if_rum.c revision 1.52
1/*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2/*	$NetBSD: if_rum.c,v 1.52 2016/04/23 10:15:31 skrll Exp $	*/
3
4/*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21/*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26#include <sys/cdefs.h>
27__KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.52 2016/04/23 10:15:31 skrll Exp $");
28
29#include <sys/param.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32#include <sys/mbuf.h>
33#include <sys/kernel.h>
34#include <sys/socket.h>
35#include <sys/systm.h>
36#include <sys/module.h>
37#include <sys/conf.h>
38#include <sys/device.h>
39
40#include <sys/bus.h>
41#include <machine/endian.h>
42#include <sys/intr.h>
43
44#include <net/bpf.h>
45#include <net/if.h>
46#include <net/if_arp.h>
47#include <net/if_dl.h>
48#include <net/if_ether.h>
49#include <net/if_media.h>
50#include <net/if_types.h>
51
52#include <netinet/in.h>
53#include <netinet/in_systm.h>
54#include <netinet/in_var.h>
55#include <netinet/ip.h>
56
57#include <net80211/ieee80211_netbsd.h>
58#include <net80211/ieee80211_var.h>
59#include <net80211/ieee80211_amrr.h>
60#include <net80211/ieee80211_radiotap.h>
61
62#include <dev/firmload.h>
63
64#include <dev/usb/usb.h>
65#include <dev/usb/usbdi.h>
66#include <dev/usb/usbdi_util.h>
67#include <dev/usb/usbdevs.h>
68
69#include <dev/usb/if_rumreg.h>
70#include <dev/usb/if_rumvar.h>
71
72#ifdef RUM_DEBUG
73#define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
74#define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
75int rum_debug = 1;
76#else
77#define DPRINTF(x)
78#define DPRINTFN(n, x)
79#endif
80
81/* various supported device vendors/products */
82static const struct usb_devno rum_devs[] = {
83	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
84	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
85	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
86	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
87	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
88	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
89	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
90	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
91	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
92	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
93	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050C },
94	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB200 },
95	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
96	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
97	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
98	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_RT2573 },
99	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
100	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
101	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
102	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
103	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
104	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
105	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
106	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
107	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7318 },
108	{ USB_VENDOR_EDIMAX,		USB_PRODUCT_EDIMAX_EW7618 },
109	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
110	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
111	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
112	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
113	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
114	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
115	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
116	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
117	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
118	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HG },
119	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
120	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
121	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
122	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
123	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
124	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
125	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
126	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
127	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
128	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
129	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
130	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
131	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
132	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
133	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
134	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
135	{ USB_VENDOR_SPARKLAN,		USB_PRODUCT_SPARKLAN_RT2573 },
136	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 },
137	{ USB_VENDOR_ZYXEL,		USB_PRODUCT_ZYXEL_RT2573 }
138};
139
140static int		rum_attachhook(void *);
141static int		rum_alloc_tx_list(struct rum_softc *);
142static void		rum_free_tx_list(struct rum_softc *);
143static int		rum_alloc_rx_list(struct rum_softc *);
144static void		rum_free_rx_list(struct rum_softc *);
145static int		rum_media_change(struct ifnet *);
146static void		rum_next_scan(void *);
147static void		rum_task(void *);
148static int		rum_newstate(struct ieee80211com *,
149			    enum ieee80211_state, int);
150static void		rum_txeof(struct usbd_xfer *, void *,
151			    usbd_status);
152static void		rum_rxeof(struct usbd_xfer *, void *,
153			    usbd_status);
154static uint8_t		rum_rxrate(const struct rum_rx_desc *);
155static int		rum_ack_rate(struct ieee80211com *, int);
156static uint16_t		rum_txtime(int, int, uint32_t);
157static uint8_t		rum_plcp_signal(int);
158static void		rum_setup_tx_desc(struct rum_softc *,
159			    struct rum_tx_desc *, uint32_t, uint16_t, int,
160			    int);
161static int		rum_tx_data(struct rum_softc *, struct mbuf *,
162			    struct ieee80211_node *);
163static void		rum_start(struct ifnet *);
164static void		rum_watchdog(struct ifnet *);
165static int		rum_ioctl(struct ifnet *, u_long, void *);
166static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
167			    int);
168static uint32_t		rum_read(struct rum_softc *, uint16_t);
169static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
170			    int);
171static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
172static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
173			    size_t);
174static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
175static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
176static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
177static void		rum_select_antenna(struct rum_softc *);
178static void		rum_enable_mrr(struct rum_softc *);
179static void		rum_set_txpreamble(struct rum_softc *);
180static void		rum_set_basicrates(struct rum_softc *);
181static void		rum_select_band(struct rum_softc *,
182			    struct ieee80211_channel *);
183static void		rum_set_chan(struct rum_softc *,
184			    struct ieee80211_channel *);
185static void		rum_enable_tsf_sync(struct rum_softc *);
186static void		rum_update_slot(struct rum_softc *);
187static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
188static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
189static void		rum_update_promisc(struct rum_softc *);
190static const char	*rum_get_rf(int);
191static void		rum_read_eeprom(struct rum_softc *);
192static int		rum_bbp_init(struct rum_softc *);
193static int		rum_init(struct ifnet *);
194static void		rum_stop(struct ifnet *, int);
195static int		rum_load_microcode(struct rum_softc *, const u_char *,
196			    size_t);
197static int		rum_prepare_beacon(struct rum_softc *);
198static void		rum_newassoc(struct ieee80211_node *, int);
199static void		rum_amrr_start(struct rum_softc *,
200			    struct ieee80211_node *);
201static void		rum_amrr_timeout(void *);
202static void		rum_amrr_update(struct usbd_xfer *, void *,
203			    usbd_status);
204
205/*
206 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
207 */
208static const struct ieee80211_rateset rum_rateset_11a =
209	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
210
211static const struct ieee80211_rateset rum_rateset_11b =
212	{ 4, { 2, 4, 11, 22 } };
213
214static const struct ieee80211_rateset rum_rateset_11g =
215	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
216
217static const struct {
218	uint32_t	reg;
219	uint32_t	val;
220} rum_def_mac[] = {
221	RT2573_DEF_MAC
222};
223
224static const struct {
225	uint8_t	reg;
226	uint8_t	val;
227} rum_def_bbp[] = {
228	RT2573_DEF_BBP
229};
230
231static const struct rfprog {
232	uint8_t		chan;
233	uint32_t	r1, r2, r3, r4;
234}  rum_rf5226[] = {
235	RT2573_RF5226
236}, rum_rf5225[] = {
237	RT2573_RF5225
238};
239
240static int rum_match(device_t, cfdata_t, void *);
241static void rum_attach(device_t, device_t, void *);
242static int rum_detach(device_t, int);
243static int rum_activate(device_t, enum devact);
244extern struct cfdriver rum_cd;
245CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
246    rum_detach, rum_activate);
247
248static int
249rum_match(device_t parent, cfdata_t match, void *aux)
250{
251	struct usb_attach_arg *uaa = aux;
252
253	return (usb_lookup(rum_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
254	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
255}
256
257static int
258rum_attachhook(void *xsc)
259{
260	struct rum_softc *sc = xsc;
261	firmware_handle_t fwh;
262	const char *name = "rum-rt2573";
263	u_char *ucode;
264	size_t size;
265	int error;
266
267	if ((error = firmware_open("rum", name, &fwh)) != 0) {
268		printf("%s: failed firmware_open of file %s (error %d)\n",
269		    device_xname(sc->sc_dev), name, error);
270		return error;
271	}
272	size = firmware_get_size(fwh);
273	ucode = firmware_malloc(size);
274	if (ucode == NULL) {
275		printf("%s: failed to allocate firmware memory\n",
276		    device_xname(sc->sc_dev));
277		firmware_close(fwh);
278		return ENOMEM;
279	}
280	error = firmware_read(fwh, 0, ucode, size);
281	firmware_close(fwh);
282	if (error != 0) {
283		printf("%s: failed to read firmware (error %d)\n",
284		    device_xname(sc->sc_dev), error);
285		firmware_free(ucode, size);
286		return error;
287	}
288
289	if (rum_load_microcode(sc, ucode, size) != 0) {
290		printf("%s: could not load 8051 microcode\n",
291		    device_xname(sc->sc_dev));
292		firmware_free(ucode, size);
293		return ENXIO;
294	}
295
296	firmware_free(ucode, size);
297	sc->sc_flags |= RT2573_FWLOADED;
298
299	return 0;
300}
301
302static void
303rum_attach(device_t parent, device_t self, void *aux)
304{
305	struct rum_softc *sc = device_private(self);
306	struct usb_attach_arg *uaa = aux;
307	struct ieee80211com *ic = &sc->sc_ic;
308	struct ifnet *ifp = &sc->sc_if;
309	usb_interface_descriptor_t *id;
310	usb_endpoint_descriptor_t *ed;
311	usbd_status error;
312	char *devinfop;
313	int i, ntries;
314	uint32_t tmp;
315
316	sc->sc_dev = self;
317	sc->sc_udev = uaa->uaa_device;
318	sc->sc_flags = 0;
319
320	aprint_naive("\n");
321	aprint_normal("\n");
322
323	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
324	aprint_normal_dev(self, "%s\n", devinfop);
325	usbd_devinfo_free(devinfop);
326
327	error = usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0);
328	if (error != 0) {
329		aprint_error_dev(self, "failed to set configuration"
330		    ", err=%s\n", usbd_errstr(error));
331		return;
332	}
333
334	/* get the first interface handle */
335	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
336	    &sc->sc_iface);
337	if (error != 0) {
338		aprint_error_dev(self, "could not get interface handle\n");
339		return;
340	}
341
342	/*
343	 * Find endpoints.
344	 */
345	id = usbd_get_interface_descriptor(sc->sc_iface);
346
347	sc->sc_rx_no = sc->sc_tx_no = -1;
348	for (i = 0; i < id->bNumEndpoints; i++) {
349		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
350		if (ed == NULL) {
351			aprint_error_dev(self,
352			    "no endpoint descriptor for iface %d\n", i);
353			return;
354		}
355
356		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
357		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
358			sc->sc_rx_no = ed->bEndpointAddress;
359		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
360		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
361			sc->sc_tx_no = ed->bEndpointAddress;
362	}
363	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
364		aprint_error_dev(self, "missing endpoint\n");
365		return;
366	}
367
368	usb_init_task(&sc->sc_task, rum_task, sc, 0);
369	callout_init(&sc->sc_scan_ch, 0);
370
371	sc->amrr.amrr_min_success_threshold =  1;
372	sc->amrr.amrr_max_success_threshold = 10;
373	callout_init(&sc->sc_amrr_ch, 0);
374
375	/* retrieve RT2573 rev. no */
376	for (ntries = 0; ntries < 1000; ntries++) {
377		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
378			break;
379		DELAY(1000);
380	}
381	if (ntries == 1000) {
382		aprint_error_dev(self, "timeout waiting for chip to settle\n");
383		return;
384	}
385
386	/* retrieve MAC address and various other things from EEPROM */
387	rum_read_eeprom(sc);
388
389	aprint_normal_dev(self,
390	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
391	    sc->macbbp_rev, tmp,
392	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
393
394	ic->ic_ifp = ifp;
395	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
396	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
397	ic->ic_state = IEEE80211_S_INIT;
398
399	/* set device capabilities */
400	ic->ic_caps =
401	    IEEE80211_C_IBSS |		/* IBSS mode supported */
402	    IEEE80211_C_MONITOR |	/* monitor mode supported */
403	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
404	    IEEE80211_C_TXPMGT |	/* tx power management */
405	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
406	    IEEE80211_C_SHSLOT |	/* short slot time supported */
407	    IEEE80211_C_WPA;		/* 802.11i */
408
409	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
410		/* set supported .11a rates */
411		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
412
413		/* set supported .11a channels */
414		for (i = 34; i <= 46; i += 4) {
415			ic->ic_channels[i].ic_freq =
416			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418		}
419		for (i = 36; i <= 64; i += 4) {
420			ic->ic_channels[i].ic_freq =
421			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423		}
424		for (i = 100; i <= 140; i += 4) {
425			ic->ic_channels[i].ic_freq =
426			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
427			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
428		}
429		for (i = 149; i <= 165; i += 4) {
430			ic->ic_channels[i].ic_freq =
431			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
432			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
433		}
434	}
435
436	/* set supported .11b and .11g rates */
437	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
438	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
439
440	/* set supported .11b and .11g channels (1 through 14) */
441	for (i = 1; i <= 14; i++) {
442		ic->ic_channels[i].ic_freq =
443		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
444		ic->ic_channels[i].ic_flags =
445		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
446		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
447	}
448
449	ifp->if_softc = sc;
450	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
451	ifp->if_init = rum_init;
452	ifp->if_ioctl = rum_ioctl;
453	ifp->if_start = rum_start;
454	ifp->if_watchdog = rum_watchdog;
455	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
456	IFQ_SET_READY(&ifp->if_snd);
457	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
458
459	if_attach(ifp);
460	ieee80211_ifattach(ic);
461	ic->ic_newassoc = rum_newassoc;
462
463	/* override state transition machine */
464	sc->sc_newstate = ic->ic_newstate;
465	ic->ic_newstate = rum_newstate;
466	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
467
468	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
469	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
470	    &sc->sc_drvbpf);
471
472	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
473	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
474	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
475
476	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
477	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
478	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
479
480	ieee80211_announce(ic);
481
482	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
483	    sc->sc_dev);
484
485	if (!pmf_device_register(self, NULL, NULL))
486		aprint_error_dev(self, "couldn't establish power handler\n");
487
488	return;
489}
490
491static int
492rum_detach(device_t self, int flags)
493{
494	struct rum_softc *sc = device_private(self);
495	struct ieee80211com *ic = &sc->sc_ic;
496	struct ifnet *ifp = &sc->sc_if;
497	int s;
498
499	if (!ifp->if_softc)
500		return 0;
501
502	pmf_device_deregister(self);
503
504	s = splusb();
505
506	rum_stop(ifp, 1);
507	usb_rem_task(sc->sc_udev, &sc->sc_task);
508	callout_stop(&sc->sc_scan_ch);
509	callout_stop(&sc->sc_amrr_ch);
510
511	bpf_detach(ifp);
512	ieee80211_ifdetach(ic);	/* free all nodes */
513	if_detach(ifp);
514
515	splx(s);
516
517	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
518
519	return 0;
520}
521
522static int
523rum_alloc_tx_list(struct rum_softc *sc)
524{
525	struct rum_tx_data *data;
526	int i, error;
527
528	sc->tx_cur = sc->tx_queued = 0;
529
530	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
531		data = &sc->tx_data[i];
532
533		data->sc = sc;
534
535		error = usbd_create_xfer(sc->sc_tx_pipeh,
536		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN,
537		    USBD_FORCE_SHORT_XFER, 0, &data->xfer);
538		if (error) {
539			printf("%s: could not allocate tx xfer\n",
540			    device_xname(sc->sc_dev));
541			goto fail;
542		}
543		data->buf = usbd_get_buffer(data->xfer);
544
545		/* clean Tx descriptor */
546		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
547	}
548
549	return 0;
550
551fail:	rum_free_tx_list(sc);
552	return error;
553}
554
555static void
556rum_free_tx_list(struct rum_softc *sc)
557{
558	struct rum_tx_data *data;
559	int i;
560
561	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
562		data = &sc->tx_data[i];
563
564		if (data->xfer != NULL) {
565			usbd_destroy_xfer(data->xfer);
566			data->xfer = NULL;
567		}
568
569		if (data->ni != NULL) {
570			ieee80211_free_node(data->ni);
571			data->ni = NULL;
572		}
573	}
574}
575
576static int
577rum_alloc_rx_list(struct rum_softc *sc)
578{
579	struct rum_rx_data *data;
580	int i, error;
581
582	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
583		data = &sc->rx_data[i];
584
585		data->sc = sc;
586
587		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
588		    USBD_SHORT_XFER_OK, 0, &data->xfer);
589		if (error) {
590			printf("%s: could not allocate rx xfer\n",
591			    device_xname(sc->sc_dev));
592			goto fail;
593		}
594
595		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
596		if (data->m == NULL) {
597			printf("%s: could not allocate rx mbuf\n",
598			    device_xname(sc->sc_dev));
599			error = ENOMEM;
600			goto fail;
601		}
602
603		MCLGET(data->m, M_DONTWAIT);
604		if (!(data->m->m_flags & M_EXT)) {
605			printf("%s: could not allocate rx mbuf cluster\n",
606			    device_xname(sc->sc_dev));
607			error = ENOMEM;
608			goto fail;
609		}
610
611		data->buf = mtod(data->m, uint8_t *);
612	}
613
614	return 0;
615
616fail:	rum_free_rx_list(sc);
617	return error;
618}
619
620static void
621rum_free_rx_list(struct rum_softc *sc)
622{
623	struct rum_rx_data *data;
624	int i;
625
626	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
627		data = &sc->rx_data[i];
628
629		if (data->xfer != NULL) {
630			usbd_destroy_xfer(data->xfer);
631			data->xfer = NULL;
632		}
633
634		if (data->m != NULL) {
635			m_freem(data->m);
636			data->m = NULL;
637		}
638	}
639}
640
641static int
642rum_media_change(struct ifnet *ifp)
643{
644	int error;
645
646	error = ieee80211_media_change(ifp);
647	if (error != ENETRESET)
648		return error;
649
650	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
651		rum_init(ifp);
652
653	return 0;
654}
655
656/*
657 * This function is called periodically (every 200ms) during scanning to
658 * switch from one channel to another.
659 */
660static void
661rum_next_scan(void *arg)
662{
663	struct rum_softc *sc = arg;
664	struct ieee80211com *ic = &sc->sc_ic;
665	int s;
666
667	s = splnet();
668	if (ic->ic_state == IEEE80211_S_SCAN)
669		ieee80211_next_scan(ic);
670	splx(s);
671}
672
673static void
674rum_task(void *arg)
675{
676	struct rum_softc *sc = arg;
677	struct ieee80211com *ic = &sc->sc_ic;
678	enum ieee80211_state ostate;
679	struct ieee80211_node *ni;
680	uint32_t tmp;
681
682	ostate = ic->ic_state;
683
684	switch (sc->sc_state) {
685	case IEEE80211_S_INIT:
686		if (ostate == IEEE80211_S_RUN) {
687			/* abort TSF synchronization */
688			tmp = rum_read(sc, RT2573_TXRX_CSR9);
689			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
690		}
691		break;
692
693	case IEEE80211_S_SCAN:
694		rum_set_chan(sc, ic->ic_curchan);
695		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
696		break;
697
698	case IEEE80211_S_AUTH:
699		rum_set_chan(sc, ic->ic_curchan);
700		break;
701
702	case IEEE80211_S_ASSOC:
703		rum_set_chan(sc, ic->ic_curchan);
704		break;
705
706	case IEEE80211_S_RUN:
707		rum_set_chan(sc, ic->ic_curchan);
708
709		ni = ic->ic_bss;
710
711		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
712			rum_update_slot(sc);
713			rum_enable_mrr(sc);
714			rum_set_txpreamble(sc);
715			rum_set_basicrates(sc);
716			rum_set_bssid(sc, ni->ni_bssid);
717		}
718
719		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
720		    ic->ic_opmode == IEEE80211_M_IBSS)
721			rum_prepare_beacon(sc);
722
723		if (ic->ic_opmode != IEEE80211_M_MONITOR)
724			rum_enable_tsf_sync(sc);
725
726		if (ic->ic_opmode == IEEE80211_M_STA) {
727			/* fake a join to init the tx rate */
728			rum_newassoc(ic->ic_bss, 1);
729
730			/* enable automatic rate adaptation in STA mode */
731			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
732				rum_amrr_start(sc, ni);
733		}
734
735		break;
736	}
737
738	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
739}
740
741static int
742rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
743{
744	struct rum_softc *sc = ic->ic_ifp->if_softc;
745
746	usb_rem_task(sc->sc_udev, &sc->sc_task);
747	callout_stop(&sc->sc_scan_ch);
748	callout_stop(&sc->sc_amrr_ch);
749
750	/* do it in a process context */
751	sc->sc_state = nstate;
752	sc->sc_arg = arg;
753	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
754
755	return 0;
756}
757
758/* quickly determine if a given rate is CCK or OFDM */
759#define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
760
761#define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
762#define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
763
764static void
765rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
766{
767	struct rum_tx_data *data = priv;
768	struct rum_softc *sc = data->sc;
769	struct ifnet *ifp = &sc->sc_if;
770	int s;
771
772	if (status != USBD_NORMAL_COMPLETION) {
773		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
774			return;
775
776		printf("%s: could not transmit buffer: %s\n",
777		    device_xname(sc->sc_dev), usbd_errstr(status));
778
779		if (status == USBD_STALLED)
780			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
781
782		ifp->if_oerrors++;
783		return;
784	}
785
786	s = splnet();
787
788	ieee80211_free_node(data->ni);
789	data->ni = NULL;
790
791	sc->tx_queued--;
792	ifp->if_opackets++;
793
794	DPRINTFN(10, ("tx done\n"));
795
796	sc->sc_tx_timer = 0;
797	ifp->if_flags &= ~IFF_OACTIVE;
798	rum_start(ifp);
799
800	splx(s);
801}
802
803static void
804rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
805{
806	struct rum_rx_data *data = priv;
807	struct rum_softc *sc = data->sc;
808	struct ieee80211com *ic = &sc->sc_ic;
809	struct ifnet *ifp = &sc->sc_if;
810	struct rum_rx_desc *desc;
811	struct ieee80211_frame *wh;
812	struct ieee80211_node *ni;
813	struct mbuf *mnew, *m;
814	int s, len;
815
816	if (status != USBD_NORMAL_COMPLETION) {
817		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
818			return;
819
820		if (status == USBD_STALLED)
821			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
822		goto skip;
823	}
824
825	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
826
827	if (len < (int)(RT2573_RX_DESC_SIZE +
828		        sizeof(struct ieee80211_frame_min))) {
829		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
830		    len));
831		ifp->if_ierrors++;
832		goto skip;
833	}
834
835	desc = (struct rum_rx_desc *)data->buf;
836
837	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
838		/*
839		 * This should not happen since we did not request to receive
840		 * those frames when we filled RT2573_TXRX_CSR0.
841		 */
842		DPRINTFN(5, ("CRC error\n"));
843		ifp->if_ierrors++;
844		goto skip;
845	}
846
847	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
848	if (mnew == NULL) {
849		printf("%s: could not allocate rx mbuf\n",
850		    device_xname(sc->sc_dev));
851		ifp->if_ierrors++;
852		goto skip;
853	}
854
855	MCLGET(mnew, M_DONTWAIT);
856	if (!(mnew->m_flags & M_EXT)) {
857		printf("%s: could not allocate rx mbuf cluster\n",
858		    device_xname(sc->sc_dev));
859		m_freem(mnew);
860		ifp->if_ierrors++;
861		goto skip;
862	}
863
864	m = data->m;
865	data->m = mnew;
866	data->buf = mtod(data->m, uint8_t *);
867
868	/* finalize mbuf */
869	m->m_pkthdr.rcvif = ifp;
870	m->m_data = (void *)(desc + 1);
871	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
872
873	s = splnet();
874
875	if (sc->sc_drvbpf != NULL) {
876		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
877
878		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
879		tap->wr_rate = rum_rxrate(desc);
880		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
881		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
882		tap->wr_antenna = sc->rx_ant;
883		tap->wr_antsignal = desc->rssi;
884
885		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
886	}
887
888	wh = mtod(m, struct ieee80211_frame *);
889	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
890
891	/* send the frame to the 802.11 layer */
892	ieee80211_input(ic, m, ni, desc->rssi, 0);
893
894	/* node is no longer needed */
895	ieee80211_free_node(ni);
896
897	splx(s);
898
899	DPRINTFN(15, ("rx done\n"));
900
901skip:	/* setup a new transfer */
902	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES, USBD_SHORT_XFER_OK,
903	    USBD_NO_TIMEOUT, rum_rxeof);
904	usbd_transfer(xfer);
905}
906
907/*
908 * This function is only used by the Rx radiotap code. It returns the rate at
909 * which a given frame was received.
910 */
911static uint8_t
912rum_rxrate(const struct rum_rx_desc *desc)
913{
914	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
915		/* reverse function of rum_plcp_signal */
916		switch (desc->rate) {
917		case 0xb:	return 12;
918		case 0xf:	return 18;
919		case 0xa:	return 24;
920		case 0xe:	return 36;
921		case 0x9:	return 48;
922		case 0xd:	return 72;
923		case 0x8:	return 96;
924		case 0xc:	return 108;
925		}
926	} else {
927		if (desc->rate == 10)
928			return 2;
929		if (desc->rate == 20)
930			return 4;
931		if (desc->rate == 55)
932			return 11;
933		if (desc->rate == 110)
934			return 22;
935	}
936	return 2;	/* should not get there */
937}
938
939/*
940 * Return the expected ack rate for a frame transmitted at rate `rate'.
941 * XXX: this should depend on the destination node basic rate set.
942 */
943static int
944rum_ack_rate(struct ieee80211com *ic, int rate)
945{
946	switch (rate) {
947	/* CCK rates */
948	case 2:
949		return 2;
950	case 4:
951	case 11:
952	case 22:
953		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
954
955	/* OFDM rates */
956	case 12:
957	case 18:
958		return 12;
959	case 24:
960	case 36:
961		return 24;
962	case 48:
963	case 72:
964	case 96:
965	case 108:
966		return 48;
967	}
968
969	/* default to 1Mbps */
970	return 2;
971}
972
973/*
974 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
975 * The function automatically determines the operating mode depending on the
976 * given rate. `flags' indicates whether short preamble is in use or not.
977 */
978static uint16_t
979rum_txtime(int len, int rate, uint32_t flags)
980{
981	uint16_t txtime;
982
983	if (RUM_RATE_IS_OFDM(rate)) {
984		/* IEEE Std 802.11a-1999, pp. 37 */
985		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
986		txtime = 16 + 4 + 4 * txtime + 6;
987	} else {
988		/* IEEE Std 802.11b-1999, pp. 28 */
989		txtime = (16 * len + rate - 1) / rate;
990		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
991			txtime +=  72 + 24;
992		else
993			txtime += 144 + 48;
994	}
995	return txtime;
996}
997
998static uint8_t
999rum_plcp_signal(int rate)
1000{
1001	switch (rate) {
1002	/* CCK rates (returned values are device-dependent) */
1003	case 2:		return 0x0;
1004	case 4:		return 0x1;
1005	case 11:	return 0x2;
1006	case 22:	return 0x3;
1007
1008	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1009	case 12:	return 0xb;
1010	case 18:	return 0xf;
1011	case 24:	return 0xa;
1012	case 36:	return 0xe;
1013	case 48:	return 0x9;
1014	case 72:	return 0xd;
1015	case 96:	return 0x8;
1016	case 108:	return 0xc;
1017
1018	/* unsupported rates (should not get there) */
1019	default:	return 0xff;
1020	}
1021}
1022
1023static void
1024rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1025    uint32_t flags, uint16_t xflags, int len, int rate)
1026{
1027	struct ieee80211com *ic = &sc->sc_ic;
1028	uint16_t plcp_length;
1029	int remainder;
1030
1031	desc->flags = htole32(flags);
1032	desc->flags |= htole32(RT2573_TX_VALID);
1033	desc->flags |= htole32(len << 16);
1034
1035	desc->xflags = htole16(xflags);
1036
1037	desc->wme = htole16(
1038	    RT2573_QID(0) |
1039	    RT2573_AIFSN(2) |
1040	    RT2573_LOGCWMIN(4) |
1041	    RT2573_LOGCWMAX(10));
1042
1043	/* setup PLCP fields */
1044	desc->plcp_signal  = rum_plcp_signal(rate);
1045	desc->plcp_service = 4;
1046
1047	len += IEEE80211_CRC_LEN;
1048	if (RUM_RATE_IS_OFDM(rate)) {
1049		desc->flags |= htole32(RT2573_TX_OFDM);
1050
1051		plcp_length = len & 0xfff;
1052		desc->plcp_length_hi = plcp_length >> 6;
1053		desc->plcp_length_lo = plcp_length & 0x3f;
1054	} else {
1055		plcp_length = (16 * len + rate - 1) / rate;
1056		if (rate == 22) {
1057			remainder = (16 * len) % 22;
1058			if (remainder != 0 && remainder < 7)
1059				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1060		}
1061		desc->plcp_length_hi = plcp_length >> 8;
1062		desc->plcp_length_lo = plcp_length & 0xff;
1063
1064		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1065			desc->plcp_signal |= 0x08;
1066	}
1067}
1068
1069#define RUM_TX_TIMEOUT	5000
1070
1071static int
1072rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1073{
1074	struct ieee80211com *ic = &sc->sc_ic;
1075	struct rum_tx_desc *desc;
1076	struct rum_tx_data *data;
1077	struct ieee80211_frame *wh;
1078	struct ieee80211_key *k;
1079	uint32_t flags = 0;
1080	uint16_t dur;
1081	usbd_status error;
1082	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1083
1084	wh = mtod(m0, struct ieee80211_frame *);
1085
1086	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1087		k = ieee80211_crypto_encap(ic, ni, m0);
1088		if (k == NULL) {
1089			m_freem(m0);
1090			return ENOBUFS;
1091		}
1092
1093		/* packet header may have moved, reset our local pointer */
1094		wh = mtod(m0, struct ieee80211_frame *);
1095	}
1096
1097	/* compute actual packet length (including CRC and crypto overhead) */
1098	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1099
1100	/* pickup a rate */
1101	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1102	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1103	     IEEE80211_FC0_TYPE_MGT)) {
1104		/* mgmt/multicast frames are sent at the lowest avail. rate */
1105		rate = ni->ni_rates.rs_rates[0];
1106	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1107		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1108	} else
1109		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1110	if (rate == 0)
1111		rate = 2;	/* XXX should not happen */
1112	rate &= IEEE80211_RATE_VAL;
1113
1114	/* check if RTS/CTS or CTS-to-self protection must be used */
1115	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1116		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1117		if (pktlen > ic->ic_rtsthreshold) {
1118			needrts = 1;	/* RTS/CTS based on frame length */
1119		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1120		    RUM_RATE_IS_OFDM(rate)) {
1121			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1122				needcts = 1;	/* CTS-to-self */
1123			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1124				needrts = 1;	/* RTS/CTS */
1125		}
1126	}
1127	if (needrts || needcts) {
1128		struct mbuf *mprot;
1129		int protrate, ackrate;
1130
1131		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1132		ackrate  = rum_ack_rate(ic, rate);
1133
1134		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1135		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1136		      2 * sc->sifs;
1137		if (needrts) {
1138			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1139			    protrate), ic->ic_flags) + sc->sifs;
1140			mprot = ieee80211_get_rts(ic, wh, dur);
1141		} else {
1142			mprot = ieee80211_get_cts_to_self(ic, dur);
1143		}
1144		if (mprot == NULL) {
1145			aprint_error_dev(sc->sc_dev,
1146			    "couldn't allocate protection frame\n");
1147			m_freem(m0);
1148			return ENOBUFS;
1149		}
1150
1151		data = &sc->tx_data[sc->tx_cur];
1152		desc = (struct rum_tx_desc *)data->buf;
1153
1154		/* avoid multiple free() of the same node for each fragment */
1155		data->ni = ieee80211_ref_node(ni);
1156
1157		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1158		    data->buf + RT2573_TX_DESC_SIZE);
1159		rum_setup_tx_desc(sc, desc,
1160		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1161		    0, mprot->m_pkthdr.len, protrate);
1162
1163		/* no roundup necessary here */
1164		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1165
1166		/* XXX may want to pass the protection frame to BPF */
1167
1168		/* mbuf is no longer needed */
1169		m_freem(mprot);
1170
1171		usbd_setup_xfer(data->xfer, data, data->buf,
1172		    xferlen, USBD_FORCE_SHORT_XFER,
1173		    RUM_TX_TIMEOUT, rum_txeof);
1174		error = usbd_transfer(data->xfer);
1175		if (error != USBD_NORMAL_COMPLETION &&
1176		    error != USBD_IN_PROGRESS) {
1177			m_freem(m0);
1178			return error;
1179		}
1180
1181		sc->tx_queued++;
1182		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1183
1184		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1185	}
1186
1187	data = &sc->tx_data[sc->tx_cur];
1188	desc = (struct rum_tx_desc *)data->buf;
1189
1190	data->ni = ni;
1191
1192	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1193		flags |= RT2573_TX_NEED_ACK;
1194
1195		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1196		    ic->ic_flags) + sc->sifs;
1197		*(uint16_t *)wh->i_dur = htole16(dur);
1198
1199		/* tell hardware to set timestamp in probe responses */
1200		if ((wh->i_fc[0] &
1201		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1202		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1203			flags |= RT2573_TX_TIMESTAMP;
1204	}
1205
1206	if (sc->sc_drvbpf != NULL) {
1207		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1208
1209		tap->wt_flags = 0;
1210		tap->wt_rate = rate;
1211		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1212		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1213		tap->wt_antenna = sc->tx_ant;
1214
1215		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1216	}
1217
1218	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1219	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1220
1221	/* align end on a 4-bytes boundary */
1222	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1223
1224	/*
1225	 * No space left in the last URB to store the extra 4 bytes, force
1226	 * sending of another URB.
1227	 */
1228	if ((xferlen % 64) == 0)
1229		xferlen += 4;
1230
1231	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1232	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1233	    rate, xferlen));
1234
1235	/* mbuf is no longer needed */
1236	m_freem(m0);
1237
1238	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1239	    USBD_FORCE_SHORT_XFER, RUM_TX_TIMEOUT, rum_txeof);
1240	error = usbd_transfer(data->xfer);
1241	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1242		return error;
1243
1244	sc->tx_queued++;
1245	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1246
1247	return 0;
1248}
1249
1250static void
1251rum_start(struct ifnet *ifp)
1252{
1253	struct rum_softc *sc = ifp->if_softc;
1254	struct ieee80211com *ic = &sc->sc_ic;
1255	struct ether_header *eh;
1256	struct ieee80211_node *ni;
1257	struct mbuf *m0;
1258
1259	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1260		return;
1261
1262	for (;;) {
1263		IF_POLL(&ic->ic_mgtq, m0);
1264		if (m0 != NULL) {
1265			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1266				ifp->if_flags |= IFF_OACTIVE;
1267				break;
1268			}
1269			IF_DEQUEUE(&ic->ic_mgtq, m0);
1270
1271			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1272			m0->m_pkthdr.rcvif = NULL;
1273			bpf_mtap3(ic->ic_rawbpf, m0);
1274			if (rum_tx_data(sc, m0, ni) != 0)
1275				break;
1276
1277		} else {
1278			if (ic->ic_state != IEEE80211_S_RUN)
1279				break;
1280			IFQ_POLL(&ifp->if_snd, m0);
1281			if (m0 == NULL)
1282				break;
1283			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1284				ifp->if_flags |= IFF_OACTIVE;
1285				break;
1286			}
1287			IFQ_DEQUEUE(&ifp->if_snd, m0);
1288			if (m0->m_len < (int)sizeof(struct ether_header) &&
1289			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1290				continue;
1291
1292			eh = mtod(m0, struct ether_header *);
1293			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1294			if (ni == NULL) {
1295				m_freem(m0);
1296				continue;
1297			}
1298			bpf_mtap(ifp, m0);
1299			m0 = ieee80211_encap(ic, m0, ni);
1300			if (m0 == NULL) {
1301				ieee80211_free_node(ni);
1302				continue;
1303			}
1304			bpf_mtap3(ic->ic_rawbpf, m0);
1305			if (rum_tx_data(sc, m0, ni) != 0) {
1306				ieee80211_free_node(ni);
1307				ifp->if_oerrors++;
1308				break;
1309			}
1310		}
1311
1312		sc->sc_tx_timer = 5;
1313		ifp->if_timer = 1;
1314	}
1315}
1316
1317static void
1318rum_watchdog(struct ifnet *ifp)
1319{
1320	struct rum_softc *sc = ifp->if_softc;
1321	struct ieee80211com *ic = &sc->sc_ic;
1322
1323	ifp->if_timer = 0;
1324
1325	if (sc->sc_tx_timer > 0) {
1326		if (--sc->sc_tx_timer == 0) {
1327			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1328			/*rum_init(ifp); XXX needs a process context! */
1329			ifp->if_oerrors++;
1330			return;
1331		}
1332		ifp->if_timer = 1;
1333	}
1334
1335	ieee80211_watchdog(ic);
1336}
1337
1338static int
1339rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1340{
1341#define IS_RUNNING(ifp) \
1342	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1343
1344	struct rum_softc *sc = ifp->if_softc;
1345	struct ieee80211com *ic = &sc->sc_ic;
1346	int s, error = 0;
1347
1348	s = splnet();
1349
1350	switch (cmd) {
1351	case SIOCSIFFLAGS:
1352		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1353			break;
1354		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1355		case IFF_UP|IFF_RUNNING:
1356			rum_update_promisc(sc);
1357			break;
1358		case IFF_UP:
1359			rum_init(ifp);
1360			break;
1361		case IFF_RUNNING:
1362			rum_stop(ifp, 1);
1363			break;
1364		case 0:
1365			break;
1366		}
1367		break;
1368
1369	case SIOCADDMULTI:
1370	case SIOCDELMULTI:
1371		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1372			error = 0;
1373		}
1374		break;
1375
1376	default:
1377		error = ieee80211_ioctl(ic, cmd, data);
1378	}
1379
1380	if (error == ENETRESET) {
1381		if (IS_RUNNING(ifp) &&
1382			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1383			rum_init(ifp);
1384		error = 0;
1385	}
1386
1387	splx(s);
1388
1389	return error;
1390#undef IS_RUNNING
1391}
1392
1393static void
1394rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1395{
1396	usb_device_request_t req;
1397	usbd_status error;
1398
1399	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1400	req.bRequest = RT2573_READ_EEPROM;
1401	USETW(req.wValue, 0);
1402	USETW(req.wIndex, addr);
1403	USETW(req.wLength, len);
1404
1405	error = usbd_do_request(sc->sc_udev, &req, buf);
1406	if (error != 0) {
1407		printf("%s: could not read EEPROM: %s\n",
1408		    device_xname(sc->sc_dev), usbd_errstr(error));
1409	}
1410}
1411
1412static uint32_t
1413rum_read(struct rum_softc *sc, uint16_t reg)
1414{
1415	uint32_t val;
1416
1417	rum_read_multi(sc, reg, &val, sizeof(val));
1418
1419	return le32toh(val);
1420}
1421
1422static void
1423rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1424{
1425	usb_device_request_t req;
1426	usbd_status error;
1427
1428	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1429	req.bRequest = RT2573_READ_MULTI_MAC;
1430	USETW(req.wValue, 0);
1431	USETW(req.wIndex, reg);
1432	USETW(req.wLength, len);
1433
1434	error = usbd_do_request(sc->sc_udev, &req, buf);
1435	if (error != 0) {
1436		printf("%s: could not multi read MAC register: %s\n",
1437		    device_xname(sc->sc_dev), usbd_errstr(error));
1438	}
1439}
1440
1441static void
1442rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1443{
1444	uint32_t tmp = htole32(val);
1445
1446	rum_write_multi(sc, reg, &tmp, sizeof(tmp));
1447}
1448
1449static void
1450rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1451{
1452	usb_device_request_t req;
1453	usbd_status error;
1454	int offset;
1455
1456	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1457	req.bRequest = RT2573_WRITE_MULTI_MAC;
1458	USETW(req.wValue, 0);
1459
1460	/* write at most 64 bytes at a time */
1461	for (offset = 0; offset < len; offset += 64) {
1462		USETW(req.wIndex, reg + offset);
1463		USETW(req.wLength, MIN(len - offset, 64));
1464
1465		error = usbd_do_request(sc->sc_udev, &req, (char *)buf + offset);
1466		if (error != 0) {
1467			printf("%s: could not multi write MAC register: %s\n",
1468			    device_xname(sc->sc_dev), usbd_errstr(error));
1469		}
1470	}
1471}
1472
1473static void
1474rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1475{
1476	uint32_t tmp;
1477	int ntries;
1478
1479	for (ntries = 0; ntries < 5; ntries++) {
1480		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1481			break;
1482	}
1483	if (ntries == 5) {
1484		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1485		return;
1486	}
1487
1488	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1489	rum_write(sc, RT2573_PHY_CSR3, tmp);
1490}
1491
1492static uint8_t
1493rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1494{
1495	uint32_t val;
1496	int ntries;
1497
1498	for (ntries = 0; ntries < 5; ntries++) {
1499		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1500			break;
1501	}
1502	if (ntries == 5) {
1503		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1504		return 0;
1505	}
1506
1507	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1508	rum_write(sc, RT2573_PHY_CSR3, val);
1509
1510	for (ntries = 0; ntries < 100; ntries++) {
1511		val = rum_read(sc, RT2573_PHY_CSR3);
1512		if (!(val & RT2573_BBP_BUSY))
1513			return val & 0xff;
1514		DELAY(1);
1515	}
1516
1517	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1518	return 0;
1519}
1520
1521static void
1522rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1523{
1524	uint32_t tmp;
1525	int ntries;
1526
1527	for (ntries = 0; ntries < 5; ntries++) {
1528		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1529			break;
1530	}
1531	if (ntries == 5) {
1532		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1533		return;
1534	}
1535
1536	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1537	    (reg & 3);
1538	rum_write(sc, RT2573_PHY_CSR4, tmp);
1539
1540	/* remember last written value in sc */
1541	sc->rf_regs[reg] = val;
1542
1543	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1544}
1545
1546static void
1547rum_select_antenna(struct rum_softc *sc)
1548{
1549	uint8_t bbp4, bbp77;
1550	uint32_t tmp;
1551
1552	bbp4  = rum_bbp_read(sc, 4);
1553	bbp77 = rum_bbp_read(sc, 77);
1554
1555	/* TBD */
1556
1557	/* make sure Rx is disabled before switching antenna */
1558	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1559	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1560
1561	rum_bbp_write(sc,  4, bbp4);
1562	rum_bbp_write(sc, 77, bbp77);
1563
1564	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1565}
1566
1567/*
1568 * Enable multi-rate retries for frames sent at OFDM rates.
1569 * In 802.11b/g mode, allow fallback to CCK rates.
1570 */
1571static void
1572rum_enable_mrr(struct rum_softc *sc)
1573{
1574	struct ieee80211com *ic = &sc->sc_ic;
1575	uint32_t tmp;
1576
1577	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1578
1579	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1580	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1581		tmp |= RT2573_MRR_CCK_FALLBACK;
1582	tmp |= RT2573_MRR_ENABLED;
1583
1584	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1585}
1586
1587static void
1588rum_set_txpreamble(struct rum_softc *sc)
1589{
1590	uint32_t tmp;
1591
1592	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1593
1594	tmp &= ~RT2573_SHORT_PREAMBLE;
1595	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1596		tmp |= RT2573_SHORT_PREAMBLE;
1597
1598	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1599}
1600
1601static void
1602rum_set_basicrates(struct rum_softc *sc)
1603{
1604	struct ieee80211com *ic = &sc->sc_ic;
1605
1606	/* update basic rate set */
1607	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1608		/* 11b basic rates: 1, 2Mbps */
1609		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1610	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1611		/* 11a basic rates: 6, 12, 24Mbps */
1612		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1613	} else {
1614		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1615		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1616	}
1617}
1618
1619/*
1620 * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1621 * driver.
1622 */
1623static void
1624rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1625{
1626	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1627	uint32_t tmp;
1628
1629	/* update all BBP registers that depend on the band */
1630	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1631	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1632	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1633		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1634		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1635	}
1636	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1637	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1638		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1639	}
1640
1641	sc->bbp17 = bbp17;
1642	rum_bbp_write(sc,  17, bbp17);
1643	rum_bbp_write(sc,  96, bbp96);
1644	rum_bbp_write(sc, 104, bbp104);
1645
1646	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1647	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1648		rum_bbp_write(sc, 75, 0x80);
1649		rum_bbp_write(sc, 86, 0x80);
1650		rum_bbp_write(sc, 88, 0x80);
1651	}
1652
1653	rum_bbp_write(sc, 35, bbp35);
1654	rum_bbp_write(sc, 97, bbp97);
1655	rum_bbp_write(sc, 98, bbp98);
1656
1657	tmp = rum_read(sc, RT2573_PHY_CSR0);
1658	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1659	if (IEEE80211_IS_CHAN_2GHZ(c))
1660		tmp |= RT2573_PA_PE_2GHZ;
1661	else
1662		tmp |= RT2573_PA_PE_5GHZ;
1663	rum_write(sc, RT2573_PHY_CSR0, tmp);
1664
1665	/* 802.11a uses a 16 microseconds short interframe space */
1666	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1667}
1668
1669static void
1670rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1671{
1672	struct ieee80211com *ic = &sc->sc_ic;
1673	const struct rfprog *rfprog;
1674	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1675	int8_t power;
1676	u_int i, chan;
1677
1678	chan = ieee80211_chan2ieee(ic, c);
1679	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1680		return;
1681
1682	/* select the appropriate RF settings based on what EEPROM says */
1683	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1684		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1685
1686	/* find the settings for this channel (we know it exists) */
1687	for (i = 0; rfprog[i].chan != chan; i++);
1688
1689	power = sc->txpow[i];
1690	if (power < 0) {
1691		bbp94 += power;
1692		power = 0;
1693	} else if (power > 31) {
1694		bbp94 += power - 31;
1695		power = 31;
1696	}
1697
1698	/*
1699	 * If we are switching from the 2GHz band to the 5GHz band or
1700	 * vice-versa, BBP registers need to be reprogrammed.
1701	 */
1702	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1703		rum_select_band(sc, c);
1704		rum_select_antenna(sc);
1705	}
1706	ic->ic_curchan = c;
1707
1708	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1709	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1710	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1711	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1712
1713	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1714	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1715	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1716	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1717
1718	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1719	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1720	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1721	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1722
1723	DELAY(10);
1724
1725	/* enable smart mode for MIMO-capable RFs */
1726	bbp3 = rum_bbp_read(sc, 3);
1727
1728	bbp3 &= ~RT2573_SMART_MODE;
1729	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1730		bbp3 |= RT2573_SMART_MODE;
1731
1732	rum_bbp_write(sc, 3, bbp3);
1733
1734	if (bbp94 != RT2573_BBPR94_DEFAULT)
1735		rum_bbp_write(sc, 94, bbp94);
1736}
1737
1738/*
1739 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1740 * and HostAP operating modes.
1741 */
1742static void
1743rum_enable_tsf_sync(struct rum_softc *sc)
1744{
1745	struct ieee80211com *ic = &sc->sc_ic;
1746	uint32_t tmp;
1747
1748	if (ic->ic_opmode != IEEE80211_M_STA) {
1749		/*
1750		 * Change default 16ms TBTT adjustment to 8ms.
1751		 * Must be done before enabling beacon generation.
1752		 */
1753		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1754	}
1755
1756	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1757
1758	/* set beacon interval (in 1/16ms unit) */
1759	tmp |= ic->ic_bss->ni_intval * 16;
1760
1761	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1762	if (ic->ic_opmode == IEEE80211_M_STA)
1763		tmp |= RT2573_TSF_MODE(1);
1764	else
1765		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1766
1767	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1768}
1769
1770static void
1771rum_update_slot(struct rum_softc *sc)
1772{
1773	struct ieee80211com *ic = &sc->sc_ic;
1774	uint8_t slottime;
1775	uint32_t tmp;
1776
1777	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1778
1779	tmp = rum_read(sc, RT2573_MAC_CSR9);
1780	tmp = (tmp & ~0xff) | slottime;
1781	rum_write(sc, RT2573_MAC_CSR9, tmp);
1782
1783	DPRINTF(("setting slot time to %uus\n", slottime));
1784}
1785
1786static void
1787rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1788{
1789	uint32_t tmp;
1790
1791	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1792	rum_write(sc, RT2573_MAC_CSR4, tmp);
1793
1794	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1795	rum_write(sc, RT2573_MAC_CSR5, tmp);
1796}
1797
1798static void
1799rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1800{
1801	uint32_t tmp;
1802
1803	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1804	rum_write(sc, RT2573_MAC_CSR2, tmp);
1805
1806	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1807	rum_write(sc, RT2573_MAC_CSR3, tmp);
1808}
1809
1810static void
1811rum_update_promisc(struct rum_softc *sc)
1812{
1813	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1814	uint32_t tmp;
1815
1816	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1817
1818	tmp &= ~RT2573_DROP_NOT_TO_ME;
1819	if (!(ifp->if_flags & IFF_PROMISC))
1820		tmp |= RT2573_DROP_NOT_TO_ME;
1821
1822	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1823
1824	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1825	    "entering" : "leaving"));
1826}
1827
1828static const char *
1829rum_get_rf(int rev)
1830{
1831	switch (rev) {
1832	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1833	case RT2573_RF_2528:	return "RT2528";
1834	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1835	case RT2573_RF_5226:	return "RT5226";
1836	default:		return "unknown";
1837	}
1838}
1839
1840static void
1841rum_read_eeprom(struct rum_softc *sc)
1842{
1843	struct ieee80211com *ic = &sc->sc_ic;
1844	uint16_t val;
1845#ifdef RUM_DEBUG
1846	int i;
1847#endif
1848
1849	/* read MAC/BBP type */
1850	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1851	sc->macbbp_rev = le16toh(val);
1852
1853	/* read MAC address */
1854	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1855
1856	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1857	val = le16toh(val);
1858	sc->rf_rev =   (val >> 11) & 0x1f;
1859	sc->hw_radio = (val >> 10) & 0x1;
1860	sc->rx_ant =   (val >> 4)  & 0x3;
1861	sc->tx_ant =   (val >> 2)  & 0x3;
1862	sc->nb_ant =   val & 0x3;
1863
1864	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1865
1866	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1867	val = le16toh(val);
1868	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1869	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1870
1871	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1872	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1873
1874	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1875	val = le16toh(val);
1876	if ((val & 0xff) != 0xff)
1877		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1878
1879	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1880	val = le16toh(val);
1881	if ((val & 0xff) != 0xff)
1882		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1883
1884	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1885	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1886
1887	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1888	val = le16toh(val);
1889	if ((val & 0xff) != 0xff)
1890		sc->rffreq = val & 0xff;
1891
1892	DPRINTF(("RF freq=%d\n", sc->rffreq));
1893
1894	/* read Tx power for all a/b/g channels */
1895	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1896	/* XXX default Tx power for 802.11a channels */
1897	memset(sc->txpow + 14, 24, sizeof(sc->txpow) - 14);
1898#ifdef RUM_DEBUG
1899	for (i = 0; i < 14; i++)
1900		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1901#endif
1902
1903	/* read default values for BBP registers */
1904	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1905#ifdef RUM_DEBUG
1906	for (i = 0; i < 14; i++) {
1907		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1908			continue;
1909		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1910		    sc->bbp_prom[i].val));
1911	}
1912#endif
1913}
1914
1915static int
1916rum_bbp_init(struct rum_softc *sc)
1917{
1918	unsigned int i, ntries;
1919	uint8_t val;
1920
1921	/* wait for BBP to be ready */
1922	for (ntries = 0; ntries < 100; ntries++) {
1923		val = rum_bbp_read(sc, 0);
1924		if (val != 0 && val != 0xff)
1925			break;
1926		DELAY(1000);
1927	}
1928	if (ntries == 100) {
1929		printf("%s: timeout waiting for BBP\n",
1930		    device_xname(sc->sc_dev));
1931		return EIO;
1932	}
1933
1934	/* initialize BBP registers to default values */
1935	for (i = 0; i < __arraycount(rum_def_bbp); i++)
1936		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1937
1938	/* write vendor-specific BBP values (from EEPROM) */
1939	for (i = 0; i < 16; i++) {
1940		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1941			continue;
1942		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1943	}
1944
1945	return 0;
1946}
1947
1948static int
1949rum_init(struct ifnet *ifp)
1950{
1951	struct rum_softc *sc = ifp->if_softc;
1952	struct ieee80211com *ic = &sc->sc_ic;
1953	uint32_t tmp;
1954	usbd_status error = 0;
1955	unsigned int i, ntries;
1956
1957	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1958		if (rum_attachhook(sc))
1959			goto fail;
1960	}
1961
1962	rum_stop(ifp, 0);
1963
1964	/* initialize MAC registers to default values */
1965	for (i = 0; i < __arraycount(rum_def_mac); i++)
1966		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1967
1968	/* set host ready */
1969	rum_write(sc, RT2573_MAC_CSR1, 3);
1970	rum_write(sc, RT2573_MAC_CSR1, 0);
1971
1972	/* wait for BBP/RF to wakeup */
1973	for (ntries = 0; ntries < 1000; ntries++) {
1974		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1975			break;
1976		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1977		DELAY(1000);
1978	}
1979	if (ntries == 1000) {
1980		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1981		    device_xname(sc->sc_dev));
1982		goto fail;
1983	}
1984
1985	if ((error = rum_bbp_init(sc)) != 0)
1986		goto fail;
1987
1988	/* select default channel */
1989	rum_select_band(sc, ic->ic_curchan);
1990	rum_select_antenna(sc);
1991	rum_set_chan(sc, ic->ic_curchan);
1992
1993	/* clear STA registers */
1994	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
1995
1996	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
1997	rum_set_macaddr(sc, ic->ic_myaddr);
1998
1999	/* initialize ASIC */
2000	rum_write(sc, RT2573_MAC_CSR1, 4);
2001
2002	/*
2003	 * Allocate xfer for AMRR statistics requests.
2004	 */
2005	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2006	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0,
2007	    &sc->amrr_xfer);
2008	if (error) {
2009		printf("%s: could not allocate AMRR xfer\n",
2010		    device_xname(sc->sc_dev));
2011		goto fail;
2012	}
2013
2014	/*
2015	 * Open Tx and Rx USB bulk pipes.
2016	 */
2017	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2018	    &sc->sc_tx_pipeh);
2019	if (error != 0) {
2020		printf("%s: could not open Tx pipe: %s\n",
2021		    device_xname(sc->sc_dev), usbd_errstr(error));
2022		goto fail;
2023	}
2024
2025	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2026	    &sc->sc_rx_pipeh);
2027	if (error != 0) {
2028		printf("%s: could not open Rx pipe: %s\n",
2029		    device_xname(sc->sc_dev), usbd_errstr(error));
2030		goto fail;
2031	}
2032
2033	/*
2034	 * Allocate Tx and Rx xfer queues.
2035	 */
2036	error = rum_alloc_tx_list(sc);
2037	if (error != 0) {
2038		printf("%s: could not allocate Tx list\n",
2039		    device_xname(sc->sc_dev));
2040		goto fail;
2041	}
2042
2043	error = rum_alloc_rx_list(sc);
2044	if (error != 0) {
2045		printf("%s: could not allocate Rx list\n",
2046		    device_xname(sc->sc_dev));
2047		goto fail;
2048	}
2049
2050	/*
2051	 * Start up the receive pipe.
2052	 */
2053	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2054		struct rum_rx_data *data;
2055
2056		data = &sc->rx_data[i];
2057
2058		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2059		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2060		error = usbd_transfer(data->xfer);
2061		if (error != USBD_NORMAL_COMPLETION &&
2062		    error != USBD_IN_PROGRESS) {
2063			printf("%s: could not queue Rx transfer\n",
2064			    device_xname(sc->sc_dev));
2065			goto fail;
2066		}
2067	}
2068
2069	/* update Rx filter */
2070	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2071
2072	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2073	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2074		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2075		       RT2573_DROP_ACKCTS;
2076		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2077			tmp |= RT2573_DROP_TODS;
2078		if (!(ifp->if_flags & IFF_PROMISC))
2079			tmp |= RT2573_DROP_NOT_TO_ME;
2080	}
2081	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2082
2083	ifp->if_flags &= ~IFF_OACTIVE;
2084	ifp->if_flags |= IFF_RUNNING;
2085
2086	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2087		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2088	else
2089		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2090
2091	return 0;
2092
2093fail:	rum_stop(ifp, 1);
2094	return error;
2095}
2096
2097static void
2098rum_stop(struct ifnet *ifp, int disable)
2099{
2100	struct rum_softc *sc = ifp->if_softc;
2101	struct ieee80211com *ic = &sc->sc_ic;
2102	uint32_t tmp;
2103
2104	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2105
2106	sc->sc_tx_timer = 0;
2107	ifp->if_timer = 0;
2108	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2109
2110	/* disable Rx */
2111	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2112	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2113
2114	/* reset ASIC */
2115	rum_write(sc, RT2573_MAC_CSR1, 3);
2116	rum_write(sc, RT2573_MAC_CSR1, 0);
2117
2118	if (sc->amrr_xfer != NULL) {
2119		usbd_destroy_xfer(sc->amrr_xfer);
2120		sc->amrr_xfer = NULL;
2121	}
2122
2123	if (sc->sc_rx_pipeh != NULL) {
2124		usbd_abort_pipe(sc->sc_rx_pipeh);
2125	}
2126
2127	if (sc->sc_tx_pipeh != NULL) {
2128		usbd_abort_pipe(sc->sc_tx_pipeh);
2129	}
2130
2131	rum_free_rx_list(sc);
2132	rum_free_tx_list(sc);
2133
2134	if (sc->sc_rx_pipeh != NULL) {
2135		usbd_close_pipe(sc->sc_rx_pipeh);
2136		sc->sc_rx_pipeh = NULL;
2137	}
2138
2139	if (sc->sc_tx_pipeh != NULL) {
2140		usbd_close_pipe(sc->sc_tx_pipeh);
2141		sc->sc_tx_pipeh = NULL;
2142	}
2143}
2144
2145static int
2146rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2147{
2148	usb_device_request_t req;
2149	uint16_t reg = RT2573_MCU_CODE_BASE;
2150	usbd_status error;
2151
2152	/* copy firmware image into NIC */
2153	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2154		rum_write(sc, reg, UGETDW(ucode));
2155
2156	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2157	req.bRequest = RT2573_MCU_CNTL;
2158	USETW(req.wValue, RT2573_MCU_RUN);
2159	USETW(req.wIndex, 0);
2160	USETW(req.wLength, 0);
2161
2162	error = usbd_do_request(sc->sc_udev, &req, NULL);
2163	if (error != 0) {
2164		printf("%s: could not run firmware: %s\n",
2165		    device_xname(sc->sc_dev), usbd_errstr(error));
2166	}
2167	return error;
2168}
2169
2170static int
2171rum_prepare_beacon(struct rum_softc *sc)
2172{
2173	struct ieee80211com *ic = &sc->sc_ic;
2174	struct rum_tx_desc desc;
2175	struct mbuf *m0;
2176	int rate;
2177
2178	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2179	if (m0 == NULL) {
2180		aprint_error_dev(sc->sc_dev,
2181		    "could not allocate beacon frame\n");
2182		return ENOBUFS;
2183	}
2184
2185	/* send beacons at the lowest available rate */
2186	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2187
2188	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2189	    m0->m_pkthdr.len, rate);
2190
2191	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2192	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2193
2194	/* copy beacon header and payload into NIC memory */
2195	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2196	    m0->m_pkthdr.len);
2197
2198	m_freem(m0);
2199
2200	return 0;
2201}
2202
2203static void
2204rum_newassoc(struct ieee80211_node *ni, int isnew)
2205{
2206	/* start with lowest Tx rate */
2207	ni->ni_txrate = 0;
2208}
2209
2210static void
2211rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2212{
2213	int i;
2214
2215	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2216	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
2217
2218	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2219
2220	/* set rate to some reasonable initial value */
2221	for (i = ni->ni_rates.rs_nrates - 1;
2222	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2223	     i--);
2224	ni->ni_txrate = i;
2225
2226	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2227}
2228
2229static void
2230rum_amrr_timeout(void *arg)
2231{
2232	struct rum_softc *sc = arg;
2233	usb_device_request_t req;
2234
2235	/*
2236	 * Asynchronously read statistic registers (cleared by read).
2237	 */
2238	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2239	req.bRequest = RT2573_READ_MULTI_MAC;
2240	USETW(req.wValue, 0);
2241	USETW(req.wIndex, RT2573_STA_CSR0);
2242	USETW(req.wLength, sizeof(sc->sta));
2243
2244	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2245	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2246	    rum_amrr_update);
2247	(void)usbd_transfer(sc->amrr_xfer);
2248}
2249
2250static void
2251rum_amrr_update(struct usbd_xfer *xfer, void *priv,
2252    usbd_status status)
2253{
2254	struct rum_softc *sc = (struct rum_softc *)priv;
2255	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2256
2257	if (status != USBD_NORMAL_COMPLETION) {
2258		printf("%s: could not retrieve Tx statistics - cancelling "
2259		    "automatic rate control\n", device_xname(sc->sc_dev));
2260		return;
2261	}
2262
2263	/* count TX retry-fail as Tx errors */
2264	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2265
2266	sc->amn.amn_retrycnt =
2267	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2268	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2269	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2270
2271	sc->amn.amn_txcnt =
2272	    sc->amn.amn_retrycnt +
2273	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2274
2275	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2276
2277	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2278}
2279
2280static int
2281rum_activate(device_t self, enum devact act)
2282{
2283	switch (act) {
2284	case DVACT_DEACTIVATE:
2285		/*if_deactivate(&sc->sc_ic.ic_if);*/
2286		return 0;
2287	default:
2288		return 0;
2289	}
2290}
2291
2292MODULE(MODULE_CLASS_DRIVER, if_rum, "bpf");
2293
2294#ifdef _MODULE
2295#include "ioconf.c"
2296#endif
2297
2298static int
2299if_rum_modcmd(modcmd_t cmd, void *aux)
2300{
2301	int error = 0;
2302
2303	switch (cmd) {
2304	case MODULE_CMD_INIT:
2305#ifdef _MODULE
2306		error = config_init_component(cfdriver_ioconf_rum,
2307		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2308#endif
2309		return error;
2310	case MODULE_CMD_FINI:
2311#ifdef _MODULE
2312		error = config_fini_component(cfdriver_ioconf_rum,
2313		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2314#endif
2315		return error;
2316	default:
2317		return ENOTTY;
2318	}
2319}
2320