int action)
2150{
2151	struct ieee80211com *ic = &sc->sc_ic;
2152	struct upgt_data *data_cmd = &sc->cmd_data;
2153	struct upgt_lmac_mem *mem;
2154	struct upgt_lmac_led *led;
2155	struct timeval t;
2156	int len;
2157
2158	/*
2159	 * Transmit the URB containing the CMD data.
2160	 */
2161	len = sizeof(*mem) + sizeof(*led);
2162
2163	memset(data_cmd->buf, 0, len);
2164
2165	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2166	mem->addr = htole32(sc->sc_memaddr_frame_start +
2167	    UPGT_MEMSIZE_FRAME_HEAD);
2168
2169	led = (struct upgt_lmac_led *)(mem + 1);
2170
2171	led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
2172	led->header1.type = UPGT_H1_TYPE_CTRL;
2173	led->header1.len = htole16(
2174	    sizeof(struct upgt_lmac_led) -
2175	    sizeof(struct upgt_lmac_header));
2176
2177	led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2178	led->header2.type = htole16(UPGT_H2_TYPE_LED);
2179	led->header2.flags = 0;
2180
2181	switch (action) {
2182	case UPGT_LED_OFF:
2183		led->mode = htole16(UPGT_LED_MODE_SET);
2184		led->action_fix = 0;
2185		led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
2186		led->action_tmp_dur = 0;
2187		break;
2188	case UPGT_LED_ON:
2189		led->mode = htole16(UPGT_LED_MODE_SET);
2190		led->action_fix = 0;
2191		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2192		led->action_tmp_dur = 0;
2193		break;
2194	case UPGT_LED_BLINK:
2195		if (ic->ic_state != IEEE80211_S_RUN)
2196			return;
2197		if (sc->sc_led_blink)
2198			/* previous blink was not finished */
2199			return;
2200		led->mode = htole16(UPGT_LED_MODE_SET);
2201		led->action_fix = htole16(UPGT_LED_ACTION_OFF);
2202		led->action_tmp = htole16(UPGT_LED_ACTION_ON);
2203		led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
2204		/* lock blink */
2205		sc->sc_led_blink = 1;
2206		t.tv_sec = 0;
2207		t.tv_usec = UPGT_LED_ACTION_TMP_DUR * 1000L;
2208		callout_schedule(&sc->led_to, tvtohz(&t));
2209		break;
2210	default:
2211		return;
2212	}
2213
2214	mem->chksum = upgt_chksum_le((uint32_t *)led, sizeof(*led));
2215
2216	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2217		aprint_error_dev(sc->sc_dev,
2218		    "could not transmit led CMD URB\n");
2219	}
2220}
2221
2222static void
2223upgt_set_led_blink(void *arg)
2224{
2225	struct upgt_softc *sc = arg;
2226
2227	/* blink finished, we are ready for a next one */
2228	sc->sc_led_blink = 0;
2229	callout_stop(&sc->led_to);
2230}
2231
2232static int
2233upgt_get_stats(struct upgt_softc *sc)
2234{
2235	struct upgt_data *data_cmd = &sc->cmd_data;
2236	struct upgt_lmac_mem *mem;
2237	struct upgt_lmac_stats *stats;
2238	int len;
2239
2240	/*
2241	 * Transmit the URB containing the CMD data.
2242	 */
2243	len = sizeof(*mem) + sizeof(*stats);
2244
2245	memset(data_cmd->buf, 0, len);
2246
2247	mem = (struct upgt_lmac_mem *)data_cmd->buf;
2248	mem->addr = htole32(sc->sc_memaddr_frame_start +
2249	    UPGT_MEMSIZE_FRAME_HEAD);
2250
2251	stats = (struct upgt_lmac_stats *)(mem + 1);
2252
2253	stats->header1.flags = 0;
2254	stats->header1.type = UPGT_H1_TYPE_CTRL;
2255	stats->header1.len = htole16(
2256	    sizeof(struct upgt_lmac_stats) -
2257	    sizeof(struct upgt_lmac_header));
2258
2259	stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
2260	stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
2261	stats->header2.flags = 0;
2262
2263	mem->chksum = upgt_chksum_le((uint32_t *)stats, sizeof(*stats));
2264
2265	if (upgt_bulk_xmit(sc, data_cmd, sc->sc_tx_pipeh, &len, 0) != 0) {
2266		aprint_error_dev(sc->sc_dev,
2267		    "could not transmit statistics CMD data URB\n");
2268		return EIO;
2269	}
2270
2271	return 0;
2272
2273}
2274
2275static int
2276upgt_alloc_tx(struct upgt_softc *sc)
2277{
2278	int i;
2279
2280	sc->tx_queued = 0;
2281
2282	for (i = 0; i < UPGT_TX_COUNT; i++) {
2283		struct upgt_data *data_tx = &sc->tx_data[i];
2284
2285		data_tx->sc = sc;
2286
2287		int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2288		    USBD_FORCE_SHORT_XFER, 0, &data_tx->xfer);
2289		if (err) {
2290			aprint_error_dev(sc->sc_dev,
2291			    "could not allocate TX xfer\n");
2292			return err;
2293		}
2294
2295		data_tx->buf = usbd_get_buffer(data_tx->xfer);
2296	}
2297
2298	return 0;
2299}
2300
2301static int
2302upgt_alloc_rx(struct upgt_softc *sc)
2303{
2304	struct upgt_data *data_rx = &sc->rx_data;
2305
2306	data_rx->sc = sc;
2307
2308	int err = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
2309	    0, 0, &data_rx->xfer);
2310	if (err) {
2311		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2312		return err;
2313	}
2314
2315	data_rx->buf = usbd_get_buffer(data_rx->xfer);
2316
2317	return 0;
2318}
2319
2320static int
2321upgt_alloc_cmd(struct upgt_softc *sc)
2322{
2323	struct upgt_data *data_cmd = &sc->cmd_data;
2324
2325	data_cmd->sc = sc;
2326
2327	int err = usbd_create_xfer(sc->sc_tx_pipeh, MCLBYTES,
2328	    USBD_FORCE_SHORT_XFER, 0, &data_cmd->xfer);
2329	if (err) {
2330		aprint_error_dev(sc->sc_dev, "could not allocate RX xfer\n");
2331		return err;
2332	}
2333
2334	data_cmd->buf = usbd_get_buffer(data_cmd->xfer);
2335
2336	cv_init(&sc->sc_cv, "upgteeprom");
2337	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
2338
2339	return 0;
2340}
2341
2342static void
2343upgt_free_tx(struct upgt_softc *sc)
2344{
2345	int i;
2346
2347	for (i = 0; i < UPGT_TX_COUNT; i++) {
2348		struct upgt_data *data_tx = &sc->tx_data[i];
2349
2350		if (data_tx->xfer != NULL) {
2351			usbd_destroy_xfer(data_tx->xfer);
2352			data_tx->xfer = NULL;
2353		}
2354
2355		data_tx->ni = NULL;
2356	}
2357}
2358
2359static void
2360upgt_free_rx(struct upgt_softc *sc)
2361{
2362	struct upgt_data *data_rx = &sc->rx_data;
2363
2364	if (data_rx->xfer != NULL) {
2365		usbd_destroy_xfer(data_rx->xfer);
2366		data_rx->xfer = NULL;
2367	}
2368
2369	data_rx->ni = NULL;
2370}
2371
2372static void
2373upgt_free_cmd(struct upgt_softc *sc)
2374{
2375	struct upgt_data *data_cmd = &sc->cmd_data;
2376
2377	if (data_cmd->xfer == NULL)
2378		return;
2379
2380	mutex_destroy(&sc->sc_mtx);
2381	cv_destroy(&sc->sc_cv);
2382
2383	usbd_destroy_xfer(data_cmd->xfer);
2384	data_cmd->xfer = NULL;
2385}
2386
2387static int
2388upgt_bulk_xmit(struct upgt_softc *sc, struct upgt_data *data,
2389    struct usbd_pipe *pipeh, uint32_t *size, int flags)
2390{
2391        usbd_status status;
2392
2393	status = usbd_bulk_transfer(data->xfer, pipeh, flags, UPGT_USB_TIMEOUT,
2394	    data->buf, size);
2395	if (status != USBD_NORMAL_COMPLETION) {
2396		aprint_error_dev(sc->sc_dev, "%s: error %s\n", __func__,
2397		    usbd_errstr(status));
2398		return EIO;
2399	}
2400
2401	return 0;
2402}
2403
2404#if 0
2405static void
2406upgt_hexdump(void *buf, int len)
2407{
2408	int i;
2409
2410	for (i = 0; i < len; i++) {
2411		if (i % 16 == 0)
2412			printf("%s%5i:", i ? "\n" : "", i);
2413		if (i % 4 == 0)
2414			printf(" ");
2415		printf("%02x", (int)*((uint8_t *)buf + i));
2416	}
2417	printf("\n");
2418}
2419#endif
2420
2421static uint32_t
2422upgt_crc32_le(const void *buf, size_t size)
2423{
2424	uint32_t crc;
2425
2426	crc = ether_crc32_le(buf, size);
2427
2428	/* apply final XOR value as common for CRC-32 */
2429	crc = htole32(crc ^ 0xffffffffU);
2430
2431	return crc;
2432}
2433
2434/*
2435 * The firmware awaits a checksum for each frame we send to it.
2436 * The algorithm used is uncommon but somehow similar to CRC32.
2437 */
2438static uint32_t
2439upgt_chksum_le(const uint32_t *buf, size_t size)
2440{
2441	int i;
2442	uint32_t crc = 0;
2443
2444	for (i = 0; i < size; i += sizeof(uint32_t)) {
2445		crc = htole32(crc ^ *buf++);
2446		crc = htole32((crc >> 5) ^ (crc << 3));
2447	}
2448
2449	return crc;
2450}
2451