if_rum.c revision 1.28
1/*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2/*	$NetBSD: if_rum.c,v 1.28 2009/09/23 19:07:19 plunky Exp $	*/
3
4/*-
5 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21/*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com.tw/
24 */
25
26#include <sys/cdefs.h>
27__KERNEL_RCSID(0, "$NetBSD: if_rum.c,v 1.28 2009/09/23 19:07:19 plunky Exp $");
28
29#include "bpfilter.h"
30
31#include <sys/param.h>
32#include <sys/sockio.h>
33#include <sys/sysctl.h>
34#include <sys/mbuf.h>
35#include <sys/kernel.h>
36#include <sys/socket.h>
37#include <sys/systm.h>
38#include <sys/malloc.h>
39#include <sys/conf.h>
40#include <sys/device.h>
41
42#include <sys/bus.h>
43#include <machine/endian.h>
44#include <sys/intr.h>
45
46#if NBPFILTER > 0
47#include <net/bpf.h>
48#endif
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/if_dl.h>
52#include <net/if_ether.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55
56#include <netinet/in.h>
57#include <netinet/in_systm.h>
58#include <netinet/in_var.h>
59#include <netinet/ip.h>
60
61#include <net80211/ieee80211_netbsd.h>
62#include <net80211/ieee80211_var.h>
63#include <net80211/ieee80211_amrr.h>
64#include <net80211/ieee80211_radiotap.h>
65
66#include <dev/firmload.h>
67
68#include <dev/usb/usb.h>
69#include <dev/usb/usbdi.h>
70#include <dev/usb/usbdi_util.h>
71#include <dev/usb/usbdevs.h>
72
73#include <dev/usb/if_rumreg.h>
74#include <dev/usb/if_rumvar.h>
75
76#ifdef USB_DEBUG
77#define RUM_DEBUG
78#endif
79
80#ifdef RUM_DEBUG
81#define DPRINTF(x)	do { if (rum_debug) logprintf x; } while (0)
82#define DPRINTFN(n, x)	do { if (rum_debug >= (n)) logprintf x; } while (0)
83int rum_debug = 1;
84#else
85#define DPRINTF(x)
86#define DPRINTFN(n, x)
87#endif
88
89/* various supported device vendors/products */
90static const struct usb_devno rum_devs[] = {
91	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_HWU54DM },
92	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_2 },
93	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_3 },
94	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573_4 },
95	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_WUG2700 },
96	{ USB_VENDOR_AMIT,		USB_PRODUCT_AMIT_CGWLUSB2GO },
97	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_2 },
98	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G_3 },
99	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
100	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
101	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
102	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
103	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
104	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GL },
105	{ USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_CGWLUSB2GPX },
106	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
107	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
108	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
109	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
110	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
111	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWI05GS },
112	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
113	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
114	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
115	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
116	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
117	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_G54HP },
118	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_SG54HP },
119	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_WLIUCG },
120	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
121	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
122	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
123	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_4 },
124	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_RT2573 },
125	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54HP },
126	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUS54MINI2 },
127	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
128	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
129	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
130	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_3 },
131	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
132	{ USB_VENDOR_RALINK_2,          USB_PRODUCT_RALINK_2_RT2573 },
133	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
134	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
135	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
136	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 }
137};
138
139Static int		rum_attachhook(void *);
140Static int		rum_alloc_tx_list(struct rum_softc *);
141Static void		rum_free_tx_list(struct rum_softc *);
142Static int		rum_alloc_rx_list(struct rum_softc *);
143Static void		rum_free_rx_list(struct rum_softc *);
144Static int		rum_media_change(struct ifnet *);
145Static void		rum_next_scan(void *);
146Static void		rum_task(void *);
147Static int		rum_newstate(struct ieee80211com *,
148			    enum ieee80211_state, int);
149Static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
150			    usbd_status);
151Static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
152			    usbd_status);
153#if NBPFILTER > 0
154Static uint8_t		rum_rxrate(const struct rum_rx_desc *);
155#endif
156Static int		rum_ack_rate(struct ieee80211com *, int);
157Static uint16_t		rum_txtime(int, int, uint32_t);
158Static uint8_t		rum_plcp_signal(int);
159Static void		rum_setup_tx_desc(struct rum_softc *,
160			    struct rum_tx_desc *, uint32_t, uint16_t, int,
161			    int);
162Static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
163			    struct ieee80211_node *);
164Static int		rum_tx_data(struct rum_softc *, struct mbuf *,
165			    struct ieee80211_node *);
166Static void		rum_start(struct ifnet *);
167Static void		rum_watchdog(struct ifnet *);
168Static int		rum_ioctl(struct ifnet *, u_long, void *);
169Static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
170			    int);
171Static uint32_t		rum_read(struct rum_softc *, uint16_t);
172Static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
173			    int);
174Static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
175Static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
176			    size_t);
177Static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
178Static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
179Static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
180Static void		rum_select_antenna(struct rum_softc *);
181Static void		rum_enable_mrr(struct rum_softc *);
182Static void		rum_set_txpreamble(struct rum_softc *);
183Static void		rum_set_basicrates(struct rum_softc *);
184Static void		rum_select_band(struct rum_softc *,
185			    struct ieee80211_channel *);
186Static void		rum_set_chan(struct rum_softc *,
187			    struct ieee80211_channel *);
188Static void		rum_enable_tsf_sync(struct rum_softc *);
189Static void		rum_update_slot(struct rum_softc *);
190Static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
191Static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
192Static void		rum_update_promisc(struct rum_softc *);
193Static const char	*rum_get_rf(int);
194Static void		rum_read_eeprom(struct rum_softc *);
195Static int		rum_bbp_init(struct rum_softc *);
196Static int		rum_init(struct ifnet *);
197Static void		rum_stop(struct ifnet *, int);
198Static int		rum_load_microcode(struct rum_softc *, const u_char *,
199			    size_t);
200Static int		rum_prepare_beacon(struct rum_softc *);
201Static void		rum_newassoc(struct ieee80211_node *, int);
202Static void		rum_amrr_start(struct rum_softc *,
203			    struct ieee80211_node *);
204Static void		rum_amrr_timeout(void *);
205Static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
206			    usbd_status status);
207
208/*
209 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
210 */
211static const struct ieee80211_rateset rum_rateset_11a =
212	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
213
214static const struct ieee80211_rateset rum_rateset_11b =
215	{ 4, { 2, 4, 11, 22 } };
216
217static const struct ieee80211_rateset rum_rateset_11g =
218	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
219
220static const struct {
221	uint32_t	reg;
222	uint32_t	val;
223} rum_def_mac[] = {
224	RT2573_DEF_MAC
225};
226
227static const struct {
228	uint8_t	reg;
229	uint8_t	val;
230} rum_def_bbp[] = {
231	RT2573_DEF_BBP
232};
233
234static const struct rfprog {
235	uint8_t		chan;
236	uint32_t	r1, r2, r3, r4;
237}  rum_rf5226[] = {
238	RT2573_RF5226
239}, rum_rf5225[] = {
240	RT2573_RF5225
241};
242
243USB_DECLARE_DRIVER(rum);
244
245USB_MATCH(rum)
246{
247	USB_MATCH_START(rum, uaa);
248
249	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
250	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
251}
252
253Static int
254rum_attachhook(void *xsc)
255{
256	struct rum_softc *sc = xsc;
257	firmware_handle_t fwh;
258	const char *name = "rum-rt2573";
259	u_char *ucode;
260	size_t size;
261	int error;
262
263	if ((error = firmware_open("rum", name, &fwh)) != 0) {
264		printf("%s: failed loadfirmware of file %s (error %d)\n",
265		    USBDEVNAME(sc->sc_dev), name, error);
266		return error;
267	}
268	size = firmware_get_size(fwh);
269	ucode = firmware_malloc(size);
270	if (ucode == NULL) {
271		printf("%s: failed to allocate firmware memory\n",
272		    USBDEVNAME(sc->sc_dev));
273		firmware_close(fwh);
274		return ENOMEM;
275	}
276	error = firmware_read(fwh, 0, ucode, size);
277	firmware_close(fwh);
278	if (error != 0) {
279		printf("%s: failed to read firmware (error %d)\n",
280		    USBDEVNAME(sc->sc_dev), error);
281		firmware_free(ucode, 0);
282		return error;
283	}
284
285	if (rum_load_microcode(sc, ucode, size) != 0) {
286		printf("%s: could not load 8051 microcode\n",
287		    USBDEVNAME(sc->sc_dev));
288		firmware_free(ucode, 0);
289		return ENXIO;
290	}
291
292	firmware_free(ucode, 0);
293	sc->sc_flags |= RT2573_FWLOADED;
294
295	return 0;
296}
297
298USB_ATTACH(rum)
299{
300	USB_ATTACH_START(rum, sc, uaa);
301	struct ieee80211com *ic = &sc->sc_ic;
302	struct ifnet *ifp = &sc->sc_if;
303	usb_interface_descriptor_t *id;
304	usb_endpoint_descriptor_t *ed;
305	usbd_status error;
306	char *devinfop;
307	int i, ntries;
308	uint32_t tmp;
309
310	sc->sc_dev = self;
311	sc->sc_udev = uaa->device;
312	sc->sc_flags = 0;
313
314	aprint_naive("\n");
315	aprint_normal("\n");
316
317	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
318	aprint_normal_dev(self, "%s\n", devinfop);
319	usbd_devinfo_free(devinfop);
320
321	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
322		aprint_error_dev(self, "could not set configuration no\n");
323		USB_ATTACH_ERROR_RETURN;
324	}
325
326	/* get the first interface handle */
327	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
328	    &sc->sc_iface);
329	if (error != 0) {
330		aprint_error_dev(self, "could not get interface handle\n");
331		USB_ATTACH_ERROR_RETURN;
332	}
333
334	/*
335	 * Find endpoints.
336	 */
337	id = usbd_get_interface_descriptor(sc->sc_iface);
338
339	sc->sc_rx_no = sc->sc_tx_no = -1;
340	for (i = 0; i < id->bNumEndpoints; i++) {
341		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
342		if (ed == NULL) {
343			aprint_error_dev(self,
344			    "no endpoint descriptor for iface %d\n", i);
345			USB_ATTACH_ERROR_RETURN;
346		}
347
348		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
349		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
350			sc->sc_rx_no = ed->bEndpointAddress;
351		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
352		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
353			sc->sc_tx_no = ed->bEndpointAddress;
354	}
355	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
356		aprint_error_dev(self, "missing endpoint\n");
357		USB_ATTACH_ERROR_RETURN;
358	}
359
360	usb_init_task(&sc->sc_task, rum_task, sc);
361	usb_callout_init(sc->sc_scan_ch);
362
363	sc->amrr.amrr_min_success_threshold =  1;
364	sc->amrr.amrr_max_success_threshold = 10;
365	usb_callout_init(sc->sc_amrr_ch);
366
367	/* retrieve RT2573 rev. no */
368	for (ntries = 0; ntries < 1000; ntries++) {
369		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
370			break;
371		DELAY(1000);
372	}
373	if (ntries == 1000) {
374		aprint_error_dev(self, "timeout waiting for chip to settle\n");
375		USB_ATTACH_ERROR_RETURN;
376	}
377
378	/* retrieve MAC address and various other things from EEPROM */
379	rum_read_eeprom(sc);
380
381	aprint_normal_dev(self,
382	    "MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
383	    sc->macbbp_rev, tmp,
384	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
385
386	ic->ic_ifp = ifp;
387	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
388	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
389	ic->ic_state = IEEE80211_S_INIT;
390
391	/* set device capabilities */
392	ic->ic_caps =
393	    IEEE80211_C_IBSS |		/* IBSS mode supported */
394	    IEEE80211_C_MONITOR |	/* monitor mode supported */
395	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
396	    IEEE80211_C_TXPMGT |	/* tx power management */
397	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
398	    IEEE80211_C_SHSLOT |	/* short slot time supported */
399	    IEEE80211_C_WPA;		/* 802.11i */
400
401	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
402		/* set supported .11a rates */
403		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
404
405		/* set supported .11a channels */
406		for (i = 34; i <= 46; i += 4) {
407			ic->ic_channels[i].ic_freq =
408			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
409			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
410		}
411		for (i = 36; i <= 64; i += 4) {
412			ic->ic_channels[i].ic_freq =
413			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
414			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
415		}
416		for (i = 100; i <= 140; i += 4) {
417			ic->ic_channels[i].ic_freq =
418			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
419			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
420		}
421		for (i = 149; i <= 165; i += 4) {
422			ic->ic_channels[i].ic_freq =
423			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
424			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
425		}
426	}
427
428	/* set supported .11b and .11g rates */
429	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
430	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
431
432	/* set supported .11b and .11g channels (1 through 14) */
433	for (i = 1; i <= 14; i++) {
434		ic->ic_channels[i].ic_freq =
435		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
436		ic->ic_channels[i].ic_flags =
437		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
438		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
439	}
440
441	ifp->if_softc = sc;
442	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
443	ifp->if_init = rum_init;
444	ifp->if_ioctl = rum_ioctl;
445	ifp->if_start = rum_start;
446	ifp->if_watchdog = rum_watchdog;
447	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
448	IFQ_SET_READY(&ifp->if_snd);
449	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
450
451	if_attach(ifp);
452	ieee80211_ifattach(ic);
453	ic->ic_newassoc = rum_newassoc;
454
455	/* override state transition machine */
456	sc->sc_newstate = ic->ic_newstate;
457	ic->ic_newstate = rum_newstate;
458	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
459
460#if NBPFILTER > 0
461	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
462	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
463
464	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
465	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
466	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
467
468	sc->sc_txtap_len = sizeof sc->sc_txtapu;
469	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
470	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
471#endif
472
473	ieee80211_announce(ic);
474
475	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
476	    USBDEV(sc->sc_dev));
477
478	USB_ATTACH_SUCCESS_RETURN;
479}
480
481USB_DETACH(rum)
482{
483	USB_DETACH_START(rum, sc);
484	struct ieee80211com *ic = &sc->sc_ic;
485	struct ifnet *ifp = &sc->sc_if;
486	int s;
487
488	if (!ifp->if_softc)
489		return 0;
490
491	s = splusb();
492
493	rum_stop(ifp, 1);
494	usb_rem_task(sc->sc_udev, &sc->sc_task);
495	usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
496	usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
497
498	if (sc->amrr_xfer != NULL) {
499		usbd_free_xfer(sc->amrr_xfer);
500		sc->amrr_xfer = NULL;
501	}
502
503	if (sc->sc_rx_pipeh != NULL) {
504		usbd_abort_pipe(sc->sc_rx_pipeh);
505		usbd_close_pipe(sc->sc_rx_pipeh);
506	}
507
508	if (sc->sc_tx_pipeh != NULL) {
509		usbd_abort_pipe(sc->sc_tx_pipeh);
510		usbd_close_pipe(sc->sc_tx_pipeh);
511	}
512
513#if NBPFILTER > 0
514	bpfdetach(ifp);
515#endif
516	ieee80211_ifdetach(ic);	/* free all nodes */
517	if_detach(ifp);
518
519	splx(s);
520
521	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
522	    USBDEV(sc->sc_dev));
523
524	return 0;
525}
526
527Static int
528rum_alloc_tx_list(struct rum_softc *sc)
529{
530	struct rum_tx_data *data;
531	int i, error;
532
533	sc->tx_queued = 0;
534
535	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
536		data = &sc->tx_data[i];
537
538		data->sc = sc;
539
540		data->xfer = usbd_alloc_xfer(sc->sc_udev);
541		if (data->xfer == NULL) {
542			printf("%s: could not allocate tx xfer\n",
543			    USBDEVNAME(sc->sc_dev));
544			error = ENOMEM;
545			goto fail;
546		}
547
548		data->buf = usbd_alloc_buffer(data->xfer,
549		    RT2573_TX_DESC_SIZE + MCLBYTES);
550		if (data->buf == NULL) {
551			printf("%s: could not allocate tx buffer\n",
552			    USBDEVNAME(sc->sc_dev));
553			error = ENOMEM;
554			goto fail;
555		}
556
557		/* clean Tx descriptor */
558		memset(data->buf, 0, RT2573_TX_DESC_SIZE);
559	}
560
561	return 0;
562
563fail:	rum_free_tx_list(sc);
564	return error;
565}
566
567Static void
568rum_free_tx_list(struct rum_softc *sc)
569{
570	struct rum_tx_data *data;
571	int i;
572
573	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
574		data = &sc->tx_data[i];
575
576		if (data->xfer != NULL) {
577			usbd_free_xfer(data->xfer);
578			data->xfer = NULL;
579		}
580
581		if (data->ni != NULL) {
582			ieee80211_free_node(data->ni);
583			data->ni = NULL;
584		}
585	}
586}
587
588Static int
589rum_alloc_rx_list(struct rum_softc *sc)
590{
591	struct rum_rx_data *data;
592	int i, error;
593
594	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
595		data = &sc->rx_data[i];
596
597		data->sc = sc;
598
599		data->xfer = usbd_alloc_xfer(sc->sc_udev);
600		if (data->xfer == NULL) {
601			printf("%s: could not allocate rx xfer\n",
602			    USBDEVNAME(sc->sc_dev));
603			error = ENOMEM;
604			goto fail;
605		}
606
607		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
608			printf("%s: could not allocate rx buffer\n",
609			    USBDEVNAME(sc->sc_dev));
610			error = ENOMEM;
611			goto fail;
612		}
613
614		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
615		if (data->m == NULL) {
616			printf("%s: could not allocate rx mbuf\n",
617			    USBDEVNAME(sc->sc_dev));
618			error = ENOMEM;
619			goto fail;
620		}
621
622		MCLGET(data->m, M_DONTWAIT);
623		if (!(data->m->m_flags & M_EXT)) {
624			printf("%s: could not allocate rx mbuf cluster\n",
625			    USBDEVNAME(sc->sc_dev));
626			error = ENOMEM;
627			goto fail;
628		}
629
630		data->buf = mtod(data->m, uint8_t *);
631	}
632
633	return 0;
634
635fail:	rum_free_tx_list(sc);
636	return error;
637}
638
639Static void
640rum_free_rx_list(struct rum_softc *sc)
641{
642	struct rum_rx_data *data;
643	int i;
644
645	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
646		data = &sc->rx_data[i];
647
648		if (data->xfer != NULL) {
649			usbd_free_xfer(data->xfer);
650			data->xfer = NULL;
651		}
652
653		if (data->m != NULL) {
654			m_freem(data->m);
655			data->m = NULL;
656		}
657	}
658}
659
660Static int
661rum_media_change(struct ifnet *ifp)
662{
663	int error;
664
665	error = ieee80211_media_change(ifp);
666	if (error != ENETRESET)
667		return error;
668
669	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
670		rum_init(ifp);
671
672	return 0;
673}
674
675/*
676 * This function is called periodically (every 200ms) during scanning to
677 * switch from one channel to another.
678 */
679Static void
680rum_next_scan(void *arg)
681{
682	struct rum_softc *sc = arg;
683	struct ieee80211com *ic = &sc->sc_ic;
684
685	if (ic->ic_state == IEEE80211_S_SCAN)
686		ieee80211_next_scan(ic);
687}
688
689Static void
690rum_task(void *arg)
691{
692	struct rum_softc *sc = arg;
693	struct ieee80211com *ic = &sc->sc_ic;
694	enum ieee80211_state ostate;
695	struct ieee80211_node *ni;
696	uint32_t tmp;
697
698	ostate = ic->ic_state;
699
700	switch (sc->sc_state) {
701	case IEEE80211_S_INIT:
702		if (ostate == IEEE80211_S_RUN) {
703			/* abort TSF synchronization */
704			tmp = rum_read(sc, RT2573_TXRX_CSR9);
705			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
706		}
707		break;
708
709	case IEEE80211_S_SCAN:
710		rum_set_chan(sc, ic->ic_curchan);
711		usb_callout(sc->sc_scan_ch, hz / 5, rum_next_scan, sc);
712		break;
713
714	case IEEE80211_S_AUTH:
715		rum_set_chan(sc, ic->ic_curchan);
716		break;
717
718	case IEEE80211_S_ASSOC:
719		rum_set_chan(sc, ic->ic_curchan);
720		break;
721
722	case IEEE80211_S_RUN:
723		rum_set_chan(sc, ic->ic_curchan);
724
725		ni = ic->ic_bss;
726
727		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
728			rum_update_slot(sc);
729			rum_enable_mrr(sc);
730			rum_set_txpreamble(sc);
731			rum_set_basicrates(sc);
732			rum_set_bssid(sc, ni->ni_bssid);
733		}
734
735		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
736		    ic->ic_opmode == IEEE80211_M_IBSS)
737			rum_prepare_beacon(sc);
738
739		if (ic->ic_opmode != IEEE80211_M_MONITOR)
740			rum_enable_tsf_sync(sc);
741
742		if (ic->ic_opmode == IEEE80211_M_STA) {
743			/* fake a join to init the tx rate */
744			rum_newassoc(ic->ic_bss, 1);
745
746			/* enable automatic rate adaptation in STA mode */
747			if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
748				rum_amrr_start(sc, ni);
749		}
750
751		break;
752	}
753
754	sc->sc_newstate(ic, sc->sc_state, -1);
755}
756
757Static int
758rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
759{
760	struct rum_softc *sc = ic->ic_ifp->if_softc;
761
762	usb_rem_task(sc->sc_udev, &sc->sc_task);
763	usb_uncallout(sc->sc_scan_ch, rum_next_scan, sc);
764	usb_uncallout(sc->sc_amrr_ch, rum_amrr_timeout, sc);
765
766	/* do it in a process context */
767	sc->sc_state = nstate;
768	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
769
770	return 0;
771}
772
773/* quickly determine if a given rate is CCK or OFDM */
774#define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
775
776#define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
777#define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
778
779Static void
780rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
781{
782	struct rum_tx_data *data = priv;
783	struct rum_softc *sc = data->sc;
784	struct ifnet *ifp = &sc->sc_if;
785	int s;
786
787	if (status != USBD_NORMAL_COMPLETION) {
788		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
789			return;
790
791		printf("%s: could not transmit buffer: %s\n",
792		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
793
794		if (status == USBD_STALLED)
795			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
796
797		ifp->if_oerrors++;
798		return;
799	}
800
801	s = splnet();
802
803	ieee80211_free_node(data->ni);
804	data->ni = NULL;
805
806	sc->tx_queued--;
807	ifp->if_opackets++;
808
809	DPRINTFN(10, ("tx done\n"));
810
811	sc->sc_tx_timer = 0;
812	ifp->if_flags &= ~IFF_OACTIVE;
813	rum_start(ifp);
814
815	splx(s);
816}
817
818Static void
819rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
820{
821	struct rum_rx_data *data = priv;
822	struct rum_softc *sc = data->sc;
823	struct ieee80211com *ic = &sc->sc_ic;
824	struct ifnet *ifp = &sc->sc_if;
825	struct rum_rx_desc *desc;
826	struct ieee80211_frame *wh;
827	struct ieee80211_node *ni;
828	struct mbuf *mnew, *m;
829	int s, len;
830
831	if (status != USBD_NORMAL_COMPLETION) {
832		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
833			return;
834
835		if (status == USBD_STALLED)
836			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
837		goto skip;
838	}
839
840	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
841
842	if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
843		DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
844		    len));
845		ifp->if_ierrors++;
846		goto skip;
847	}
848
849	desc = (struct rum_rx_desc *)data->buf;
850
851	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
852		/*
853		 * This should not happen since we did not request to receive
854		 * those frames when we filled RT2573_TXRX_CSR0.
855		 */
856		DPRINTFN(5, ("CRC error\n"));
857		ifp->if_ierrors++;
858		goto skip;
859	}
860
861	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
862	if (mnew == NULL) {
863		printf("%s: could not allocate rx mbuf\n",
864		    USBDEVNAME(sc->sc_dev));
865		ifp->if_ierrors++;
866		goto skip;
867	}
868
869	MCLGET(mnew, M_DONTWAIT);
870	if (!(mnew->m_flags & M_EXT)) {
871		printf("%s: could not allocate rx mbuf cluster\n",
872		    USBDEVNAME(sc->sc_dev));
873		m_freem(mnew);
874		ifp->if_ierrors++;
875		goto skip;
876	}
877
878	m = data->m;
879	data->m = mnew;
880	data->buf = mtod(data->m, uint8_t *);
881
882	/* finalize mbuf */
883	m->m_pkthdr.rcvif = ifp;
884	m->m_data = (void *)(desc + 1);
885	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
886
887	s = splnet();
888
889#if NBPFILTER > 0
890	if (sc->sc_drvbpf != NULL) {
891		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
892
893		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
894		tap->wr_rate = rum_rxrate(desc);
895		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
896		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
897		tap->wr_antenna = sc->rx_ant;
898		tap->wr_antsignal = desc->rssi;
899
900		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
901	}
902#endif
903
904	wh = mtod(m, struct ieee80211_frame *);
905	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
906
907	/* send the frame to the 802.11 layer */
908	ieee80211_input(ic, m, ni, desc->rssi, 0);
909
910	/* node is no longer needed */
911	ieee80211_free_node(ni);
912
913	splx(s);
914
915	DPRINTFN(15, ("rx done\n"));
916
917skip:	/* setup a new transfer */
918	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
919	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
920	usbd_transfer(xfer);
921}
922
923/*
924 * This function is only used by the Rx radiotap code. It returns the rate at
925 * which a given frame was received.
926 */
927#if NBPFILTER > 0
928Static uint8_t
929rum_rxrate(const struct rum_rx_desc *desc)
930{
931	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
932		/* reverse function of rum_plcp_signal */
933		switch (desc->rate) {
934		case 0xb:	return 12;
935		case 0xf:	return 18;
936		case 0xa:	return 24;
937		case 0xe:	return 36;
938		case 0x9:	return 48;
939		case 0xd:	return 72;
940		case 0x8:	return 96;
941		case 0xc:	return 108;
942		}
943	} else {
944		if (desc->rate == 10)
945			return 2;
946		if (desc->rate == 20)
947			return 4;
948		if (desc->rate == 55)
949			return 11;
950		if (desc->rate == 110)
951			return 22;
952	}
953	return 2;	/* should not get there */
954}
955#endif
956
957/*
958 * Return the expected ack rate for a frame transmitted at rate `rate'.
959 * XXX: this should depend on the destination node basic rate set.
960 */
961Static int
962rum_ack_rate(struct ieee80211com *ic, int rate)
963{
964	switch (rate) {
965	/* CCK rates */
966	case 2:
967		return 2;
968	case 4:
969	case 11:
970	case 22:
971		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
972
973	/* OFDM rates */
974	case 12:
975	case 18:
976		return 12;
977	case 24:
978	case 36:
979		return 24;
980	case 48:
981	case 72:
982	case 96:
983	case 108:
984		return 48;
985	}
986
987	/* default to 1Mbps */
988	return 2;
989}
990
991/*
992 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
993 * The function automatically determines the operating mode depending on the
994 * given rate. `flags' indicates whether short preamble is in use or not.
995 */
996Static uint16_t
997rum_txtime(int len, int rate, uint32_t flags)
998{
999	uint16_t txtime;
1000
1001	if (RUM_RATE_IS_OFDM(rate)) {
1002		/* IEEE Std 802.11a-1999, pp. 37 */
1003		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1004		txtime = 16 + 4 + 4 * txtime + 6;
1005	} else {
1006		/* IEEE Std 802.11b-1999, pp. 28 */
1007		txtime = (16 * len + rate - 1) / rate;
1008		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1009			txtime +=  72 + 24;
1010		else
1011			txtime += 144 + 48;
1012	}
1013	return txtime;
1014}
1015
1016Static uint8_t
1017rum_plcp_signal(int rate)
1018{
1019	switch (rate) {
1020	/* CCK rates (returned values are device-dependent) */
1021	case 2:		return 0x0;
1022	case 4:		return 0x1;
1023	case 11:	return 0x2;
1024	case 22:	return 0x3;
1025
1026	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1027	case 12:	return 0xb;
1028	case 18:	return 0xf;
1029	case 24:	return 0xa;
1030	case 36:	return 0xe;
1031	case 48:	return 0x9;
1032	case 72:	return 0xd;
1033	case 96:	return 0x8;
1034	case 108:	return 0xc;
1035
1036	/* unsupported rates (should not get there) */
1037	default:	return 0xff;
1038	}
1039}
1040
1041Static void
1042rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1043    uint32_t flags, uint16_t xflags, int len, int rate)
1044{
1045	struct ieee80211com *ic = &sc->sc_ic;
1046	uint16_t plcp_length;
1047	int remainder;
1048
1049	desc->flags = htole32(flags);
1050	desc->flags |= htole32(RT2573_TX_VALID);
1051	desc->flags |= htole32(len << 16);
1052
1053	desc->xflags = htole16(xflags);
1054
1055	desc->wme = htole16(
1056	    RT2573_QID(0) |
1057	    RT2573_AIFSN(2) |
1058	    RT2573_LOGCWMIN(4) |
1059	    RT2573_LOGCWMAX(10));
1060
1061	/* setup PLCP fields */
1062	desc->plcp_signal  = rum_plcp_signal(rate);
1063	desc->plcp_service = 4;
1064
1065	len += IEEE80211_CRC_LEN;
1066	if (RUM_RATE_IS_OFDM(rate)) {
1067		desc->flags |= htole32(RT2573_TX_OFDM);
1068
1069		plcp_length = len & 0xfff;
1070		desc->plcp_length_hi = plcp_length >> 6;
1071		desc->plcp_length_lo = plcp_length & 0x3f;
1072	} else {
1073		plcp_length = (16 * len + rate - 1) / rate;
1074		if (rate == 22) {
1075			remainder = (16 * len) % 22;
1076			if (remainder != 0 && remainder < 7)
1077				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1078		}
1079		desc->plcp_length_hi = plcp_length >> 8;
1080		desc->plcp_length_lo = plcp_length & 0xff;
1081
1082		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1083			desc->plcp_signal |= 0x08;
1084	}
1085}
1086
1087#define RUM_TX_TIMEOUT	5000
1088
1089Static int
1090rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1091{
1092	struct ieee80211com *ic = &sc->sc_ic;
1093	struct rum_tx_desc *desc;
1094	struct rum_tx_data *data;
1095	struct ieee80211_frame *wh;
1096	struct ieee80211_key *k;
1097	uint32_t flags = 0;
1098	uint16_t dur;
1099	usbd_status error;
1100	int xferlen, rate;
1101
1102	data = &sc->tx_data[0];
1103	desc = (struct rum_tx_desc *)data->buf;
1104
1105	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1106
1107	data->m = m0;
1108	data->ni = ni;
1109
1110	wh = mtod(m0, struct ieee80211_frame *);
1111
1112	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1113		k = ieee80211_crypto_encap(ic, ni, m0);
1114		if (k == NULL) {
1115			m_freem(m0);
1116			return ENOBUFS;
1117		}
1118	}
1119
1120	wh = mtod(m0, struct ieee80211_frame *);
1121
1122	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1123		flags |= RT2573_TX_NEED_ACK;
1124
1125		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1126		    ic->ic_flags) + sc->sifs;
1127		*(uint16_t *)wh->i_dur = htole16(dur);
1128
1129		/* tell hardware to set timestamp in probe responses */
1130		if ((wh->i_fc[0] &
1131		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1132		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1133			flags |= RT2573_TX_TIMESTAMP;
1134	}
1135
1136#if NBPFILTER > 0
1137	if (sc->sc_drvbpf != NULL) {
1138		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1139
1140		tap->wt_flags = 0;
1141		tap->wt_rate = rate;
1142		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1143		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1144		tap->wt_antenna = sc->tx_ant;
1145
1146		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1147	}
1148#endif
1149
1150	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1151	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1152
1153	/* align end on a 4-bytes boundary */
1154	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1155
1156	/*
1157	 * No space left in the last URB to store the extra 4 bytes, force
1158	 * sending of another URB.
1159	 */
1160	if ((xferlen % 64) == 0)
1161		xferlen += 4;
1162
1163	DPRINTFN(10, ("sending msg frame len=%zu rate=%u xfer len=%u\n",
1164	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1165	    rate, xferlen));
1166
1167	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1168	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1169
1170	error = usbd_transfer(data->xfer);
1171	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1172		m_freem(m0);
1173		return error;
1174	}
1175
1176	sc->tx_queued++;
1177
1178	return 0;
1179}
1180
1181Static int
1182rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1183{
1184	struct ieee80211com *ic = &sc->sc_ic;
1185	struct rum_tx_desc *desc;
1186	struct rum_tx_data *data;
1187	struct ieee80211_frame *wh;
1188	struct ieee80211_key *k;
1189	uint32_t flags = 0;
1190	uint16_t dur;
1191	usbd_status error;
1192	int xferlen, rate;
1193
1194	wh = mtod(m0, struct ieee80211_frame *);
1195
1196	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1197		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1198	else
1199		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1200	if (rate == 0)
1201		rate = 2;	/* XXX should not happen */
1202	rate &= IEEE80211_RATE_VAL;
1203
1204	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1205		k = ieee80211_crypto_encap(ic, ni, m0);
1206		if (k == NULL) {
1207			m_freem(m0);
1208			return ENOBUFS;
1209		}
1210
1211		/* packet header may have moved, reset our local pointer */
1212		wh = mtod(m0, struct ieee80211_frame *);
1213	}
1214
1215	data = &sc->tx_data[0];
1216	desc = (struct rum_tx_desc *)data->buf;
1217
1218	data->ni = ni;
1219
1220	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1221		flags |= RT2573_TX_NEED_ACK;
1222
1223		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1224		    ic->ic_flags) + sc->sifs;
1225		*(uint16_t *)wh->i_dur = htole16(dur);
1226	}
1227
1228#if NBPFILTER > 0
1229	if (sc->sc_drvbpf != NULL) {
1230		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1231
1232		tap->wt_flags = 0;
1233		tap->wt_rate = rate;
1234		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1235		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1236		tap->wt_antenna = sc->tx_ant;
1237
1238		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1239	}
1240#endif
1241
1242	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1243	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1244
1245	/* align end on a 4-bytes boundary */
1246	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1247
1248	/*
1249	 * No space left in the last URB to store the extra 4 bytes, force
1250	 * sending of another URB.
1251	 */
1252	if ((xferlen % 64) == 0)
1253		xferlen += 4;
1254
1255	DPRINTFN(10, ("sending data frame len=%zu rate=%u xfer len=%u\n",
1256	    (size_t)m0->m_pkthdr.len + RT2573_TX_DESC_SIZE,
1257	    rate, xferlen));
1258
1259	/* mbuf is no longer needed */
1260	m_freem(m0);
1261
1262	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1263	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1264
1265	error = usbd_transfer(data->xfer);
1266	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1267		return error;
1268
1269	sc->tx_queued++;
1270
1271	return 0;
1272}
1273
1274Static void
1275rum_start(struct ifnet *ifp)
1276{
1277	struct rum_softc *sc = ifp->if_softc;
1278	struct ieee80211com *ic = &sc->sc_ic;
1279	struct ether_header *eh;
1280	struct ieee80211_node *ni;
1281	struct mbuf *m0;
1282
1283	for (;;) {
1284		IF_POLL(&ic->ic_mgtq, m0);
1285		if (m0 != NULL) {
1286			if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1287				ifp->if_flags |= IFF_OACTIVE;
1288				break;
1289			}
1290			IF_DEQUEUE(&ic->ic_mgtq, m0);
1291
1292			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1293			m0->m_pkthdr.rcvif = NULL;
1294#if NBPFILTER > 0
1295			if (ic->ic_rawbpf != NULL)
1296				bpf_mtap(ic->ic_rawbpf, m0);
1297#endif
1298			if (rum_tx_mgt(sc, m0, ni) != 0)
1299				break;
1300
1301		} else {
1302			if (ic->ic_state != IEEE80211_S_RUN)
1303				break;
1304			IFQ_POLL(&ifp->if_snd, m0);
1305			if (m0 == NULL)
1306				break;
1307			if (sc->tx_queued >= RUM_TX_LIST_COUNT) {
1308				ifp->if_flags |= IFF_OACTIVE;
1309				break;
1310			}
1311			IFQ_DEQUEUE(&ifp->if_snd, m0);
1312			if (m0->m_len < sizeof(struct ether_header) &&
1313			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1314				continue;
1315
1316			eh = mtod(m0, struct ether_header *);
1317			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1318			if (ni == NULL) {
1319				m_freem(m0);
1320				continue;
1321			}
1322#if NBPFILTER > 0
1323			if (ifp->if_bpf != NULL)
1324				bpf_mtap(ifp->if_bpf, m0);
1325#endif
1326			m0 = ieee80211_encap(ic, m0, ni);
1327			if (m0 == NULL) {
1328				ieee80211_free_node(ni);
1329				continue;
1330			}
1331#if NBPFILTER > 0
1332			if (ic->ic_rawbpf != NULL)
1333				bpf_mtap(ic->ic_rawbpf, m0);
1334#endif
1335			if (rum_tx_data(sc, m0, ni) != 0) {
1336				ieee80211_free_node(ni);
1337				ifp->if_oerrors++;
1338				break;
1339			}
1340		}
1341
1342		sc->sc_tx_timer = 5;
1343		ifp->if_timer = 1;
1344	}
1345}
1346
1347Static void
1348rum_watchdog(struct ifnet *ifp)
1349{
1350	struct rum_softc *sc = ifp->if_softc;
1351	struct ieee80211com *ic = &sc->sc_ic;
1352
1353	ifp->if_timer = 0;
1354
1355	if (sc->sc_tx_timer > 0) {
1356		if (--sc->sc_tx_timer == 0) {
1357			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1358			/*rum_init(ifp); XXX needs a process context! */
1359			ifp->if_oerrors++;
1360			return;
1361		}
1362		ifp->if_timer = 1;
1363	}
1364
1365	ieee80211_watchdog(ic);
1366}
1367
1368Static int
1369rum_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1370{
1371	struct rum_softc *sc = ifp->if_softc;
1372	struct ieee80211com *ic = &sc->sc_ic;
1373	int s, error = 0;
1374
1375	s = splnet();
1376
1377	switch (cmd) {
1378	case SIOCSIFFLAGS:
1379		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1380			break;
1381		/* XXX re-use ether_ioctl() */
1382		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1383		case IFF_UP|IFF_RUNNING:
1384			rum_update_promisc(sc);
1385			break;
1386		case IFF_UP:
1387			rum_init(ifp);
1388			break;
1389		case IFF_RUNNING:
1390			rum_stop(ifp, 1);
1391			break;
1392		case 0:
1393			break;
1394		}
1395		break;
1396
1397	default:
1398		error = ieee80211_ioctl(ic, cmd, data);
1399	}
1400
1401	if (error == ENETRESET) {
1402		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1403		    (IFF_UP | IFF_RUNNING))
1404			rum_init(ifp);
1405		error = 0;
1406	}
1407
1408	splx(s);
1409
1410	return error;
1411}
1412
1413Static void
1414rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1415{
1416	usb_device_request_t req;
1417	usbd_status error;
1418
1419	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1420	req.bRequest = RT2573_READ_EEPROM;
1421	USETW(req.wValue, 0);
1422	USETW(req.wIndex, addr);
1423	USETW(req.wLength, len);
1424
1425	error = usbd_do_request(sc->sc_udev, &req, buf);
1426	if (error != 0) {
1427		printf("%s: could not read EEPROM: %s\n",
1428		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1429	}
1430}
1431
1432Static uint32_t
1433rum_read(struct rum_softc *sc, uint16_t reg)
1434{
1435	uint32_t val;
1436
1437	rum_read_multi(sc, reg, &val, sizeof val);
1438
1439	return le32toh(val);
1440}
1441
1442Static void
1443rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1444{
1445	usb_device_request_t req;
1446	usbd_status error;
1447
1448	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1449	req.bRequest = RT2573_READ_MULTI_MAC;
1450	USETW(req.wValue, 0);
1451	USETW(req.wIndex, reg);
1452	USETW(req.wLength, len);
1453
1454	error = usbd_do_request(sc->sc_udev, &req, buf);
1455	if (error != 0) {
1456		printf("%s: could not multi read MAC register: %s\n",
1457		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1458	}
1459}
1460
1461Static void
1462rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1463{
1464	uint32_t tmp = htole32(val);
1465
1466	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1467}
1468
1469Static void
1470rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1471{
1472	usb_device_request_t req;
1473	usbd_status error;
1474
1475	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1476	req.bRequest = RT2573_WRITE_MULTI_MAC;
1477	USETW(req.wValue, 0);
1478	USETW(req.wIndex, reg);
1479	USETW(req.wLength, len);
1480
1481	error = usbd_do_request(sc->sc_udev, &req, buf);
1482	if (error != 0) {
1483		printf("%s: could not multi write MAC register: %s\n",
1484		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1485	}
1486}
1487
1488Static void
1489rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1490{
1491	uint32_t tmp;
1492	int ntries;
1493
1494	for (ntries = 0; ntries < 5; ntries++) {
1495		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1496			break;
1497	}
1498	if (ntries == 5) {
1499		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1500		return;
1501	}
1502
1503	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1504	rum_write(sc, RT2573_PHY_CSR3, tmp);
1505}
1506
1507Static uint8_t
1508rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1509{
1510	uint32_t val;
1511	int ntries;
1512
1513	for (ntries = 0; ntries < 5; ntries++) {
1514		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1515			break;
1516	}
1517	if (ntries == 5) {
1518		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1519		return 0;
1520	}
1521
1522	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1523	rum_write(sc, RT2573_PHY_CSR3, val);
1524
1525	for (ntries = 0; ntries < 100; ntries++) {
1526		val = rum_read(sc, RT2573_PHY_CSR3);
1527		if (!(val & RT2573_BBP_BUSY))
1528			return val & 0xff;
1529		DELAY(1);
1530	}
1531
1532	printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1533	return 0;
1534}
1535
1536Static void
1537rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1538{
1539	uint32_t tmp;
1540	int ntries;
1541
1542	for (ntries = 0; ntries < 5; ntries++) {
1543		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1544			break;
1545	}
1546	if (ntries == 5) {
1547		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1548		return;
1549	}
1550
1551	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1552	    (reg & 3);
1553	rum_write(sc, RT2573_PHY_CSR4, tmp);
1554
1555	/* remember last written value in sc */
1556	sc->rf_regs[reg] = val;
1557
1558	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1559}
1560
1561Static void
1562rum_select_antenna(struct rum_softc *sc)
1563{
1564	uint8_t bbp4, bbp77;
1565	uint32_t tmp;
1566
1567	bbp4  = rum_bbp_read(sc, 4);
1568	bbp77 = rum_bbp_read(sc, 77);
1569
1570	/* TBD */
1571
1572	/* make sure Rx is disabled before switching antenna */
1573	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1574	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1575
1576	rum_bbp_write(sc,  4, bbp4);
1577	rum_bbp_write(sc, 77, bbp77);
1578
1579	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1580}
1581
1582/*
1583 * Enable multi-rate retries for frames sent at OFDM rates.
1584 * In 802.11b/g mode, allow fallback to CCK rates.
1585 */
1586Static void
1587rum_enable_mrr(struct rum_softc *sc)
1588{
1589	struct ieee80211com *ic = &sc->sc_ic;
1590	uint32_t tmp;
1591
1592	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1593
1594	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1595	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1596		tmp |= RT2573_MRR_CCK_FALLBACK;
1597	tmp |= RT2573_MRR_ENABLED;
1598
1599	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1600}
1601
1602Static void
1603rum_set_txpreamble(struct rum_softc *sc)
1604{
1605	uint32_t tmp;
1606
1607	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1608
1609	tmp &= ~RT2573_SHORT_PREAMBLE;
1610	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1611		tmp |= RT2573_SHORT_PREAMBLE;
1612
1613	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1614}
1615
1616Static void
1617rum_set_basicrates(struct rum_softc *sc)
1618{
1619	struct ieee80211com *ic = &sc->sc_ic;
1620
1621	/* update basic rate set */
1622	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1623		/* 11b basic rates: 1, 2Mbps */
1624		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1625	} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
1626		/* 11a basic rates: 6, 12, 24Mbps */
1627		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1628	} else {
1629		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1630		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1631	}
1632}
1633
1634/*
1635 * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1636 * driver.
1637 */
1638Static void
1639rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1640{
1641	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1642	uint32_t tmp;
1643
1644	/* update all BBP registers that depend on the band */
1645	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1646	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1647	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1648		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1649		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1650	}
1651	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1652	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1653		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1654	}
1655
1656	sc->bbp17 = bbp17;
1657	rum_bbp_write(sc,  17, bbp17);
1658	rum_bbp_write(sc,  96, bbp96);
1659	rum_bbp_write(sc, 104, bbp104);
1660
1661	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1662	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1663		rum_bbp_write(sc, 75, 0x80);
1664		rum_bbp_write(sc, 86, 0x80);
1665		rum_bbp_write(sc, 88, 0x80);
1666	}
1667
1668	rum_bbp_write(sc, 35, bbp35);
1669	rum_bbp_write(sc, 97, bbp97);
1670	rum_bbp_write(sc, 98, bbp98);
1671
1672	tmp = rum_read(sc, RT2573_PHY_CSR0);
1673	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1674	if (IEEE80211_IS_CHAN_2GHZ(c))
1675		tmp |= RT2573_PA_PE_2GHZ;
1676	else
1677		tmp |= RT2573_PA_PE_5GHZ;
1678	rum_write(sc, RT2573_PHY_CSR0, tmp);
1679
1680	/* 802.11a uses a 16 microseconds short interframe space */
1681	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1682}
1683
1684Static void
1685rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1686{
1687	struct ieee80211com *ic = &sc->sc_ic;
1688	const struct rfprog *rfprog;
1689	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1690	int8_t power;
1691	u_int i, chan;
1692
1693	chan = ieee80211_chan2ieee(ic, c);
1694	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1695		return;
1696
1697	/* select the appropriate RF settings based on what EEPROM says */
1698	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1699		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1700
1701	/* find the settings for this channel (we know it exists) */
1702	for (i = 0; rfprog[i].chan != chan; i++);
1703
1704	power = sc->txpow[i];
1705	if (power < 0) {
1706		bbp94 += power;
1707		power = 0;
1708	} else if (power > 31) {
1709		bbp94 += power - 31;
1710		power = 31;
1711	}
1712
1713	/*
1714	 * If we are switching from the 2GHz band to the 5GHz band or
1715	 * vice-versa, BBP registers need to be reprogrammed.
1716	 */
1717	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1718		rum_select_band(sc, c);
1719		rum_select_antenna(sc);
1720	}
1721	ic->ic_curchan = c;
1722
1723	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1724	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1725	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1726	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1727
1728	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1729	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1730	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1731	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1732
1733	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1734	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1735	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1736	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1737
1738	DELAY(10);
1739
1740	/* enable smart mode for MIMO-capable RFs */
1741	bbp3 = rum_bbp_read(sc, 3);
1742
1743	bbp3 &= ~RT2573_SMART_MODE;
1744	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1745		bbp3 |= RT2573_SMART_MODE;
1746
1747	rum_bbp_write(sc, 3, bbp3);
1748
1749	if (bbp94 != RT2573_BBPR94_DEFAULT)
1750		rum_bbp_write(sc, 94, bbp94);
1751}
1752
1753/*
1754 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1755 * and HostAP operating modes.
1756 */
1757Static void
1758rum_enable_tsf_sync(struct rum_softc *sc)
1759{
1760	struct ieee80211com *ic = &sc->sc_ic;
1761	uint32_t tmp;
1762
1763	if (ic->ic_opmode != IEEE80211_M_STA) {
1764		/*
1765		 * Change default 16ms TBTT adjustment to 8ms.
1766		 * Must be done before enabling beacon generation.
1767		 */
1768		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1769	}
1770
1771	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1772
1773	/* set beacon interval (in 1/16ms unit) */
1774	tmp |= ic->ic_bss->ni_intval * 16;
1775
1776	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1777	if (ic->ic_opmode == IEEE80211_M_STA)
1778		tmp |= RT2573_TSF_MODE(1);
1779	else
1780		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1781
1782	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1783}
1784
1785Static void
1786rum_update_slot(struct rum_softc *sc)
1787{
1788	struct ieee80211com *ic = &sc->sc_ic;
1789	uint8_t slottime;
1790	uint32_t tmp;
1791
1792	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1793
1794	tmp = rum_read(sc, RT2573_MAC_CSR9);
1795	tmp = (tmp & ~0xff) | slottime;
1796	rum_write(sc, RT2573_MAC_CSR9, tmp);
1797
1798	DPRINTF(("setting slot time to %uus\n", slottime));
1799}
1800
1801Static void
1802rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1803{
1804	uint32_t tmp;
1805
1806	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1807	rum_write(sc, RT2573_MAC_CSR4, tmp);
1808
1809	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1810	rum_write(sc, RT2573_MAC_CSR5, tmp);
1811}
1812
1813Static void
1814rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1815{
1816	uint32_t tmp;
1817
1818	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1819	rum_write(sc, RT2573_MAC_CSR2, tmp);
1820
1821	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1822	rum_write(sc, RT2573_MAC_CSR3, tmp);
1823}
1824
1825Static void
1826rum_update_promisc(struct rum_softc *sc)
1827{
1828	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1829	uint32_t tmp;
1830
1831	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1832
1833	tmp &= ~RT2573_DROP_NOT_TO_ME;
1834	if (!(ifp->if_flags & IFF_PROMISC))
1835		tmp |= RT2573_DROP_NOT_TO_ME;
1836
1837	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1838
1839	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1840	    "entering" : "leaving"));
1841}
1842
1843Static const char *
1844rum_get_rf(int rev)
1845{
1846	switch (rev) {
1847	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1848	case RT2573_RF_2528:	return "RT2528";
1849	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1850	case RT2573_RF_5226:	return "RT5226";
1851	default:		return "unknown";
1852	}
1853}
1854
1855Static void
1856rum_read_eeprom(struct rum_softc *sc)
1857{
1858	struct ieee80211com *ic = &sc->sc_ic;
1859	uint16_t val;
1860#ifdef RUM_DEBUG
1861	int i;
1862#endif
1863
1864	/* read MAC/BBP type */
1865	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1866	sc->macbbp_rev = le16toh(val);
1867
1868	/* read MAC address */
1869	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1870
1871	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1872	val = le16toh(val);
1873	sc->rf_rev =   (val >> 11) & 0x1f;
1874	sc->hw_radio = (val >> 10) & 0x1;
1875	sc->rx_ant =   (val >> 4)  & 0x3;
1876	sc->tx_ant =   (val >> 2)  & 0x3;
1877	sc->nb_ant =   val & 0x3;
1878
1879	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1880
1881	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1882	val = le16toh(val);
1883	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1884	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1885
1886	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1887	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1888
1889	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1890	val = le16toh(val);
1891	if ((val & 0xff) != 0xff)
1892		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1893
1894	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1895	val = le16toh(val);
1896	if ((val & 0xff) != 0xff)
1897		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1898
1899	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1900	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1901
1902	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1903	val = le16toh(val);
1904	if ((val & 0xff) != 0xff)
1905		sc->rffreq = val & 0xff;
1906
1907	DPRINTF(("RF freq=%d\n", sc->rffreq));
1908
1909	/* read Tx power for all a/b/g channels */
1910	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1911	/* XXX default Tx power for 802.11a channels */
1912	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1913#ifdef RUM_DEBUG
1914	for (i = 0; i < 14; i++)
1915		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1916#endif
1917
1918	/* read default values for BBP registers */
1919	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1920#ifdef RUM_DEBUG
1921	for (i = 0; i < 14; i++) {
1922		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1923			continue;
1924		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1925		    sc->bbp_prom[i].val));
1926	}
1927#endif
1928}
1929
1930Static int
1931rum_bbp_init(struct rum_softc *sc)
1932{
1933#define N(a)	(sizeof (a) / sizeof ((a)[0]))
1934	int i, ntries;
1935	uint8_t val;
1936
1937	/* wait for BBP to be ready */
1938	for (ntries = 0; ntries < 100; ntries++) {
1939		val = rum_bbp_read(sc, 0);
1940		if (val != 0 && val != 0xff)
1941			break;
1942		DELAY(1000);
1943	}
1944	if (ntries == 100) {
1945		printf("%s: timeout waiting for BBP\n",
1946		    USBDEVNAME(sc->sc_dev));
1947		return EIO;
1948	}
1949
1950	/* initialize BBP registers to default values */
1951	for (i = 0; i < N(rum_def_bbp); i++)
1952		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1953
1954	/* write vendor-specific BBP values (from EEPROM) */
1955	for (i = 0; i < 16; i++) {
1956		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1957			continue;
1958		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1959	}
1960
1961	return 0;
1962#undef N
1963}
1964
1965Static int
1966rum_init(struct ifnet *ifp)
1967{
1968#define N(a)	(sizeof (a) / sizeof ((a)[0]))
1969	struct rum_softc *sc = ifp->if_softc;
1970	struct ieee80211com *ic = &sc->sc_ic;
1971	struct rum_rx_data *data;
1972	uint32_t tmp;
1973	usbd_status error = 0;
1974	int i, ntries;
1975
1976	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1977		if (rum_attachhook(sc))
1978			goto fail;
1979	}
1980
1981	rum_stop(ifp, 0);
1982
1983	/* initialize MAC registers to default values */
1984	for (i = 0; i < N(rum_def_mac); i++)
1985		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1986
1987	/* set host ready */
1988	rum_write(sc, RT2573_MAC_CSR1, 3);
1989	rum_write(sc, RT2573_MAC_CSR1, 0);
1990
1991	/* wait for BBP/RF to wakeup */
1992	for (ntries = 0; ntries < 1000; ntries++) {
1993		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1994			break;
1995		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1996		DELAY(1000);
1997	}
1998	if (ntries == 1000) {
1999		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2000		    USBDEVNAME(sc->sc_dev));
2001		goto fail;
2002	}
2003
2004	if ((error = rum_bbp_init(sc)) != 0)
2005		goto fail;
2006
2007	/* select default channel */
2008	rum_select_band(sc, ic->ic_curchan);
2009	rum_select_antenna(sc);
2010	rum_set_chan(sc, ic->ic_curchan);
2011
2012	/* clear STA registers */
2013	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2014
2015	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2016	rum_set_macaddr(sc, ic->ic_myaddr);
2017
2018	/* initialize ASIC */
2019	rum_write(sc, RT2573_MAC_CSR1, 4);
2020
2021	/*
2022	 * Allocate xfer for AMRR statistics requests.
2023	 */
2024	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
2025	if (sc->amrr_xfer == NULL) {
2026		printf("%s: could not allocate AMRR xfer\n",
2027		    USBDEVNAME(sc->sc_dev));
2028		goto fail;
2029	}
2030
2031	/*
2032	 * Open Tx and Rx USB bulk pipes.
2033	 */
2034	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2035	    &sc->sc_tx_pipeh);
2036	if (error != 0) {
2037		printf("%s: could not open Tx pipe: %s\n",
2038		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2039		goto fail;
2040	}
2041
2042	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2043	    &sc->sc_rx_pipeh);
2044	if (error != 0) {
2045		printf("%s: could not open Rx pipe: %s\n",
2046		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2047		goto fail;
2048	}
2049
2050	/*
2051	 * Allocate Tx and Rx xfer queues.
2052	 */
2053	error = rum_alloc_tx_list(sc);
2054	if (error != 0) {
2055		printf("%s: could not allocate Tx list\n",
2056		    USBDEVNAME(sc->sc_dev));
2057		goto fail;
2058	}
2059
2060	error = rum_alloc_rx_list(sc);
2061	if (error != 0) {
2062		printf("%s: could not allocate Rx list\n",
2063		    USBDEVNAME(sc->sc_dev));
2064		goto fail;
2065	}
2066
2067	/*
2068	 * Start up the receive pipe.
2069	 */
2070	for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
2071		data = &sc->rx_data[i];
2072
2073		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2074		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2075		error = usbd_transfer(data->xfer);
2076		if (error != USBD_NORMAL_COMPLETION &&
2077		    error != USBD_IN_PROGRESS) {
2078			printf("%s: could not queue Rx transfer\n",
2079			    USBDEVNAME(sc->sc_dev));
2080			goto fail;
2081		}
2082	}
2083
2084	/* update Rx filter */
2085	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2086
2087	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2088	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2089		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2090		       RT2573_DROP_ACKCTS;
2091		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2092			tmp |= RT2573_DROP_TODS;
2093		if (!(ifp->if_flags & IFF_PROMISC))
2094			tmp |= RT2573_DROP_NOT_TO_ME;
2095	}
2096	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2097
2098	ifp->if_flags &= ~IFF_OACTIVE;
2099	ifp->if_flags |= IFF_RUNNING;
2100
2101	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2102		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2103	else
2104		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2105
2106	return 0;
2107
2108fail:	rum_stop(ifp, 1);
2109	return error;
2110#undef N
2111}
2112
2113Static void
2114rum_stop(struct ifnet *ifp, int disable)
2115{
2116	struct rum_softc *sc = ifp->if_softc;
2117	struct ieee80211com *ic = &sc->sc_ic;
2118	uint32_t tmp;
2119
2120	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2121
2122	sc->sc_tx_timer = 0;
2123	ifp->if_timer = 0;
2124	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2125
2126	/* disable Rx */
2127	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2128	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2129
2130	/* reset ASIC */
2131	rum_write(sc, RT2573_MAC_CSR1, 3);
2132	rum_write(sc, RT2573_MAC_CSR1, 0);
2133
2134	if (sc->sc_rx_pipeh != NULL) {
2135		usbd_abort_pipe(sc->sc_rx_pipeh);
2136		usbd_close_pipe(sc->sc_rx_pipeh);
2137		sc->sc_rx_pipeh = NULL;
2138	}
2139
2140	if (sc->sc_tx_pipeh != NULL) {
2141		usbd_abort_pipe(sc->sc_tx_pipeh);
2142		usbd_close_pipe(sc->sc_tx_pipeh);
2143		sc->sc_tx_pipeh = NULL;
2144	}
2145
2146	rum_free_rx_list(sc);
2147	rum_free_tx_list(sc);
2148}
2149
2150Static int
2151rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2152{
2153	usb_device_request_t req;
2154	uint16_t reg = RT2573_MCU_CODE_BASE;
2155	usbd_status error;
2156
2157	/* copy firmware image into NIC */
2158	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2159		rum_write(sc, reg, UGETDW(ucode));
2160
2161	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2162	req.bRequest = RT2573_MCU_CNTL;
2163	USETW(req.wValue, RT2573_MCU_RUN);
2164	USETW(req.wIndex, 0);
2165	USETW(req.wLength, 0);
2166
2167	error = usbd_do_request(sc->sc_udev, &req, NULL);
2168	if (error != 0) {
2169		printf("%s: could not run firmware: %s\n",
2170		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2171	}
2172	return error;
2173}
2174
2175Static int
2176rum_prepare_beacon(struct rum_softc *sc)
2177{
2178	struct ieee80211com *ic = &sc->sc_ic;
2179	struct rum_tx_desc desc;
2180	struct mbuf *m0;
2181	int rate;
2182
2183	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2184	if (m0 == NULL) {
2185		aprint_error_dev(sc->sc_dev,
2186		    "could not allocate beacon frame\n");
2187		return ENOBUFS;
2188	}
2189
2190	/* send beacons at the lowest available rate */
2191	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2192
2193	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2194	    m0->m_pkthdr.len, rate);
2195
2196	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2197	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2198
2199	/* copy beacon header and payload into NIC memory */
2200	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2201	    m0->m_pkthdr.len);
2202
2203	m_freem(m0);
2204
2205	return 0;
2206}
2207
2208Static void
2209rum_newassoc(struct ieee80211_node *ni, int isnew)
2210{
2211	/* start with lowest Tx rate */
2212	ni->ni_txrate = 0;
2213}
2214
2215Static void
2216rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2217{
2218	int i;
2219
2220	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2221	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2222
2223	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2224
2225	/* set rate to some reasonable initial value */
2226	for (i = ni->ni_rates.rs_nrates - 1;
2227	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2228	     i--);
2229	ni->ni_txrate = i;
2230
2231	usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2232}
2233
2234Static void
2235rum_amrr_timeout(void *arg)
2236{
2237	struct rum_softc *sc = arg;
2238	usb_device_request_t req;
2239
2240	/*
2241	 * Asynchronously read statistic registers (cleared by read).
2242	 */
2243	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2244	req.bRequest = RT2573_READ_MULTI_MAC;
2245	USETW(req.wValue, 0);
2246	USETW(req.wIndex, RT2573_STA_CSR0);
2247	USETW(req.wLength, sizeof sc->sta);
2248
2249	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2250	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2251	    rum_amrr_update);
2252	(void)usbd_transfer(sc->amrr_xfer);
2253}
2254
2255Static void
2256rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2257    usbd_status status)
2258{
2259	struct rum_softc *sc = (struct rum_softc *)priv;
2260	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2261
2262	if (status != USBD_NORMAL_COMPLETION) {
2263		printf("%s: could not retrieve Tx statistics - cancelling "
2264		    "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2265		return;
2266	}
2267
2268	/* count TX retry-fail as Tx errors */
2269	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2270
2271	sc->amn.amn_retrycnt =
2272	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2273	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2274	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2275
2276	sc->amn.amn_txcnt =
2277	    sc->amn.amn_retrycnt +
2278	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2279
2280	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2281
2282	usb_callout(sc->sc_amrr_ch, hz, rum_amrr_timeout, sc);
2283}
2284
2285int
2286rum_activate(device_ptr_t self, enum devact act)
2287{
2288	switch (act) {
2289	case DVACT_ACTIVATE:
2290		return EOPNOTSUPP;
2291
2292	case DVACT_DEACTIVATE:
2293		/*if_deactivate(&sc->sc_ic.ic_if);*/
2294		break;
2295	}
2296
2297	return 0;
2298}
2299