if_rum.c revision 1.41
1/*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2/*	$NetBSD: if_rum.c,v 1.41 2012/05/31 12:32:35 nonaka Exp $	*/
3
4/*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21/*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26#include <sys/cdefs.h>
27__KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.41 2012/05/31 12:32:35 nonaka Exp $");
28
29
30#include <sys/param.h>
31#include <sys/sockio.h>
32#include <sys/sysctl.h>
33#include <sys/mbuf.h>
34#include <sys/kernel.h>
35#include <sys/socket.h>
36#include <sys/systm.h>
37#include <sys/malloc.h>
38#include <sys/module.h>
39#include <sys/conf.h>
40#include <sys/device.h>
41
42#include <sys/bus.h>
43#include <machine/endian.h>
44#include <sys/intr.h>
45
46#include <net/bpf.h>
47#include <net/if.h>
48#include <net/if_arp.h>
49#include <net/if_dl.h>
50#include <net/if_ether.h>
51#include <net/if_media.h>
52#include <net/if_types.h>
53
54#include <netinet/in.h>
55#include <netinet/in_systm.h>
56#include <netinet/in_var.h>
57#include <netinet/ip.h>
58
59#include <net80211/ieee80211_netbsd.h>
60#include <net80211/ieee80211_var.h>
61#include <net80211/ieee80211_amrr.h>
62#include <net80211/ieee80211_radiotap.h>
63
64#include <dev/firmload.h>
65
66#include <dev/usb/usb.h>
67#include <dev/usb/usbdi.h>
68#include <dev/usb/usbdi_util.h>
69#include <dev/usb/usbdevs.h>
70
71#include <dev/usb/if_rumreg.h>
72#include <dev/usb/if_rumvar.h>
73
74#ifdef USB_DEBUG
75#define RUM_DEBUG
76#endif
77
78#ifdef RUM_DEBUG
79#define DPRINTF(x)	do { if (rum_debug) printf x; } while (0)
80#define DPRINTFN(n, x)	do { if (rum_debug >= (n)) printf x; } while (0)
81int rum_debug = 1;
82#else
83#define DPRINTF(x)
84#define DPRINTFN(n, x)
85#endif
86
87/* various supported device vendors/products */
88static const struct usb_devno rum_devs[] = {
89	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
90	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
91	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
92	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
93	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
94	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
95	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
96	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
97	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
98	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
99	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
100	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
101	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
102	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
103	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
104	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
105	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
106	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
107	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
108	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA110 },
109	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWA111 },
110	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
111	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
112	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
113	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
114	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
115	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
116	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
117	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
118	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
119	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
120	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
121	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
122	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
123	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
124	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
125	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
126	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
127	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
128	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
129	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
130	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
131	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
132	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
133	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
134	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
135	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 }
136};
137
138static int		rum_attachhook(void *);
139static int		rum_alloc_tx_list(struct rum_softc *);
140static void		rum_free_tx_list(struct rum_softc *);
141static int		rum_alloc_rx_list(struct rum_softc *);
142static void		rum_free_rx_list(struct rum_softc *);
143static int		rum_media_change(struct ifnet *);
144static void		rum_next_scan(void *);
145static void		rum_task(void *);
146static int		rum_newstate(struct ieee80211com *,
147			    enum ieee80211_state, int);
148static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
149			    usbd_status);
150static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
151			    usbd_status);
152static uint8_t		rum_rxrate(const struct rum_rx_desc *);
153static int		rum_ack_rate(struct ieee80211com *, int);
154static uint16_t		rum_txtime(int, int, uint32_t);
155static uint8_t		rum_plcp_signal(int);
156static void		rum_setup_tx_desc(struct rum_softc *,
157			    struct rum_tx_desc *, uint32_t, uint16_t, int,
158			    int);
159static int		rum_tx_data(struct rum_softc *, struct mbuf *,
160			    struct ieee80211_node *);
161static void		rum_start(struct ifnet *);
162static void		rum_watchdog(struct ifnet *);
163static int		rum_ioctl(struct ifnet *, u_long, void *);
164static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
165			    int);
166static uint32_t		rum_read(struct rum_softc *, uint16_t);
167static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
168			    int);
169static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
170static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
171			    size_t);
172static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
173static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
174static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
175static void		rum_select_antenna(struct rum_softc *);
176static void		rum_enable_mrr(struct rum_softc *);
177static void		rum_set_txpreamble(struct rum_softc *);
178static void		rum_set_basicrates(struct rum_softc *);
179static void		rum_select_band(struct rum_softc *,
180			    struct ieee80211_channel *);
181static void		rum_set_chan(struct rum_softc *,
182			    struct ieee80211_channel *);
183static void		rum_enable_tsf_sync(struct rum_softc *);
184static void		rum_update_slot(struct rum_softc *);
185static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
186static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
187static void		rum_update_promisc(struct rum_softc *);
188static const char	*rum_get_rf(int);
189static void		rum_read_eeprom(struct rum_softc *);
190static int		rum_bbp_init(struct rum_softc *);
191static int		rum_init(struct ifnet *);
192static void		rum_stop(struct ifnet *, int);
193static int		rum_load_microcode(struct rum_softc *, const u_char *,
194			    size_t);
195static int		rum_prepare_beacon(struct rum_softc *);
196static void		rum_newassoc(struct ieee80211_node *, int);
197static void		rum_amrr_start(struct rum_softc *,
198			    struct ieee80211_node *);
199static void		rum_amrr_timeout(void *);
200static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
201			    usbd_status status);
202
203/*
204 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
205 */
206static const struct ieee80211_rateset rum_rateset_11a =
207	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
208
209static const struct ieee80211_rateset rum_rateset_11b =
210	{ 4, { 2, 4, 11, 22 } };
211
212static const struct ieee80211_rateset rum_rateset_11g =
213	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
214
215static const struct {
216	uint32_t	reg;
217	uint32_t	val;
218} rum_def_mac[] = {
219	RT2573_DEF_MAC
220};
221
222static const struct {
223	uint8_t	reg;
224	uint8_t	val;
225} rum_def_bbp[] = {
226	RT2573_DEF_BBP
227};
228
229static const struct rfprog {
230	uint8_t		chan;
231	uint32_t	r1, r2, r3, r4;
232}  rum_rf5226[] = {
233	RT2573_RF5226
234}, rum_rf5225[] = {
235	RT2573_RF5225
236};
237
238static int rum_match(device_t, cfdata_t, void *);
239static void rum_attach(device_t, device_t, void *);
240static int rum_detach(device_t, int);
241static int rum_activate(device_t, enum devact);
242extern struct cfdriver rum_cd;
243CFATTACH_DECL_NEW(rum, sizeof(struct rum_softc), rum_match, rum_attach,
244    rum_detach, rum_activate);
245
246static int
247rum_match(device_t parent, cfdata_t match, void *aux)
248{
249	struct usb_attach_arg *uaa = aux;
250
251	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
252	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
253}
254
255static int
256rum_attachhook(void *xsc)
257{
258	struct rum_softc *sc = xsc;
259	firmware_handle_t fwh;
260	const char *name = "rum-rt2573";
261	u_char *ucode;
262	size_t size;
263	int error;
264
265	if ((error = firmware_open("rum", name, &fwh)) != 0) {
266		printf("%s: failed loadfirmware of file %s (error %d)\n",
267		    device_xname(sc->sc_dev), name, error);
268		return error;
269	}
270	size = firmware_get_size(fwh);
271	ucode = firmware_malloc(size);
272	if (ucode == NULL) {
273		printf("%s: failed to allocate firmware memory\n",
274		    device_xname(sc->sc_dev));
275		firmware_close(fwh);
276		return ENOMEM;
277	}
278	error = firmware_read(fwh, 0, ucode, size);
279	firmware_close(fwh);
280	if (error != 0) {
281		printf("%s: failed to read firmware (error %d)\n",
282		    device_xname(sc->sc_dev), error);
283		firmware_free(ucode, 0);
284		return error;
285	}
286
287	if (rum_load_microcode(sc, ucode, size) != 0) {
288		printf("%s: could not load 8051 microcode\n",
289		    device_xname(sc->sc_dev));
290		firmware_free(ucode, 0);
291		return ENXIO;
292	}
293
294	firmware_free(ucode, 0);
295	sc->sc_flags |= RT2573_FWLOADED;
296
297	return 0;
298}
299
300static void
301rum_attach(device_t parent, device_t self, void *aux)
302{
303	struct rum_softc *sc = device_private(self);
304	struct usb_attach_arg *uaa = aux;
305	struct ieee80211com *ic = &sc->sc_ic;
306	struct ifnet *ifp = &sc->sc_if;
307	usb_interface_descriptor_t *id;
308	usb_endpoint_descriptor_t *ed;
309	usbd_status error;
310	char *devinfop;
311	int i, ntries;
312	uint32_t tmp;
313
314	sc->sc_dev = self;
315	sc->sc_udev = uaa->device;
316	sc->sc_flags = 0;
317
318	aprint_naive("\n");
319	aprint_normal("\n");
320
321	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
322	aprint_normal_dev(self, "%s\n", devinfop);
323	usbd_devinfo_free(devinfop);
324
325	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
326		aprint_error_dev(self, "could not set configuration no\n");
327		return;
328	}
329
330	/* get the first interface handle */
331	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
332	    &sc->sc_iface);
333	if (error != 0) {
334		aprint_error_dev(self, "could not get interface handle\n");
335		return;
336	}
337
338	/*
339	 * Find endpoints.
340	 */
341	id = usbd_get_interface_descriptor(sc->sc_iface);
342
343	sc->sc_rx_no = sc->sc_tx_no = -1;
344	for (i = 0; i < id->bNumEndpoints; i++) {
345		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
346		if (ed == NULL) {
347			aprint_error_dev(self,
348			    "no endpoint descriptor for iface %d\n", i);
349			return;
350		}
351
352		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
353		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
354			sc->sc_rx_no = ed->bEndpointAddress;
355		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
356		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
357			sc->sc_tx_no = ed->bEndpointAddress;
358	}
359	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
360		aprint_error_dev(self, "missing endpoint\n");
361		return;
362	}
363
364	usb_init_task(&sc->sc_task, rum_task, sc);
365	callout_init(&sc->sc_scan_ch, 0);
366
367	sc->amrr.amrr_min_success_threshold =  1;
368	sc->amrr.amrr_max_success_threshold = 10;
369	callout_init(&sc->sc_amrr_ch, 0);
370
371	/* retrieve RT2573 rev. no */
372	for (ntries = 0; ntries < 1000; ntries++) {
373		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
374			break;
375		DELAY(1000);
376	}
377	if (ntries == 1000) {
378		aprint_error_dev(self, "timeout waiting for chip to settle\n");
379		return;
380	}
381
382	/* retrieve MAC address and various other things from EEPROM */
383	rum_read_eeprom(sc);
384
385	aprint_normal_dev(self,
386	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
387	    sc->macbbp_rev, tmp,
388	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
389
390	ic->ic_ifp = ifp;
391	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
392	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
393	ic->ic_state = IEEE80211_S_INIT;
394
395	/* set device capabilities */
396	ic->ic_caps =
397	    IEEE80211_C_IBSS |		/* IBSS mode supported */
398	    IEEE80211_C_MONITOR |	/* monitor mode supported */
399	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
400	    IEEE80211_C_TXPMGT |	/* tx power management */
401	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
402	    IEEE80211_C_SHSLOT |	/* short slot time supported */
403	    IEEE80211_C_WPA;		/* 802.11i */
404
405	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
406		/* set supported .11a rates */
407		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
408
409		/* set supported .11a channels */
410		for (i = 34; i <= 46; i += 4) {
411			ic->ic_channels[i].ic_freq =
412			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
413			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
414		}
415		for (i = 36; i <= 64; i += 4) {
416			ic->ic_channels[i].ic_freq =
417			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
418			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
419		}
420		for (i = 100; i <= 140; i += 4) {
421			ic->ic_channels[i].ic_freq =
422			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
423			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
424		}
425		for (i = 149; i <= 165; i += 4) {
426			ic->ic_channels[i].ic_freq =
427			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
428			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
429		}
430	}
431
432	/* set supported .11b and .11g rates */
433	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
434	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
435
436	/* set supported .11b and .11g channels (1 through 14) */
437	for (i = 1; i <= 14; i++) {
438		ic->ic_channels[i].ic_freq =
439		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
440		ic->ic_channels[i].ic_flags =
441		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
442		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
443	}
444
445	ifp->if_softc = sc;
446	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
447	ifp->if_init = rum_init;
448	ifp->if_ioctl = rum_ioctl;
449	ifp->if_start = rum_start;
450	ifp->if_watchdog = rum_watchdog;
451	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
452	IFQ_SET_READY(&ifp->if_snd);
453	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
454
455	if_attach(ifp);
456	ieee80211_ifattach(ic);
457	ic->ic_newassoc = rum_newassoc;
458
459	/* override state transition machine */
460	sc->sc_newstate = ic->ic_newstate;
461	ic->ic_newstate = rum_newstate;
462	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
463
464	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
465	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
466	    &sc->sc_drvbpf);
467
468	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
469	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
470	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
471
472	sc->sc_txtap_len = sizeof sc->sc_txtapu;
473	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
474	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
475
476	ieee80211_announce(ic);
477
478	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
479	    sc->sc_dev);
480
481	return;
482}
483
484static int
485rum_detach(device_t self, int flags)
486{
487	struct rum_softc *sc = device_private(self);
488	struct ieee80211com *ic = &sc->sc_ic;
489	struct ifnet *ifp = &sc->sc_if;
490	int s;
491
492	if (!ifp->if_softc)
493		return 0;
494
495	s = splusb();
496
497	rum_stop(ifp, 1);
498	usb_rem_task(sc->sc_udev, &sc->sc_task);
499	callout_stop(&sc->sc_scan_ch);
500	callout_stop(&sc->sc_amrr_ch);
501
502	if (sc->amrr_xfer != NULL) {
503		usbd_free_xfer(sc->amrr_xfer);
504		sc->amrr_xfer = NULL;
505	}
506
507	if (sc->sc_rx_pipeh != NULL) {
508		usbd_abort_pipe(sc->sc_rx_pipeh);
509		usbd_close_pipe(sc->sc_rx_pipeh);
510	}
511
512	if (sc->sc_tx_pipeh != NULL) {
513		usbd_abort_pipe(sc->sc_tx_pipeh);
514		usbd_close_pipe(sc->sc_tx_pipeh);
515	}
516
517	bpf_detach(ifp);
518	ieee80211_ifdetach(ic);	/* free all nodes */
519	if_detach(ifp);
520
521	splx(s);
522
523	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
524
525	return 0;
526}
527
528static int
529rum_alloc_tx_list(struct rum_softc *sc)
530{
531	struct rum_tx_data *data;
532	int i, error;
533
534	sc->tx_cur = sc->tx_queued = 0;
535
536	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
537		data = &sc->tx_data[i];
538
539		data->sc = sc;
540
541		data->xfer = usbd_alloc_xfer(sc->sc_udev);
542		if (data->xfer == NULL) {
543			printf("%s: could not allocate tx xfer\n",
544			    device_xname(sc->sc_dev));
545			error = ENOMEM;
546			goto fail;
547		}
548
549		data->buf = usbd_alloc_buffer(data->xfer,
550		    RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
551		if (data->buf == NULL) {
552			printf("%s: could not allocate tx buffer\n",
553			    device_xname(sc->sc_dev));
554			error = ENOMEM;
555			goto fail;
556		}
557
558		/* clean Tx descriptor */
559		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
560	}
561
562	return 0;
563
564fail:	rum_free_tx_list(sc);
565	return error;
566}
567
568static void
569rum_free_tx_list(struct rum_softc *sc)
570{
571	struct rum_tx_data *data;
572	int i;
573
574	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
575		data = &sc->tx_data[i];
576
577		if (data->xfer != NULL) {
578			usbd_free_xfer(data->xfer);
579			data->xfer = NULL;
580		}
581
582		if (data->ni != NULL) {
583			ieee80211_free_node(data->ni);
584			data->ni = NULL;
585		}
586	}
587}
588
589static int
590rum_alloc_rx_list(struct rum_softc *sc)
591{
592	struct rum_rx_data *data;
593	int i, error;
594
595	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
596		data = &sc->rx_data[i];
597
598		data->sc = sc;
599
600		data->xfer = usbd_alloc_xfer(sc->sc_udev);
601		if (data->xfer == NULL) {
602			printf("%s: could not allocate rx xfer\n",
603			    device_xname(sc->sc_dev));
604			error = ENOMEM;
605			goto fail;
606		}
607
608		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
609			printf("%s: could not allocate rx buffer\n",
610			    device_xname(sc->sc_dev));
611			error = ENOMEM;
612			goto fail;
613		}
614
615		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
616		if (data->m == NULL) {
617			printf("%s: could not allocate rx mbuf\n",
618			    device_xname(sc->sc_dev));
619			error = ENOMEM;
620			goto fail;
621		}
622
623		MCLGET(data->m, M_DONTWAIT);
624		if (!(data->m->m_flags & M_EXT)) {
625			printf("%s: could not allocate rx mbuf cluster\n",
626			    device_xname(sc->sc_dev));
627			error = ENOMEM;
628			goto fail;
629		}
630
631		data->buf = mtod(data->m, uint8_t *);
632	}
633
634	return 0;
635
636fail:	rum_free_rx_list(sc);
637	return error;
638}
639
640static void
641rum_free_rx_list(struct rum_softc *sc)
642{
643	struct rum_rx_data *data;
644	int i;
645
646	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
647		data = &sc->rx_data[i];
648
649		if (data->xfer != NULL) {
650			usbd_free_xfer(data->xfer);
651			data->xfer = NULL;
652		}
653
654		if (data->m != NULL) {
655			m_freem(data->m);
656			data->m = NULL;
657		}
658	}
659}
660
661static int
662rum_media_change(struct ifnet *ifp)
663{
664	int error;
665
666	error = ieee80211_media_change(ifp);
667	if (error != ENETRESET)
668		return error;
669
670	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
671		rum_init(ifp);
672
673	return 0;
674}
675
676/*
677 * This function is called periodically (every 200ms) during scanning to
678 * switch from one channel to another.
679 */
680static void
681rum_next_scan(void *arg)
682{
683	struct rum_softc *sc = arg;
684	struct ieee80211com *ic = &sc->sc_ic;
685	int s;
686
687	s = splnet();
688	if (ic->ic_state == IEEE80211_S_SCAN)
689		ieee80211_next_scan(ic);
690	splx(s);
691}
692
693static void
694rum_task(void *arg)
695{
696	struct rum_softc *sc = arg;
697	struct ieee80211com *ic = &sc->sc_ic;
698	enum ieee80211_state ostate;
699	struct ieee80211_node *ni;
700	uint32_t tmp;
701
702	ostate = ic->ic_state;
703
704	switch (sc->sc_state) {
705	case IEEE80211_S_INIT:
706		if (ostate == IEEE80211_S_RUN) {
707			/* abort TSF synchronization */
708			tmp = rum_read(sc, RT2573_TXRX_CSR9);
709			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
710		}
711		break;
712
713	case IEEE80211_S_SCAN:
714		rum_set_chan(sc, ic->ic_curchan);
715		callout_reset(&sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
716		break;
717
718	case IEEE80211_S_AUTH:
719		rum_set_chan(sc, ic->ic_curchan);
720		break;
721
722	case IEEE80211_S_ASSOC:
723		rum_set_chan(sc, ic->ic_curchan);
724		break;
725
726	case IEEE80211_S_RUN:
727		rum_set_chan(sc, ic->ic_curchan);
728
729		ni = ic->ic_bss;
730
731		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
732			rum_update_slot(sc);
733			rum_enable_mrr(sc);
734			rum_set_txpreamble(sc);
735			rum_set_basicrates(sc);
736			rum_set_bssid(sc, ni->ni_bssid);
737		}
738
739		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
740		    ic->ic_opmode == IEEE80211_M_IBSS)
741			rum_prepare_beacon(sc);
742
743		if (ic->ic_opmode != IEEE80211_M_MONITOR)
744			rum_enable_tsf_sync(sc);
745
746		if (ic->ic_opmode == IEEE80211_M_STA) {
747			/* fake a join to init the tx rate */
748			rum_newassoc(ic->ic_bss, 1);
749
750			/* enable automatic rate adaptation in STA mode */
751			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
752				rum_amrr_start(sc, ni);
753		}
754
755		break;
756	}
757
758	sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
759}
760
761static int
762rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
763{
764	struct rum_softc *sc = ic->ic_ifp->if_softc;
765
766	usb_rem_task(sc->sc_udev, &sc->sc_task);
767	callout_stop(&sc->sc_scan_ch);
768	callout_stop(&sc->sc_amrr_ch);
769
770	/* do it in a process context */
771	sc->sc_state = nstate;
772	sc->sc_arg = arg;
773	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
774
775	return 0;
776}
777
778/* quickly determine if a given rate is CCK or OFDM */
779#define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
780
781#define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
782#define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
783
784static void
785rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
786{
787	struct rum_tx_data *data = priv;
788	struct rum_softc *sc = data->sc;
789	struct ifnet *ifp = &sc->sc_if;
790	int s;
791
792	if (status != USBD_NORMAL_COMPLETION) {
793		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
794			return;
795
796		printf("%s: could not transmit buffer: %s\n",
797		    device_xname(sc->sc_dev), usbd_errstr(status));
798
799		if (status == USBD_STALLED)
800			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
801
802		ifp->if_oerrors++;
803		return;
804	}
805
806	s = splnet();
807
808	ieee80211_free_node(data->ni);
809	data->ni = NULL;
810
811	sc->tx_queued--;
812	ifp->if_opackets++;
813
814	DPRINTFN(10, ("tx done\n"));
815
816	sc->sc_tx_timer = 0;
817	ifp->if_flags &= ~IFF_OACTIVE;
818	rum_start(ifp);
819
820	splx(s);
821}
822
823static void
824rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
825{
826	struct rum_rx_data *data = priv;
827	struct rum_softc *sc = data->sc;
828	struct ieee80211com *ic = &sc->sc_ic;
829	struct ifnet *ifp = &sc->sc_if;
830	struct rum_rx_desc *desc;
831	struct ieee80211_frame *wh;
832	struct ieee80211_node *ni;
833	struct mbuf *mnew, *m;
834	int s, len;
835
836	if (status != USBD_NORMAL_COMPLETION) {
837		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
838			return;
839
840		if (status == USBD_STALLED)
841			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
842		goto skip;
843	}
844
845	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
846
847	if (len < (int)(RT2573_RX_DESC_SIZE +
848		        sizeof(struct ieee80211_frame_min))) {
849		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
850		    len));
851		ifp->if_ierrors++;
852		goto skip;
853	}
854
855	desc = (struct rum_rx_desc *)data->buf;
856
857	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
858		/*
859		 * This should not happen since we did not request to receive
860		 * those frames when we filled RT2573_TXRX_CSR0.
861		 */
862		DPRINTFN(5, ("CRC error\n"));
863		ifp->if_ierrors++;
864		goto skip;
865	}
866
867	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
868	if (mnew == NULL) {
869		printf("%s: could not allocate rx mbuf\n",
870		    device_xname(sc->sc_dev));
871		ifp->if_ierrors++;
872		goto skip;
873	}
874
875	MCLGET(mnew, M_DONTWAIT);
876	if (!(mnew->m_flags & M_EXT)) {
877		printf("%s: could not allocate rx mbuf cluster\n",
878		    device_xname(sc->sc_dev));
879		m_freem(mnew);
880		ifp->if_ierrors++;
881		goto skip;
882	}
883
884	m = data->m;
885	data->m = mnew;
886	data->buf = mtod(data->m, uint8_t *);
887
888	/* finalize mbuf */
889	m->m_pkthdr.rcvif = ifp;
890	m->m_data = (void *)(desc + 1);
891	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
892
893	s = splnet();
894
895	if (sc->sc_drvbpf != NULL) {
896		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
897
898		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
899		tap->wr_rate = rum_rxrate(desc);
900		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
901		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
902		tap->wr_antenna = sc->rx_ant;
903		tap->wr_antsignal = desc->rssi;
904
905		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
906	}
907
908	wh = mtod(m, struct ieee80211_frame *);
909	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
910
911	/* send the frame to the 802.11 layer */
912	ieee80211_input(ic, m, ni, desc->rssi, 0);
913
914	/* node is no longer needed */
915	ieee80211_free_node(ni);
916
917	splx(s);
918
919	DPRINTFN(15, ("rx done\n"));
920
921skip:	/* setup a new transfer */
922	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
923	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
924	usbd_transfer(xfer);
925}
926
927/*
928 * This function is only used by the Rx radiotap code. It returns the rate at
929 * which a given frame was received.
930 */
931static uint8_t
932rum_rxrate(const struct rum_rx_desc *desc)
933{
934	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
935		/* reverse function of rum_plcp_signal */
936		switch (desc->rate) {
937		case 0xb:	return 12;
938		case 0xf:	return 18;
939		case 0xa:	return 24;
940		case 0xe:	return 36;
941		case 0x9:	return 48;
942		case 0xd:	return 72;
943		case 0x8:	return 96;
944		case 0xc:	return 108;
945		}
946	} else {
947		if (desc->rate == 10)
948			return 2;
949		if (desc->rate == 20)
950			return 4;
951		if (desc->rate == 55)
952			return 11;
953		if (desc->rate == 110)
954			return 22;
955	}
956	return 2;	/* should not get there */
957}
958
959/*
960 * Return the expected ack rate for a frame transmitted at rate `rate'.
961 * XXX: this should depend on the destination node basic rate set.
962 */
963static int
964rum_ack_rate(struct ieee80211com *ic, int rate)
965{
966	switch (rate) {
967	/* CCK rates */
968	case 2:
969		return 2;
970	case 4:
971	case 11:
972	case 22:
973		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
974
975	/* OFDM rates */
976	case 12:
977	case 18:
978		return 12;
979	case 24:
980	case 36:
981		return 24;
982	case 48:
983	case 72:
984	case 96:
985	case 108:
986		return 48;
987	}
988
989	/* default to 1Mbps */
990	return 2;
991}
992
993/*
994 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
995 * The function automatically determines the operating mode depending on the
996 * given rate. `flags' indicates whether short preamble is in use or not.
997 */
998static uint16_t
999rum_txtime(int len, int rate, uint32_t flags)
1000{
1001	uint16_t txtime;
1002
1003	if (RUM_RATE_IS_OFDM(rate)) {
1004		/* IEEE Std 802.11a-1999, pp. 37 */
1005		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1006		txtime = 16 + 4 + 4 * txtime + 6;
1007	} else {
1008		/* IEEE Std 802.11b-1999, pp. 28 */
1009		txtime = (16 * len + rate - 1) / rate;
1010		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1011			txtime +=  72 + 24;
1012		else
1013			txtime += 144 + 48;
1014	}
1015	return txtime;
1016}
1017
1018static uint8_t
1019rum_plcp_signal(int rate)
1020{
1021	switch (rate) {
1022	/* CCK rates (returned values are device-dependent) */
1023	case 2:		return 0x0;
1024	case 4:		return 0x1;
1025	case 11:	return 0x2;
1026	case 22:	return 0x3;
1027
1028	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1029	case 12:	return 0xb;
1030	case 18:	return 0xf;
1031	case 24:	return 0xa;
1032	case 36:	return 0xe;
1033	case 48:	return 0x9;
1034	case 72:	return 0xd;
1035	case 96:	return 0x8;
1036	case 108:	return 0xc;
1037
1038	/* unsupported rates (should not get there) */
1039	default:	return 0xff;
1040	}
1041}
1042
1043static void
1044rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1045    uint32_t flags, uint16_t xflags, int len, int rate)
1046{
1047	struct ieee80211com *ic = &sc->sc_ic;
1048	uint16_t plcp_length;
1049	int remainder;
1050
1051	desc->flags = htole32(flags);
1052	desc->flags |= htole32(RT2573_TX_VALID);
1053	desc->flags |= htole32(len << 16);
1054
1055	desc->xflags = htole16(xflags);
1056
1057	desc->wme = htole16(
1058	    RT2573_QID(0) |
1059	    RT2573_AIFSN(2) |
1060	    RT2573_LOGCWMIN(4) |
1061	    RT2573_LOGCWMAX(10));
1062
1063	/* setup PLCP fields */
1064	desc->plcp_signal  = rum_plcp_signal(rate);
1065	desc->plcp_service = 4;
1066
1067	len += IEEE80211_CRC_LEN;
1068	if (RUM_RATE_IS_OFDM(rate)) {
1069		desc->flags |= htole32(RT2573_TX_OFDM);
1070
1071		plcp_length = len & 0xfff;
1072		desc->plcp_length_hi = plcp_length >> 6;
1073		desc->plcp_length_lo = plcp_length & 0x3f;
1074	} else {
1075		plcp_length = (16 * len + rate - 1) / rate;
1076		if (rate == 22) {
1077			remainder = (16 * len) % 22;
1078			if (remainder != 0 && remainder < 7)
1079				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1080		}
1081		desc->plcp_length_hi = plcp_length >> 8;
1082		desc->plcp_length_lo = plcp_length & 0xff;
1083
1084		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1085			desc->plcp_signal |= 0x08;
1086	}
1087}
1088
1089#define RUM_TX_TIMEOUT	5000
1090
1091static int
1092rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1093{
1094	struct ieee80211com *ic = &sc->sc_ic;
1095	struct rum_tx_desc *desc;
1096	struct rum_tx_data *data;
1097	struct ieee80211_frame *wh;
1098	struct ieee80211_key *k;
1099	uint32_t flags = 0;
1100	uint16_t dur;
1101	usbd_status error;
1102	int rate, xferlen, pktlen, needrts = 0, needcts = 0;
1103
1104	wh = mtod(m0, struct ieee80211_frame *);
1105
1106	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1107		k = ieee80211_crypto_encap(ic, ni, m0);
1108		if (k == NULL) {
1109			m_freem(m0);
1110			return ENOBUFS;
1111		}
1112
1113		/* packet header may have moved, reset our local pointer */
1114		wh = mtod(m0, struct ieee80211_frame *);
1115	}
1116
1117	/* compute actual packet length (including CRC and crypto overhead) */
1118	pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
1119
1120	/* pickup a rate */
1121	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1122	    ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1123	     IEEE80211_FC0_TYPE_MGT)) {
1124		/* mgmt/multicast frames are sent at the lowest avail. rate */
1125		rate = ni->ni_rates.rs_rates[0];
1126	} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1127		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1128	} else
1129		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1130	if (rate == 0)
1131		rate = 2;	/* XXX should not happen */
1132	rate &= IEEE80211_RATE_VAL;
1133
1134	/* check if RTS/CTS or CTS-to-self protection must be used */
1135	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1136		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1137		if (pktlen > ic->ic_rtsthreshold) {
1138			needrts = 1;	/* RTS/CTS based on frame length */
1139		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1140		    RUM_RATE_IS_OFDM(rate)) {
1141			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1142				needcts = 1;	/* CTS-to-self */
1143			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1144				needrts = 1;	/* RTS/CTS */
1145		}
1146	}
1147	if (needrts || needcts) {
1148		struct mbuf *mprot;
1149		int protrate, ackrate;
1150
1151		protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1152		ackrate  = rum_ack_rate(ic, rate);
1153
1154		dur = rum_txtime(pktlen, rate, ic->ic_flags) +
1155		      rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
1156		      2 * sc->sifs;
1157		if (needrts) {
1158			dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
1159			    protrate), ic->ic_flags) + sc->sifs;
1160			mprot = ieee80211_get_rts(ic, wh, dur);
1161		} else {
1162			mprot = ieee80211_get_cts_to_self(ic, dur);
1163		}
1164		if (mprot == NULL) {
1165			aprint_error_dev(sc->sc_dev,
1166			    "couldn't allocate protection frame\n");
1167			m_freem(m0);
1168			return ENOBUFS;
1169		}
1170
1171		data = &sc->tx_data[sc->tx_cur];
1172		desc = (struct rum_tx_desc *)data->buf;
1173
1174		/* avoid multiple free() of the same node for each fragment */
1175		data->ni = ieee80211_ref_node(ni);
1176
1177		m_copydata(mprot, 0, mprot->m_pkthdr.len,
1178		    data->buf + RT2573_TX_DESC_SIZE);
1179		rum_setup_tx_desc(sc, desc,
1180		    (needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
1181		    0, mprot->m_pkthdr.len, protrate);
1182
1183		/* no roundup necessary here */
1184		xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
1185
1186		/* XXX may want to pass the protection frame to BPF */
1187
1188		/* mbuf is no longer needed */
1189		m_freem(mprot);
1190
1191		usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
1192		    xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
1193		    RUM_TX_TIMEOUT, rum_txeof);
1194		error = usbd_transfer(data->xfer);
1195		if (error != USBD_NORMAL_COMPLETION &&
1196		    error != USBD_IN_PROGRESS) {
1197			m_freem(m0);
1198			return error;
1199		}
1200
1201		sc->tx_queued++;
1202		sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1203
1204		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1205	}
1206
1207	data = &sc->tx_data[sc->tx_cur];
1208	desc = (struct rum_tx_desc *)data->buf;
1209
1210	data->ni = ni;
1211
1212	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1213		flags |= RT2573_TX_NEED_ACK;
1214
1215		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1216		    ic->ic_flags) + sc->sifs;
1217		*(uint16_t *)wh->i_dur = htole16(dur);
1218
1219		/* tell hardware to set timestamp in probe responses */
1220		if ((wh->i_fc[0] &
1221		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1222		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1223			flags |= RT2573_TX_TIMESTAMP;
1224	}
1225
1226	if (sc->sc_drvbpf != NULL) {
1227		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1228
1229		tap->wt_flags = 0;
1230		tap->wt_rate = rate;
1231		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1232		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1233		tap->wt_antenna = sc->tx_ant;
1234
1235		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1236	}
1237
1238	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1239	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1240
1241	/* align end on a 4-bytes boundary */
1242	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1243
1244	/*
1245	 * No space left in the last URB to store the extra 4 bytes, force
1246	 * sending of another URB.
1247	 */
1248	if ((xferlen % 64) == 0)
1249		xferlen += 4;
1250
1251	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1252	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1253	    rate, xferlen));
1254
1255	/* mbuf is no longer needed */
1256	m_freem(m0);
1257
1258	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1259	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1260	error = usbd_transfer(data->xfer);
1261	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1262		return error;
1263
1264	sc->tx_queued++;
1265	sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
1266
1267	return 0;
1268}
1269
1270static void
1271rum_start(struct ifnet *ifp)
1272{
1273	struct rum_softc *sc = ifp->if_softc;
1274	struct ieee80211com *ic = &sc->sc_ic;
1275	struct ether_header *eh;
1276	struct ieee80211_node *ni;
1277	struct mbuf *m0;
1278
1279	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1280		return;
1281
1282	for (;;) {
1283		IF_POLL(&ic->ic_mgtq, m0);
1284		if (m0 != NULL) {
1285			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1286				ifp->if_flags |= IFF_OACTIVE;
1287				break;
1288			}
1289			IF_DEQUEUE(&ic->ic_mgtq, m0);
1290
1291			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1292			m0->m_pkthdr.rcvif = NULL;
1293			bpf_mtap3(ic->ic_rawbpf, m0);
1294			if (rum_tx_data(sc, m0, ni) != 0)
1295				break;
1296
1297		} else {
1298			if (ic->ic_state != IEEE80211_S_RUN)
1299				break;
1300			IFQ_POLL(&ifp->if_snd, m0);
1301			if (m0 == NULL)
1302				break;
1303			if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
1304				ifp->if_flags |= IFF_OACTIVE;
1305				break;
1306			}
1307			IFQ_DEQUEUE(&ifp->if_snd, m0);
1308			if (m0->m_len < (int)sizeof(struct ether_header) &&
1309			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1310				continue;
1311
1312			eh = mtod(m0, struct ether_header *);
1313			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1314			if (ni == NULL) {
1315				m_freem(m0);
1316				continue;
1317			}
1318			bpf_mtap(ifp, m0);
1319			m0 = ieee80211_encap(ic, m0, ni);
1320			if (m0 == NULL) {
1321				ieee80211_free_node(ni);
1322				continue;
1323			}
1324			bpf_mtap3(ic->ic_rawbpf, m0);
1325			if (rum_tx_data(sc, m0, ni) != 0) {
1326				ieee80211_free_node(ni);
1327				ifp->if_oerrors++;
1328				break;
1329			}
1330		}
1331
1332		sc->sc_tx_timer = 5;
1333		ifp->if_timer = 1;
1334	}
1335}
1336
1337static void
1338rum_watchdog(struct ifnet *ifp)
1339{
1340	struct rum_softc *sc = ifp->if_softc;
1341	struct ieee80211com *ic = &sc->sc_ic;
1342
1343	ifp->if_timer = 0;
1344
1345	if (sc->sc_tx_timer > 0) {
1346		if (--sc->sc_tx_timer == 0) {
1347			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1348			/*rum_init(ifp); XXX needs a process context! */
1349			ifp->if_oerrors++;
1350			return;
1351		}
1352		ifp->if_timer = 1;
1353	}
1354
1355	ieee80211_watchdog(ic);
1356}
1357
1358static int
1359rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1360{
1361#define IS_RUNNING(ifp) \
1362	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1363
1364	struct rum_softc *sc = ifp->if_softc;
1365	struct ieee80211com *ic = &sc->sc_ic;
1366	int s, error = 0;
1367
1368	s = splnet();
1369
1370	switch (cmd) {
1371	case SIOCSIFFLAGS:
1372		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1373			break;
1374		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1375		case IFF_UP|IFF_RUNNING:
1376			rum_update_promisc(sc);
1377			break;
1378		case IFF_UP:
1379			rum_init(ifp);
1380			break;
1381		case IFF_RUNNING:
1382			rum_stop(ifp, 1);
1383			break;
1384		case 0:
1385			break;
1386		}
1387		break;
1388
1389	case SIOCADDMULTI:
1390	case SIOCDELMULTI:
1391		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1392			error = 0;
1393		}
1394		break;
1395
1396	default:
1397		error = ieee80211_ioctl(ic, cmd, data);
1398	}
1399
1400	if (error == ENETRESET) {
1401		if (IS_RUNNING(ifp) &&
1402			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1403			rum_init(ifp);
1404		error = 0;
1405	}
1406
1407	splx(s);
1408
1409	return error;
1410#undef IS_RUNNING
1411}
1412
1413static void
1414rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1415{
1416	usb_device_request_t req;
1417	usbd_status error;
1418
1419	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1420	req.bRequest = RT2573_READ_EEPROM;
1421	USETW(req.wValue, 0);
1422	USETW(req.wIndex, addr);
1423	USETW(req.wLength, len);
1424
1425	error = usbd_do_request(sc->sc_udev, &req, buf);
1426	if (error != 0) {
1427		printf("%s: could not read EEPROM: %s\n",
1428		    device_xname(sc->sc_dev), usbd_errstr(error));
1429	}
1430}
1431
1432static uint32_t
1433rum_read(struct rum_softc *sc, uint16_t reg)
1434{
1435	uint32_t val;
1436
1437	rum_read_multi(sc, reg, &val, sizeof val);
1438
1439	return le32toh(val);
1440}
1441
1442static void
1443rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1444{
1445	usb_device_request_t req;
1446	usbd_status error;
1447
1448	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1449	req.bRequest = RT2573_READ_MULTI_MAC;
1450	USETW(req.wValue, 0);
1451	USETW(req.wIndex, reg);
1452	USETW(req.wLength, len);
1453
1454	error = usbd_do_request(sc->sc_udev, &req, buf);
1455	if (error != 0) {
1456		printf("%s: could not multi read MAC register: %s\n",
1457		    device_xname(sc->sc_dev), usbd_errstr(error));
1458	}
1459}
1460
1461static void
1462rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1463{
1464	uint32_t tmp = htole32(val);
1465
1466	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1467}
1468
1469static void
1470rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1471{
1472	usb_device_request_t req;
1473	usbd_status error;
1474
1475	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1476	req.bRequest = RT2573_WRITE_MULTI_MAC;
1477	USETW(req.wValue, 0);
1478	USETW(req.wIndex, reg);
1479	USETW(req.wLength, len);
1480
1481	error = usbd_do_request(sc->sc_udev, &req, buf);
1482	if (error != 0) {
1483		printf("%s: could not multi write MAC register: %s\n",
1484		    device_xname(sc->sc_dev), usbd_errstr(error));
1485	}
1486}
1487
1488static void
1489rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1490{
1491	uint32_t tmp;
1492	int ntries;
1493
1494	for (ntries = 0; ntries < 5; ntries++) {
1495		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1496			break;
1497	}
1498	if (ntries == 5) {
1499		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1500		return;
1501	}
1502
1503	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1504	rum_write(sc, RT2573_PHY_CSR3, tmp);
1505}
1506
1507static uint8_t
1508rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1509{
1510	uint32_t val;
1511	int ntries;
1512
1513	for (ntries = 0; ntries < 5; ntries++) {
1514		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1515			break;
1516	}
1517	if (ntries == 5) {
1518		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1519		return 0;
1520	}
1521
1522	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1523	rum_write(sc, RT2573_PHY_CSR3, val);
1524
1525	for (ntries = 0; ntries < 100; ntries++) {
1526		val = rum_read(sc, RT2573_PHY_CSR3);
1527		if (!(val & RT2573_BBP_BUSY))
1528			return val & 0xff;
1529		DELAY(1);
1530	}
1531
1532	printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1533	return 0;
1534}
1535
1536static void
1537rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1538{
1539	uint32_t tmp;
1540	int ntries;
1541
1542	for (ntries = 0; ntries < 5; ntries++) {
1543		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1544			break;
1545	}
1546	if (ntries == 5) {
1547		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1548		return;
1549	}
1550
1551	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1552	    (reg & 3);
1553	rum_write(sc, RT2573_PHY_CSR4, tmp);
1554
1555	/* remember last written value in sc */
1556	sc->rf_regs[reg] = val;
1557
1558	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1559}
1560
1561static void
1562rum_select_antenna(struct rum_softc *sc)
1563{
1564	uint8_t bbp4, bbp77;
1565	uint32_t tmp;
1566
1567	bbp4  = rum_bbp_read(sc, 4);
1568	bbp77 = rum_bbp_read(sc, 77);
1569
1570	/* TBD */
1571
1572	/* make sure Rx is disabled before switching antenna */
1573	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1574	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1575
1576	rum_bbp_write(sc,  4, bbp4);
1577	rum_bbp_write(sc, 77, bbp77);
1578
1579	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1580}
1581
1582/*
1583 * Enable multi-rate retries for frames sent at OFDM rates.
1584 * In 802.11b/g mode, allow fallback to CCK rates.
1585 */
1586static void
1587rum_enable_mrr(struct rum_softc *sc)
1588{
1589	struct ieee80211com *ic = &sc->sc_ic;
1590	uint32_t tmp;
1591
1592	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1593
1594	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1595	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1596		tmp |= RT2573_MRR_CCK_FALLBACK;
1597	tmp |= RT2573_MRR_ENABLED;
1598
1599	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1600}
1601
1602static void
1603rum_set_txpreamble(struct rum_softc *sc)
1604{
1605	uint32_t tmp;
1606
1607	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1608
1609	tmp &= ~RT2573_SHORT_PREAMBLE;
1610	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1611		tmp |= RT2573_SHORT_PREAMBLE;
1612
1613	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1614}
1615
1616static void
1617rum_set_basicrates(struct rum_softc *sc)
1618{
1619	struct ieee80211com *ic = &sc->sc_ic;
1620
1621	/* update basic rate set */
1622	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1623		/* 11b basic rates: 1, 2Mbps */
1624		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1625	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1626		/* 11a basic rates: 6, 12, 24Mbps */
1627		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1628	} else {
1629		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1630		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1631	}
1632}
1633
1634/*
1635 * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1636 * driver.
1637 */
1638static void
1639rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1640{
1641	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1642	uint32_t tmp;
1643
1644	/* update all BBP registers that depend on the band */
1645	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1646	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1647	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1648		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1649		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1650	}
1651	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1652	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1653		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1654	}
1655
1656	sc->bbp17 = bbp17;
1657	rum_bbp_write(sc,  17, bbp17);
1658	rum_bbp_write(sc,  96, bbp96);
1659	rum_bbp_write(sc, 104, bbp104);
1660
1661	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1662	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1663		rum_bbp_write(sc, 75, 0x80);
1664		rum_bbp_write(sc, 86, 0x80);
1665		rum_bbp_write(sc, 88, 0x80);
1666	}
1667
1668	rum_bbp_write(sc, 35, bbp35);
1669	rum_bbp_write(sc, 97, bbp97);
1670	rum_bbp_write(sc, 98, bbp98);
1671
1672	tmp = rum_read(sc, RT2573_PHY_CSR0);
1673	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1674	if (IEEE80211_IS_CHAN_2GHZ(c))
1675		tmp |= RT2573_PA_PE_2GHZ;
1676	else
1677		tmp |= RT2573_PA_PE_5GHZ;
1678	rum_write(sc, RT2573_PHY_CSR0, tmp);
1679
1680	/* 802.11a uses a 16 microseconds short interframe space */
1681	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1682}
1683
1684static void
1685rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1686{
1687	struct ieee80211com *ic = &sc->sc_ic;
1688	const struct rfprog *rfprog;
1689	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1690	int8_t power;
1691	u_int i, chan;
1692
1693	chan = ieee80211_chan2ieee(ic, c);
1694	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1695		return;
1696
1697	/* select the appropriate RF settings based on what EEPROM says */
1698	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1699		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1700
1701	/* find the settings for this channel (we know it exists) */
1702	for (i = 0; rfprog[i].chan != chan; i++);
1703
1704	power = sc->txpow[i];
1705	if (power < 0) {
1706		bbp94 += power;
1707		power = 0;
1708	} else if (power > 31) {
1709		bbp94 += power - 31;
1710		power = 31;
1711	}
1712
1713	/*
1714	 * If we are switching from the 2GHz band to the 5GHz band or
1715	 * vice-versa, BBP registers need to be reprogrammed.
1716	 */
1717	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1718		rum_select_band(sc, c);
1719		rum_select_antenna(sc);
1720	}
1721	ic->ic_curchan = c;
1722
1723	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1724	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1725	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1726	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1727
1728	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1729	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1730	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1731	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1732
1733	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1734	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1735	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1736	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1737
1738	DELAY(10);
1739
1740	/* enable smart mode for MIMO-capable RFs */
1741	bbp3 = rum_bbp_read(sc, 3);
1742
1743	bbp3 &= ~RT2573_SMART_MODE;
1744	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1745		bbp3 |= RT2573_SMART_MODE;
1746
1747	rum_bbp_write(sc, 3, bbp3);
1748
1749	if (bbp94 != RT2573_BBPR94_DEFAULT)
1750		rum_bbp_write(sc, 94, bbp94);
1751}
1752
1753/*
1754 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1755 * and HostAP operating modes.
1756 */
1757static void
1758rum_enable_tsf_sync(struct rum_softc *sc)
1759{
1760	struct ieee80211com *ic = &sc->sc_ic;
1761	uint32_t tmp;
1762
1763	if (ic->ic_opmode != IEEE80211_M_STA) {
1764		/*
1765		 * Change default 16ms TBTT adjustment to 8ms.
1766		 * Must be done before enabling beacon generation.
1767		 */
1768		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1769	}
1770
1771	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1772
1773	/* set beacon interval (in 1/16ms unit) */
1774	tmp |= ic->ic_bss->ni_intval * 16;
1775
1776	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1777	if (ic->ic_opmode == IEEE80211_M_STA)
1778		tmp |= RT2573_TSF_MODE(1);
1779	else
1780		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1781
1782	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1783}
1784
1785static void
1786rum_update_slot(struct rum_softc *sc)
1787{
1788	struct ieee80211com *ic = &sc->sc_ic;
1789	uint8_t slottime;
1790	uint32_t tmp;
1791
1792	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1793
1794	tmp = rum_read(sc, RT2573_MAC_CSR9);
1795	tmp = (tmp & ~0xff) | slottime;
1796	rum_write(sc, RT2573_MAC_CSR9, tmp);
1797
1798	DPRINTF(("setting slot time to %uus\n", slottime));
1799}
1800
1801static void
1802rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1803{
1804	uint32_t tmp;
1805
1806	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1807	rum_write(sc, RT2573_MAC_CSR4, tmp);
1808
1809	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1810	rum_write(sc, RT2573_MAC_CSR5, tmp);
1811}
1812
1813static void
1814rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1815{
1816	uint32_t tmp;
1817
1818	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1819	rum_write(sc, RT2573_MAC_CSR2, tmp);
1820
1821	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1822	rum_write(sc, RT2573_MAC_CSR3, tmp);
1823}
1824
1825static void
1826rum_update_promisc(struct rum_softc *sc)
1827{
1828	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1829	uint32_t tmp;
1830
1831	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1832
1833	tmp &= ~RT2573_DROP_NOT_TO_ME;
1834	if (!(ifp->if_flags & IFF_PROMISC))
1835		tmp |= RT2573_DROP_NOT_TO_ME;
1836
1837	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1838
1839	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1840	    "entering" : "leaving"));
1841}
1842
1843static const char *
1844rum_get_rf(int rev)
1845{
1846	switch (rev) {
1847	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1848	case RT2573_RF_2528:	return "RT2528";
1849	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1850	case RT2573_RF_5226:	return "RT5226";
1851	default:		return "unknown";
1852	}
1853}
1854
1855static void
1856rum_read_eeprom(struct rum_softc *sc)
1857{
1858	struct ieee80211com *ic = &sc->sc_ic;
1859	uint16_t val;
1860#ifdef RUM_DEBUG
1861	int i;
1862#endif
1863
1864	/* read MAC/BBP type */
1865	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1866	sc->macbbp_rev = le16toh(val);
1867
1868	/* read MAC address */
1869	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1870
1871	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1872	val = le16toh(val);
1873	sc->rf_rev =   (val >> 11) & 0x1f;
1874	sc->hw_radio = (val >> 10) & 0x1;
1875	sc->rx_ant =   (val >> 4)  & 0x3;
1876	sc->tx_ant =   (val >> 2)  & 0x3;
1877	sc->nb_ant =   val & 0x3;
1878
1879	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1880
1881	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1882	val = le16toh(val);
1883	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1884	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1885
1886	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1887	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1888
1889	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1890	val = le16toh(val);
1891	if ((val & 0xff) != 0xff)
1892		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1893
1894	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1895	val = le16toh(val);
1896	if ((val & 0xff) != 0xff)
1897		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1898
1899	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1900	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1901
1902	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1903	val = le16toh(val);
1904	if ((val & 0xff) != 0xff)
1905		sc->rffreq = val & 0xff;
1906
1907	DPRINTF(("RF freq=%d\n", sc->rffreq));
1908
1909	/* read Tx power for all a/b/g channels */
1910	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1911	/* XXX default Tx power for 802.11a channels */
1912	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1913#ifdef RUM_DEBUG
1914	for (i = 0; i < 14; i++)
1915		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1916#endif
1917
1918	/* read default values for BBP registers */
1919	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1920#ifdef RUM_DEBUG
1921	for (i = 0; i < 14; i++) {
1922		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1923			continue;
1924		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1925		    sc->bbp_prom[i].val));
1926	}
1927#endif
1928}
1929
1930static int
1931rum_bbp_init(struct rum_softc *sc)
1932{
1933#define N(a)	(sizeof (a) / sizeof ((a)[0]))
1934	unsigned int i, ntries;
1935	uint8_t val;
1936
1937	/* wait for BBP to be ready */
1938	for (ntries = 0; ntries < 100; ntries++) {
1939		val = rum_bbp_read(sc, 0);
1940		if (val != 0 && val != 0xff)
1941			break;
1942		DELAY(1000);
1943	}
1944	if (ntries == 100) {
1945		printf("%s: timeout waiting for BBP\n",
1946		    device_xname(sc->sc_dev));
1947		return EIO;
1948	}
1949
1950	/* initialize BBP registers to default values */
1951	for (i = 0; i < N(rum_def_bbp); i++)
1952		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1953
1954	/* write vendor-specific BBP values (from EEPROM) */
1955	for (i = 0; i < 16; i++) {
1956		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1957			continue;
1958		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1959	}
1960
1961	return 0;
1962#undef N
1963}
1964
1965static int
1966rum_init(struct ifnet *ifp)
1967{
1968#define N(a)	(sizeof (a) / sizeof ((a)[0]))
1969	struct rum_softc *sc = ifp->if_softc;
1970	struct ieee80211com *ic = &sc->sc_ic;
1971	struct rum_rx_data *data;
1972	uint32_t tmp;
1973	usbd_status error = 0;
1974	unsigned int i, ntries;
1975
1976	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1977		if (rum_attachhook(sc))
1978			goto fail;
1979	}
1980
1981	rum_stop(ifp, 0);
1982
1983	/* initialize MAC registers to default values */
1984	for (i = 0; i < N(rum_def_mac); i++)
1985		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1986
1987	/* set host ready */
1988	rum_write(sc, RT2573_MAC_CSR1, 3);
1989	rum_write(sc, RT2573_MAC_CSR1, 0);
1990
1991	/* wait for BBP/RF to wakeup */
1992	for (ntries = 0; ntries < 1000; ntries++) {
1993		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1994			break;
1995		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1996		DELAY(1000);
1997	}
1998	if (ntries == 1000) {
1999		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2000		    device_xname(sc->sc_dev));
2001		goto fail;
2002	}
2003
2004	if ((error = rum_bbp_init(sc)) != 0)
2005		goto fail;
2006
2007	/* select default channel */
2008	rum_select_band(sc, ic->ic_curchan);
2009	rum_select_antenna(sc);
2010	rum_set_chan(sc, ic->ic_curchan);
2011
2012	/* clear STA registers */
2013	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2014
2015	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2016	rum_set_macaddr(sc, ic->ic_myaddr);
2017
2018	/* initialize ASIC */
2019	rum_write(sc, RT2573_MAC_CSR1, 4);
2020
2021	/*
2022	 * Allocate xfer for AMRR statistics requests.
2023	 */
2024	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2025	if (sc->amrr_xfer == NULL) {
2026		printf("%s: could not allocate AMRR xfer\n",
2027		    device_xname(sc->sc_dev));
2028		goto fail;
2029	}
2030
2031	/*
2032	 * Open Tx and Rx USB bulk pipes.
2033	 */
2034	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2035	    &sc->sc_tx_pipeh);
2036	if (error != 0) {
2037		printf("%s: could not open Tx pipe: %s\n",
2038		    device_xname(sc->sc_dev), usbd_errstr(error));
2039		goto fail;
2040	}
2041
2042	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2043	    &sc->sc_rx_pipeh);
2044	if (error != 0) {
2045		printf("%s: could not open Rx pipe: %s\n",
2046		    device_xname(sc->sc_dev), usbd_errstr(error));
2047		goto fail;
2048	}
2049
2050	/*
2051	 * Allocate Tx and Rx xfer queues.
2052	 */
2053	error = rum_alloc_tx_list(sc);
2054	if (error != 0) {
2055		printf("%s: could not allocate Tx list\n",
2056		    device_xname(sc->sc_dev));
2057		goto fail;
2058	}
2059
2060	error = rum_alloc_rx_list(sc);
2061	if (error != 0) {
2062		printf("%s: could not allocate Rx list\n",
2063		    device_xname(sc->sc_dev));
2064		goto fail;
2065	}
2066
2067	/*
2068	 * Start up the receive pipe.
2069	 */
2070	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2071		data = &sc->rx_data[i];
2072
2073		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2074		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2075		error = usbd_transfer(data->xfer);
2076		if (error != USBD_NORMAL_COMPLETION &&
2077		    error != USBD_IN_PROGRESS) {
2078			printf("%s: could not queue Rx transfer\n",
2079			    device_xname(sc->sc_dev));
2080			goto fail;
2081		}
2082	}
2083
2084	/* update Rx filter */
2085	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2086
2087	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2088	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2089		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2090		       RT2573_DROP_ACKCTS;
2091		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2092			tmp |= RT2573_DROP_TODS;
2093		if (!(ifp->if_flags & IFF_PROMISC))
2094			tmp |= RT2573_DROP_NOT_TO_ME;
2095	}
2096	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2097
2098	ifp->if_flags &= ~IFF_OACTIVE;
2099	ifp->if_flags |= IFF_RUNNING;
2100
2101	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2102		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2103	else
2104		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2105
2106	return 0;
2107
2108fail:	rum_stop(ifp, 1);
2109	return error;
2110#undef N
2111}
2112
2113static void
2114rum_stop(struct ifnet *ifp, int disable)
2115{
2116	struct rum_softc *sc = ifp->if_softc;
2117	struct ieee80211com *ic = &sc->sc_ic;
2118	uint32_t tmp;
2119
2120	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2121
2122	sc->sc_tx_timer = 0;
2123	ifp->if_timer = 0;
2124	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2125
2126	/* disable Rx */
2127	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2128	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2129
2130	/* reset ASIC */
2131	rum_write(sc, RT2573_MAC_CSR1, 3);
2132	rum_write(sc, RT2573_MAC_CSR1, 0);
2133
2134	if (sc->amrr_xfer != NULL) {
2135		usbd_free_xfer(sc->amrr_xfer);
2136		sc->amrr_xfer = NULL;
2137	}
2138
2139	if (sc->sc_rx_pipeh != NULL) {
2140		usbd_abort_pipe(sc->sc_rx_pipeh);
2141		usbd_close_pipe(sc->sc_rx_pipeh);
2142		sc->sc_rx_pipeh = NULL;
2143	}
2144
2145	if (sc->sc_tx_pipeh != NULL) {
2146		usbd_abort_pipe(sc->sc_tx_pipeh);
2147		usbd_close_pipe(sc->sc_tx_pipeh);
2148		sc->sc_tx_pipeh = NULL;
2149	}
2150
2151	rum_free_rx_list(sc);
2152	rum_free_tx_list(sc);
2153}
2154
2155static int
2156rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2157{
2158	usb_device_request_t req;
2159	uint16_t reg = RT2573_MCU_CODE_BASE;
2160	usbd_status error;
2161
2162	/* copy firmware image into NIC */
2163	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2164		rum_write(sc, reg, UGETDW(ucode));
2165
2166	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2167	req.bRequest = RT2573_MCU_CNTL;
2168	USETW(req.wValue, RT2573_MCU_RUN);
2169	USETW(req.wIndex, 0);
2170	USETW(req.wLength, 0);
2171
2172	error = usbd_do_request(sc->sc_udev, &req, NULL);
2173	if (error != 0) {
2174		printf("%s: could not run firmware: %s\n",
2175		    device_xname(sc->sc_dev), usbd_errstr(error));
2176	}
2177	return error;
2178}
2179
2180static int
2181rum_prepare_beacon(struct rum_softc *sc)
2182{
2183	struct ieee80211com *ic = &sc->sc_ic;
2184	struct rum_tx_desc desc;
2185	struct mbuf *m0;
2186	int rate;
2187
2188	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2189	if (m0 == NULL) {
2190		aprint_error_dev(sc->sc_dev,
2191		    "could not allocate beacon frame\n");
2192		return ENOBUFS;
2193	}
2194
2195	/* send beacons at the lowest available rate */
2196	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2197
2198	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2199	    m0->m_pkthdr.len, rate);
2200
2201	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2202	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2203
2204	/* copy beacon header and payload into NIC memory */
2205	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2206	    m0->m_pkthdr.len);
2207
2208	m_freem(m0);
2209
2210	return 0;
2211}
2212
2213static void
2214rum_newassoc(struct ieee80211_node *ni, int isnew)
2215{
2216	/* start with lowest Tx rate */
2217	ni->ni_txrate = 0;
2218}
2219
2220static void
2221rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2222{
2223	int i;
2224
2225	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2226	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2227
2228	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2229
2230	/* set rate to some reasonable initial value */
2231	for (i = ni->ni_rates.rs_nrates - 1;
2232	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2233	     i--);
2234	ni->ni_txrate = i;
2235
2236	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2237}
2238
2239static void
2240rum_amrr_timeout(void *arg)
2241{
2242	struct rum_softc *sc = arg;
2243	usb_device_request_t req;
2244
2245	/*
2246	 * Asynchronously read statistic registers (cleared by read).
2247	 */
2248	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2249	req.bRequest = RT2573_READ_MULTI_MAC;
2250	USETW(req.wValue, 0);
2251	USETW(req.wIndex, RT2573_STA_CSR0);
2252	USETW(req.wLength, sizeof sc->sta);
2253
2254	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2255	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2256	    rum_amrr_update);
2257	(void)usbd_transfer(sc->amrr_xfer);
2258}
2259
2260static void
2261rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2262    usbd_status status)
2263{
2264	struct rum_softc *sc = (struct rum_softc *)priv;
2265	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2266
2267	if (status != USBD_NORMAL_COMPLETION) {
2268		printf("%s: could not retrieve Tx statistics - cancelling "
2269		    "automatic rate control\n", device_xname(sc->sc_dev));
2270		return;
2271	}
2272
2273	/* count TX retry-fail as Tx errors */
2274	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2275
2276	sc->amn.amn_retrycnt =
2277	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2278	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2279	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2280
2281	sc->amn.amn_txcnt =
2282	    sc->amn.amn_retrycnt +
2283	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2284
2285	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2286
2287	callout_reset(&sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2288}
2289
2290static int
2291rum_activate(device_t self, enum devact act)
2292{
2293	switch (act) {
2294	case DVACT_DEACTIVATE:
2295		/*if_deactivate(&sc->sc_ic.ic_if);*/
2296		return 0;
2297	default:
2298		return 0;
2299	}
2300}
2301
2302MODULE(MODULE_CLASS_DRIVER, if_rum, NULL);
2303
2304#ifdef _MODULE
2305#include "ioconf.c"
2306#endif
2307
2308static int
2309if_rum_modcmd(modcmd_t cmd, void *aux)
2310{
2311	int error = 0;
2312
2313	switch (cmd) {
2314	case MODULE_CMD_INIT:
2315#ifdef _MODULE
2316		error = config_init_component(cfdriver_ioconf_rum,
2317		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2318#endif
2319		return error;
2320	case MODULE_CMD_FINI:
2321#ifdef _MODULE
2322		error = config_fini_component(cfdriver_ioconf_rum,
2323		    cfattach_ioconf_rum, cfdata_ioconf_rum);
2324#endif
2325		return error;
2326	default:
2327		return ENOTTY;
2328	}
2329}
2330