if_rum.c revision 1.1
1/*	$OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $	*/
2/*	$NetBSD: if_rum.c,v 1.1 2006/10/31 22:21:17 joerg Exp $	*/
3
4/*-
5 * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21/*-
22 * Ralink Technology RT2501USB/RT2601USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26#include "bpfilter.h"
27
28#include <sys/param.h>
29#include <sys/sockio.h>
30#include <sys/sysctl.h>
31#include <sys/mbuf.h>
32#include <sys/kernel.h>
33#include <sys/socket.h>
34#include <sys/systm.h>
35#include <sys/malloc.h>
36#include <sys/conf.h>
37#include <sys/device.h>
38
39#include <machine/bus.h>
40#include <machine/endian.h>
41#include <machine/intr.h>
42
43#if NBPFILTER > 0
44#include <net/bpf.h>
45#endif
46#include <net/if.h>
47#include <net/if_arp.h>
48#include <net/if_dl.h>
49#include <net/if_ether.h>
50#include <net/if_media.h>
51#include <net/if_types.h>
52
53#include <netinet/in.h>
54#include <netinet/in_systm.h>
55#include <netinet/in_var.h>
56#include <netinet/ip.h>
57
58#include <net80211/ieee80211_netbsd.h>
59#include <net80211/ieee80211_var.h>
60#include <net80211/ieee80211_amrr.h>
61#include <net80211/ieee80211_radiotap.h>
62
63#include <dev/firmload.h>
64
65#include <dev/usb/usb.h>
66#include <dev/usb/usbdi.h>
67#include <dev/usb/usbdi_util.h>
68#include <dev/usb/usbdevs.h>
69
70#include <dev/usb/if_rumreg.h>
71#include <dev/usb/if_rumvar.h>
72
73#ifdef USB_DEBUG
74#define RUM_DEBUG
75#endif
76
77#ifdef RUM_DEBUG
78#define DPRINTF(x)	do { if (rum_debug) logprintf x; } while (0)
79#define DPRINTFN(n, x)	do { if (rum_debug >= (n)) logprintf x; } while (0)
80int rum_debug = 0;
81#else
82#define DPRINTF(x)
83#define DPRINTFN(n, x)
84#endif
85
86/* various supported device vendors/products */
87static const struct usb_devno rum_devs[] = {
88	{ USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_RT2573 },
89	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050A },
90	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D9050V3 },
91	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
92	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU2 },
93	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_CWD854F },
94	{ USB_VENDOR_DICKSMITH,		USB_PRODUCT_DICKSMITH_RT2573 },
95	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DWLG122C1 },
96	{ USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_WUA1340 },
97	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWB01GS },
98	{ USB_VENDOR_GIGASET,		USB_PRODUCT_GIGASET_RT2573 },
99	{ USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_RT2573 },
100	{ USB_VENDOR_HUAWEI3COM,	USB_PRODUCT_HUAWEI3COM_RT2573 },
101	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573 },
102	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_2 },
103	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_RT2573_3 },
104	{ USB_VENDOR_PLANEX2,		USB_PRODUCT_PLANEX2_GWUSMM },
105	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573 },
106	{ USB_VENDOR_QCOM,		USB_PRODUCT_QCOM_RT2573_2 },
107	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2573 },
108	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2671 },
109	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL113R2 },
110	{ USB_VENDOR_SITECOMEU,		USB_PRODUCT_SITECOMEU_WL172 },
111	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_RT2573 }
112};
113
114Static int		rum_attachhook(void *);
115Static int		rum_alloc_tx_list(struct rum_softc *);
116Static void		rum_free_tx_list(struct rum_softc *);
117Static int		rum_alloc_rx_list(struct rum_softc *);
118Static void		rum_free_rx_list(struct rum_softc *);
119Static int		rum_media_change(struct ifnet *);
120Static void		rum_next_scan(void *);
121Static void		rum_task(void *);
122Static int		rum_newstate(struct ieee80211com *,
123			    enum ieee80211_state, int);
124Static void		rum_txeof(usbd_xfer_handle, usbd_private_handle,
125			    usbd_status);
126Static void		rum_rxeof(usbd_xfer_handle, usbd_private_handle,
127			    usbd_status);
128#if NBPFILTER > 0
129Static uint8_t		rum_rxrate(struct rum_rx_desc *);
130#endif
131Static int		rum_ack_rate(struct ieee80211com *, int);
132Static uint16_t		rum_txtime(int, int, uint32_t);
133Static uint8_t		rum_plcp_signal(int);
134Static void		rum_setup_tx_desc(struct rum_softc *,
135			    struct rum_tx_desc *, uint32_t, uint16_t, int,
136			    int);
137Static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
138			    struct ieee80211_node *);
139Static int		rum_tx_data(struct rum_softc *, struct mbuf *,
140			    struct ieee80211_node *);
141Static void		rum_start(struct ifnet *);
142Static void		rum_watchdog(struct ifnet *);
143Static int		rum_ioctl(struct ifnet *, u_long, caddr_t);
144Static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
145			    int);
146Static uint32_t		rum_read(struct rum_softc *, uint16_t);
147Static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
148			    int);
149Static void		rum_write(struct rum_softc *, uint16_t, uint32_t);
150Static void		rum_write_multi(struct rum_softc *, uint16_t, void *,
151			    size_t);
152Static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
153Static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
154Static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
155Static void		rum_select_antenna(struct rum_softc *);
156Static void		rum_enable_mrr(struct rum_softc *);
157Static void		rum_set_txpreamble(struct rum_softc *);
158Static void		rum_set_basicrates(struct rum_softc *);
159Static void		rum_select_band(struct rum_softc *,
160			    struct ieee80211_channel *);
161Static void		rum_set_chan(struct rum_softc *,
162			    struct ieee80211_channel *);
163Static void		rum_enable_tsf_sync(struct rum_softc *);
164Static void		rum_update_slot(struct rum_softc *);
165Static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
166Static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
167Static void		rum_update_promisc(struct rum_softc *);
168Static const char	*rum_get_rf(int);
169Static void		rum_read_eeprom(struct rum_softc *);
170Static int		rum_bbp_init(struct rum_softc *);
171Static int		rum_init(struct ifnet *);
172Static void		rum_stop(struct ifnet *, int);
173Static int		rum_load_microcode(struct rum_softc *, const u_char *,
174			    size_t);
175Static int		rum_prepare_beacon(struct rum_softc *);
176Static void		rum_amrr_start(struct rum_softc *,
177			    struct ieee80211_node *);
178Static void		rum_amrr_timeout(void *);
179Static void		rum_amrr_update(usbd_xfer_handle, usbd_private_handle,
180			    usbd_status status);
181
182/*
183 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
184 */
185static const struct ieee80211_rateset rum_rateset_11a =
186	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
187
188static const struct ieee80211_rateset rum_rateset_11b =
189	{ 4, { 2, 4, 11, 22 } };
190
191static const struct ieee80211_rateset rum_rateset_11g =
192	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
193
194static const struct {
195	uint32_t	reg;
196	uint32_t	val;
197} rum_def_mac[] = {
198	RT2573_DEF_MAC
199};
200
201static const struct {
202	uint8_t	reg;
203	uint8_t	val;
204} rum_def_bbp[] = {
205	RT2573_DEF_BBP
206};
207
208static const struct rfprog {
209	uint8_t		chan;
210	uint32_t	r1, r2, r3, r4;
211}  rum_rf5226[] = {
212	RT2573_RF5226
213}, rum_rf5225[] = {
214	RT2573_RF5225
215};
216
217USB_DECLARE_DRIVER(rum);
218
219USB_MATCH(rum)
220{
221	USB_MATCH_START(rum, uaa);
222
223	if (uaa->iface != NULL)
224		return UMATCH_NONE;
225
226	return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
227	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
228}
229
230Static int
231rum_attachhook(void *xsc)
232{
233	struct rum_softc *sc = xsc;
234	firmware_handle_t fwh;
235	const char *name = "rum-rt2573";
236	u_char *ucode;
237	size_t size;
238	int error;
239
240	if ((error = firmware_open("rum", name, &fwh)) != 0) {
241		printf("%s: failed loadfirmware of file %s (error %d)\n",
242		    USBDEVNAME(sc->sc_dev), name, error);
243		return error;
244	}
245	size = firmware_get_size(fwh);
246	ucode = firmware_malloc(size);
247	if (ucode == NULL) {
248		printf("%s: failed to allocate firmware memory\n",
249		    USBDEVNAME(sc->sc_dev));
250		firmware_close(fwh);
251		return ENOMEM;;
252	}
253	error = firmware_read(fwh, 0, ucode, size);
254	firmware_close(fwh);
255	if (error != 0) {
256		printf("%s: failed to read firmware (error %d)\n",
257		    USBDEVNAME(sc->sc_dev), error);
258		firmware_free(ucode, 0);
259		return error;
260	}
261
262	if (rum_load_microcode(sc, ucode, size) != 0) {
263		printf("%s: could not load 8051 microcode\n",
264		    USBDEVNAME(sc->sc_dev));
265		firmware_free(ucode, 0);
266		return ENXIO;
267	}
268
269	firmware_free(ucode, 0);
270	sc->sc_flags |= RT2573_FWLOADED;
271
272	return 0;
273}
274
275USB_ATTACH(rum)
276{
277	USB_ATTACH_START(rum, sc, uaa);
278	struct ieee80211com *ic = &sc->sc_ic;
279	struct ifnet *ifp = &sc->sc_if;
280	usb_interface_descriptor_t *id;
281	usb_endpoint_descriptor_t *ed;
282	usbd_status error;
283	char *devinfop;
284	int i, ntries;
285	uint32_t tmp;
286
287	sc->sc_udev = uaa->device;
288	sc->sc_flags = 0;
289
290	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
291	USB_ATTACH_SETUP;
292	printf("%s: %s\n", USBDEVNAME(sc->sc_dev), devinfop);
293	usbd_devinfo_free(devinfop);
294
295	if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
296		printf("%s: could not set configuration no\n",
297		    USBDEVNAME(sc->sc_dev));
298		USB_ATTACH_ERROR_RETURN;
299	}
300
301	/* get the first interface handle */
302	error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
303	    &sc->sc_iface);
304	if (error != 0) {
305		printf("%s: could not get interface handle\n",
306		    USBDEVNAME(sc->sc_dev));
307		USB_ATTACH_ERROR_RETURN;
308	}
309
310	/*
311	 * Find endpoints.
312	 */
313	id = usbd_get_interface_descriptor(sc->sc_iface);
314
315	sc->sc_rx_no = sc->sc_tx_no = -1;
316	for (i = 0; i < id->bNumEndpoints; i++) {
317		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
318		if (ed == NULL) {
319			printf("%s: no endpoint descriptor for iface %d\n",
320			    USBDEVNAME(sc->sc_dev), i);
321			USB_ATTACH_ERROR_RETURN;
322		}
323
324		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
325		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
326			sc->sc_rx_no = ed->bEndpointAddress;
327		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
328		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
329			sc->sc_tx_no = ed->bEndpointAddress;
330	}
331	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
332		printf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
333		USB_ATTACH_ERROR_RETURN;
334	}
335
336	usb_init_task(&sc->sc_task, rum_task, sc);
337	callout_init(&sc->scan_ch);
338
339	sc->amrr.amrr_min_success_threshold =  1;
340	sc->amrr.amrr_max_success_threshold = 10;
341	callout_init(&sc->amrr_ch);
342
343	/* retrieve RT2573 rev. no */
344	for (ntries = 0; ntries < 1000; ntries++) {
345		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
346			break;
347		DELAY(1000);
348	}
349	if (ntries == 1000) {
350		printf("%s: timeout waiting for chip to settle\n",
351		    USBDEVNAME(sc->sc_dev));
352		USB_ATTACH_ERROR_RETURN;
353	}
354
355	/* retrieve MAC address and various other things from EEPROM */
356	rum_read_eeprom(sc);
357
358	printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
359	    USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
360	    rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
361
362	ic->ic_ifp = ifp;
363	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
364	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
365	ic->ic_state = IEEE80211_S_INIT;
366
367	/* set device capabilities */
368	ic->ic_caps =
369	    IEEE80211_C_IBSS |		/* IBSS mode supported */
370	    IEEE80211_C_MONITOR |	/* monitor mode supported */
371	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
372	    IEEE80211_C_TXPMGT |	/* tx power management */
373	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
374	    IEEE80211_C_SHSLOT |	/* short slot time supported */
375	    IEEE80211_C_WPA;		/* 802.11i */
376
377	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
378		/* set supported .11a rates */
379		ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
380
381		/* set supported .11a channels */
382		for (i = 34; i <= 46; i += 4) {
383			ic->ic_channels[i].ic_freq =
384			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
385			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
386		}
387		for (i = 36; i <= 64; i += 4) {
388			ic->ic_channels[i].ic_freq =
389			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
390			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
391		}
392		for (i = 100; i <= 140; i += 4) {
393			ic->ic_channels[i].ic_freq =
394			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
395			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
396		}
397		for (i = 149; i <= 165; i += 4) {
398			ic->ic_channels[i].ic_freq =
399			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
400			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
401		}
402	}
403
404	/* set supported .11b and .11g rates */
405	ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
406	ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
407
408	/* set supported .11b and .11g channels (1 through 14) */
409	for (i = 1; i <= 14; i++) {
410		ic->ic_channels[i].ic_freq =
411		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
412		ic->ic_channels[i].ic_flags =
413		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
414		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
415	}
416
417	ifp->if_softc = sc;
418	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
419	ifp->if_init = rum_init;
420	ifp->if_ioctl = rum_ioctl;
421	ifp->if_start = rum_start;
422	ifp->if_watchdog = rum_watchdog;
423	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
424	IFQ_SET_READY(&ifp->if_snd);
425	memcpy(ifp->if_xname, USBDEVNAME(sc->sc_dev), IFNAMSIZ);
426
427	if_attach(ifp);
428	ieee80211_ifattach(ic);
429
430	/* override state transition machine */
431	sc->sc_newstate = ic->ic_newstate;
432	ic->ic_newstate = rum_newstate;
433	ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
434
435#if NBPFILTER > 0
436	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
437	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf);
438
439	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
440	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
441	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
442
443	sc->sc_txtap_len = sizeof sc->sc_txtapu;
444	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
445	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
446#endif
447
448	ieee80211_announce(ic);
449
450	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
451	    USBDEV(sc->sc_dev));
452
453	USB_ATTACH_SUCCESS_RETURN;
454}
455
456USB_DETACH(rum)
457{
458	USB_DETACH_START(rum, sc);
459	struct ieee80211com *ic = &sc->sc_ic;
460	struct ifnet *ifp = &sc->sc_if;
461	int s;
462
463	s = splusb();
464
465	rum_stop(ifp, 1);
466	usb_rem_task(sc->sc_udev, &sc->sc_task);
467	callout_stop(&sc->scan_ch);
468	callout_stop(&sc->amrr_ch);
469
470	if (sc->amrr_xfer != NULL) {
471		usbd_free_xfer(sc->amrr_xfer);
472		sc->amrr_xfer = NULL;
473	}
474
475	if (sc->sc_rx_pipeh != NULL) {
476		usbd_abort_pipe(sc->sc_rx_pipeh);
477		usbd_close_pipe(sc->sc_rx_pipeh);
478	}
479
480	if (sc->sc_tx_pipeh != NULL) {
481		usbd_abort_pipe(sc->sc_tx_pipeh);
482		usbd_close_pipe(sc->sc_tx_pipeh);
483	}
484
485	rum_free_rx_list(sc);
486	rum_free_tx_list(sc);
487
488#if NBPFILTER > 0
489	bpfdetach(ifp);
490#endif
491	ieee80211_ifdetach(ic);	/* free all nodes */
492	if_detach(ifp);
493
494	splx(s);
495
496	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
497	    USBDEV(sc->sc_dev));
498
499	return 0;
500}
501
502Static int
503rum_alloc_tx_list(struct rum_softc *sc)
504{
505	struct rum_tx_data *data;
506	int i, error;
507
508	sc->tx_queued = 0;
509
510	for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
511		data = &sc->tx_data[i];
512
513		data->sc = sc;
514
515		data->xfer = usbd_alloc_xfer(sc->sc_udev);
516		if (data->xfer == NULL) {
517			printf("%s: could not allocate tx xfer\n",
518			    USBDEVNAME(sc->sc_dev));
519			error = ENOMEM;
520			goto fail;
521		}
522
523		data->buf = usbd_alloc_buffer(data->xfer,
524		    RT2573_TX_DESC_SIZE + MCLBYTES);
525		if (data->buf == NULL) {
526			printf("%s: could not allocate tx buffer\n",
527			    USBDEVNAME(sc->sc_dev));
528			error = ENOMEM;
529			goto fail;
530		}
531
532		/* clean Tx descriptor */
533		bzero(data->buf, RT2573_TX_DESC_SIZE);
534	}
535
536	return 0;
537
538fail:	rum_free_tx_list(sc);
539	return error;
540}
541
542Static void
543rum_free_tx_list(struct rum_softc *sc)
544{
545	struct rum_tx_data *data;
546	int i;
547
548	for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
549		data = &sc->tx_data[i];
550
551		if (data->xfer != NULL) {
552			usbd_free_xfer(data->xfer);
553			data->xfer = NULL;
554		}
555
556		if (data->ni != NULL) {
557			ieee80211_free_node(data->ni);
558			data->ni = NULL;
559		}
560	}
561}
562
563Static int
564rum_alloc_rx_list(struct rum_softc *sc)
565{
566	struct rum_rx_data *data;
567	int i, error;
568
569	for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
570		data = &sc->rx_data[i];
571
572		data->sc = sc;
573
574		data->xfer = usbd_alloc_xfer(sc->sc_udev);
575		if (data->xfer == NULL) {
576			printf("%s: could not allocate rx xfer\n",
577			    USBDEVNAME(sc->sc_dev));
578			error = ENOMEM;
579			goto fail;
580		}
581
582		if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
583			printf("%s: could not allocate rx buffer\n",
584			    USBDEVNAME(sc->sc_dev));
585			error = ENOMEM;
586			goto fail;
587		}
588
589		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
590		if (data->m == NULL) {
591			printf("%s: could not allocate rx mbuf\n",
592			    USBDEVNAME(sc->sc_dev));
593			error = ENOMEM;
594			goto fail;
595		}
596
597		MCLGET(data->m, M_DONTWAIT);
598		if (!(data->m->m_flags & M_EXT)) {
599			printf("%s: could not allocate rx mbuf cluster\n",
600			    USBDEVNAME(sc->sc_dev));
601			error = ENOMEM;
602			goto fail;
603		}
604
605		data->buf = mtod(data->m, uint8_t *);
606	}
607
608	return 0;
609
610fail:	rum_free_tx_list(sc);
611	return error;
612}
613
614Static void
615rum_free_rx_list(struct rum_softc *sc)
616{
617	struct rum_rx_data *data;
618	int i;
619
620	for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
621		data = &sc->rx_data[i];
622
623		if (data->xfer != NULL) {
624			usbd_free_xfer(data->xfer);
625			data->xfer = NULL;
626		}
627
628		if (data->m != NULL) {
629			m_freem(data->m);
630			data->m = NULL;
631		}
632	}
633}
634
635Static int
636rum_media_change(struct ifnet *ifp)
637{
638	int error;
639
640	error = ieee80211_media_change(ifp);
641	if (error != ENETRESET)
642		return error;
643
644	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
645		rum_init(ifp);
646
647	return 0;
648}
649
650/*
651 * This function is called periodically (every 200ms) during scanning to
652 * switch from one channel to another.
653 */
654Static void
655rum_next_scan(void *arg)
656{
657	struct rum_softc *sc = arg;
658	struct ieee80211com *ic = &sc->sc_ic;
659
660	if (ic->ic_state == IEEE80211_S_SCAN)
661		ieee80211_next_scan(ic);
662}
663
664Static void
665rum_task(void *arg)
666{
667	struct rum_softc *sc = arg;
668	struct ieee80211com *ic = &sc->sc_ic;
669	enum ieee80211_state ostate;
670	struct ieee80211_node *ni;
671	uint32_t tmp;
672
673	ostate = ic->ic_state;
674
675	switch (sc->sc_state) {
676	case IEEE80211_S_INIT:
677		if (ostate == IEEE80211_S_RUN) {
678			/* abort TSF synchronization */
679			tmp = rum_read(sc, RT2573_TXRX_CSR9);
680			rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
681		}
682		break;
683
684	case IEEE80211_S_SCAN:
685		rum_set_chan(sc, ic->ic_curchan);
686		callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
687		break;
688
689	case IEEE80211_S_AUTH:
690		rum_set_chan(sc, ic->ic_curchan);
691		break;
692
693	case IEEE80211_S_ASSOC:
694		rum_set_chan(sc, ic->ic_curchan);
695		break;
696
697	case IEEE80211_S_RUN:
698		rum_set_chan(sc, ic->ic_curchan);
699
700		ni = ic->ic_bss;
701
702		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
703			rum_update_slot(sc);
704			rum_enable_mrr(sc);
705			rum_set_txpreamble(sc);
706			rum_set_basicrates(sc);
707			rum_set_bssid(sc, ni->ni_bssid);
708		}
709
710		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
711		    ic->ic_opmode == IEEE80211_M_IBSS)
712			rum_prepare_beacon(sc);
713
714		if (ic->ic_opmode != IEEE80211_M_MONITOR)
715			rum_enable_tsf_sync(sc);
716
717		/* enable automatic rate adaptation in STA mode */
718		if (ic->ic_opmode == IEEE80211_M_STA &&
719		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
720			rum_amrr_start(sc, ni);
721
722		break;
723	}
724
725	sc->sc_newstate(ic, sc->sc_state, -1);
726}
727
728Static int
729rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
730{
731	struct rum_softc *sc = ic->ic_ifp->if_softc;
732
733	usb_rem_task(sc->sc_udev, &sc->sc_task);
734	callout_stop(&sc->scan_ch);
735	callout_stop(&sc->amrr_ch);
736
737	/* do it in a process context */
738	sc->sc_state = nstate;
739	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
740
741	return 0;
742}
743
744/* quickly determine if a given rate is CCK or OFDM */
745#define RUM_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
746
747#define RUM_ACK_SIZE	14	/* 10 + 4(FCS) */
748#define RUM_CTS_SIZE	14	/* 10 + 4(FCS) */
749
750Static void
751rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
752{
753	struct rum_tx_data *data = priv;
754	struct rum_softc *sc = data->sc;
755	struct ifnet *ifp = &sc->sc_if;
756	int s;
757
758	if (status != USBD_NORMAL_COMPLETION) {
759		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
760			return;
761
762		printf("%s: could not transmit buffer: %s\n",
763		    USBDEVNAME(sc->sc_dev), usbd_errstr(status));
764
765		if (status == USBD_STALLED)
766			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
767
768		ifp->if_oerrors++;
769		return;
770	}
771
772	s = splnet();
773
774	m_freem(data->m);
775	data->m = NULL;
776	ieee80211_free_node(data->ni);
777	data->ni = NULL;
778
779	sc->tx_queued--;
780	ifp->if_opackets++;
781
782	DPRINTFN(10, ("tx done\n"));
783
784	sc->sc_tx_timer = 0;
785	ifp->if_flags &= ~IFF_OACTIVE;
786	rum_start(ifp);
787
788	splx(s);
789}
790
791Static void
792rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
793{
794	struct rum_rx_data *data = priv;
795	struct rum_softc *sc = data->sc;
796	struct ieee80211com *ic = &sc->sc_ic;
797	struct ifnet *ifp = &sc->sc_if;
798	struct rum_rx_desc *desc;
799	struct ieee80211_frame *wh;
800	struct ieee80211_node *ni;
801	struct mbuf *mnew, *m;
802	int s, len;
803
804	if (status != USBD_NORMAL_COMPLETION) {
805		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
806			return;
807
808		if (status == USBD_STALLED)
809			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
810		goto skip;
811	}
812
813	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
814
815	if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
816		DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
817		    len));
818		ifp->if_ierrors++;
819		goto skip;
820	}
821
822	desc = (struct rum_rx_desc *)data->buf;
823
824	if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
825		/*
826		 * This should not happen since we did not request to receive
827		 * those frames when we filled RT2573_TXRX_CSR0.
828		 */
829		DPRINTFN(5, ("CRC error\n"));
830		ifp->if_ierrors++;
831		goto skip;
832	}
833
834	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
835	if (mnew == NULL) {
836		printf("%s: could not allocate rx mbuf\n",
837		    USBDEVNAME(sc->sc_dev));
838		ifp->if_ierrors++;
839		goto skip;
840	}
841
842	MCLGET(mnew, M_DONTWAIT);
843	if (!(mnew->m_flags & M_EXT)) {
844		printf("%s: could not allocate rx mbuf cluster\n",
845		    USBDEVNAME(sc->sc_dev));
846		m_freem(mnew);
847		ifp->if_ierrors++;
848		goto skip;
849	}
850
851	m = data->m;
852	data->m = mnew;
853	data->buf = mtod(data->m, uint8_t *);
854
855	/* finalize mbuf */
856	m->m_pkthdr.rcvif = ifp;
857	m->m_data = (caddr_t)(desc + 1);
858	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
859
860	s = splnet();
861
862#if NBPFILTER > 0
863	if (sc->sc_drvbpf != NULL) {
864		struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
865
866		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
867		tap->wr_rate = rum_rxrate(desc);
868		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
869		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
870		tap->wr_antenna = sc->rx_ant;
871		tap->wr_antsignal = desc->rssi;
872
873		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
874	}
875#endif
876
877	wh = mtod(m, struct ieee80211_frame *);
878	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
879
880	/* send the frame to the 802.11 layer */
881	ieee80211_input(ic, m, ni, desc->rssi, 0);
882
883	/* node is no longer needed */
884	ieee80211_free_node(ni);
885
886	splx(s);
887
888	DPRINTFN(15, ("rx done\n"));
889
890skip:	/* setup a new transfer */
891	usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
892	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
893	usbd_transfer(xfer);
894}
895
896/*
897 * This function is only used by the Rx radiotap code. It returns the rate at
898 * which a given frame was received.
899 */
900#if NBPFILTER > 0
901Static uint8_t
902rum_rxrate(struct rum_rx_desc *desc)
903{
904	if (le32toh(desc->flags) & RT2573_RX_OFDM) {
905		/* reverse function of rum_plcp_signal */
906		switch (desc->rate) {
907		case 0xb:	return 12;
908		case 0xf:	return 18;
909		case 0xa:	return 24;
910		case 0xe:	return 36;
911		case 0x9:	return 48;
912		case 0xd:	return 72;
913		case 0x8:	return 96;
914		case 0xc:	return 108;
915		}
916	} else {
917		if (desc->rate == 10)
918			return 2;
919		if (desc->rate == 20)
920			return 4;
921		if (desc->rate == 55)
922			return 11;
923		if (desc->rate == 110)
924			return 22;
925	}
926	return 2;	/* should not get there */
927}
928#endif
929
930/*
931 * Return the expected ack rate for a frame transmitted at rate `rate'.
932 * XXX: this should depend on the destination node basic rate set.
933 */
934Static int
935rum_ack_rate(struct ieee80211com *ic, int rate)
936{
937	switch (rate) {
938	/* CCK rates */
939	case 2:
940		return 2;
941	case 4:
942	case 11:
943	case 22:
944		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
945
946	/* OFDM rates */
947	case 12:
948	case 18:
949		return 12;
950	case 24:
951	case 36:
952		return 24;
953	case 48:
954	case 72:
955	case 96:
956	case 108:
957		return 48;
958	}
959
960	/* default to 1Mbps */
961	return 2;
962}
963
964/*
965 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
966 * The function automatically determines the operating mode depending on the
967 * given rate. `flags' indicates whether short preamble is in use or not.
968 */
969Static uint16_t
970rum_txtime(int len, int rate, uint32_t flags)
971{
972	uint16_t txtime;
973
974	if (RUM_RATE_IS_OFDM(rate)) {
975		/* IEEE Std 802.11a-1999, pp. 37 */
976		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
977		txtime = 16 + 4 + 4 * txtime + 6;
978	} else {
979		/* IEEE Std 802.11b-1999, pp. 28 */
980		txtime = (16 * len + rate - 1) / rate;
981		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
982			txtime +=  72 + 24;
983		else
984			txtime += 144 + 48;
985	}
986	return txtime;
987}
988
989Static uint8_t
990rum_plcp_signal(int rate)
991{
992	switch (rate) {
993	/* CCK rates (returned values are device-dependent) */
994	case 2:		return 0x0;
995	case 4:		return 0x1;
996	case 11:	return 0x2;
997	case 22:	return 0x3;
998
999	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1000	case 12:	return 0xb;
1001	case 18:	return 0xf;
1002	case 24:	return 0xa;
1003	case 36:	return 0xe;
1004	case 48:	return 0x9;
1005	case 72:	return 0xd;
1006	case 96:	return 0x8;
1007	case 108:	return 0xc;
1008
1009	/* unsupported rates (should not get there) */
1010	default:	return 0xff;
1011	}
1012}
1013
1014Static void
1015rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1016    uint32_t flags, uint16_t xflags, int len, int rate)
1017{
1018	struct ieee80211com *ic = &sc->sc_ic;
1019	uint16_t plcp_length;
1020	int remainder;
1021
1022	desc->flags = htole32(flags);
1023	desc->flags |= htole32(RT2573_TX_VALID);
1024	desc->flags |= htole32(len << 16);
1025
1026	desc->xflags = htole16(xflags);
1027
1028	desc->wme = htole16(
1029	    RT2573_QID(0) |
1030	    RT2573_AIFSN(2) |
1031	    RT2573_LOGCWMIN(4) |
1032	    RT2573_LOGCWMAX(10));
1033
1034	/* setup PLCP fields */
1035	desc->plcp_signal  = rum_plcp_signal(rate);
1036	desc->plcp_service = 4;
1037
1038	len += IEEE80211_CRC_LEN;
1039	if (RUM_RATE_IS_OFDM(rate)) {
1040		desc->flags |= htole32(RT2573_TX_OFDM);
1041
1042		plcp_length = len & 0xfff;
1043		desc->plcp_length_hi = plcp_length >> 6;
1044		desc->plcp_length_lo = plcp_length & 0x3f;
1045	} else {
1046		plcp_length = (16 * len + rate - 1) / rate;
1047		if (rate == 22) {
1048			remainder = (16 * len) % 22;
1049			if (remainder != 0 && remainder < 7)
1050				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1051		}
1052		desc->plcp_length_hi = plcp_length >> 8;
1053		desc->plcp_length_lo = plcp_length & 0xff;
1054
1055		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1056			desc->plcp_signal |= 0x08;
1057	}
1058}
1059
1060#define RUM_TX_TIMEOUT	5000
1061
1062Static int
1063rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1064{
1065	struct ieee80211com *ic = &sc->sc_ic;
1066	struct rum_tx_desc *desc;
1067	struct rum_tx_data *data;
1068	struct ieee80211_frame *wh;
1069	uint32_t flags = 0;
1070	uint16_t dur;
1071	usbd_status error;
1072	int xferlen, rate;
1073
1074	data = &sc->tx_data[0];
1075	desc = (struct rum_tx_desc *)data->buf;
1076
1077	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1078
1079	data->m = m0;
1080	data->ni = ni;
1081
1082	wh = mtod(m0, struct ieee80211_frame *);
1083
1084	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1085		flags |= RT2573_TX_ACK;
1086
1087		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1088		    ic->ic_flags) + sc->sifs;
1089		*(uint16_t *)wh->i_dur = htole16(dur);
1090
1091		/* tell hardware to set timestamp in probe responses */
1092		if ((wh->i_fc[0] &
1093		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1094		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1095			flags |= RT2573_TX_TIMESTAMP;
1096	}
1097
1098#if NBPFILTER > 0
1099	if (sc->sc_drvbpf != NULL) {
1100		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1101
1102		tap->wt_flags = 0;
1103		tap->wt_rate = rate;
1104		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1105		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1106		tap->wt_antenna = sc->tx_ant;
1107
1108		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1109	}
1110#endif
1111
1112	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1113	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1114
1115	/* align end on a 4-bytes boundary */
1116	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1117
1118	/*
1119	 * No space left in the last URB to store the extra 4 bytes, force
1120	 * sending of another URB.
1121	 */
1122	if ((xferlen % 64) == 0)
1123		xferlen += 4;
1124
1125	DPRINTFN(10, ("sending msg frame len=%u rate=%u xfer len=%u\n",
1126	    m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1127
1128	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1129	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1130
1131	error = usbd_transfer(data->xfer);
1132	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1133		m_freem(m0);
1134		return error;
1135	}
1136
1137	sc->tx_queued++;
1138
1139	return 0;
1140}
1141
1142Static int
1143rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1144{
1145	struct ieee80211com *ic = &sc->sc_ic;
1146	struct rum_tx_desc *desc;
1147	struct rum_tx_data *data;
1148	struct ieee80211_frame *wh;
1149	struct ieee80211_key *k;
1150	uint32_t flags = 0;
1151	uint16_t dur;
1152	usbd_status error;
1153	int xferlen, rate;
1154
1155	wh = mtod(m0, struct ieee80211_frame *);
1156
1157	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1158		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1159	else
1160		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1161	rate &= IEEE80211_RATE_VAL;
1162
1163	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1164		k = ieee80211_crypto_encap(ic, ni, m0);
1165		if (k == NULL) {
1166			m_freem(m0);
1167			return ENOBUFS;
1168		}
1169
1170		/* packet header may have moved, reset our local pointer */
1171		wh = mtod(m0, struct ieee80211_frame *);
1172	}
1173
1174	data = &sc->tx_data[0];
1175	desc = (struct rum_tx_desc *)data->buf;
1176
1177	data->m = m0;
1178	data->ni = ni;
1179
1180	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1181		flags |= RT2573_TX_ACK;
1182
1183		dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1184		    ic->ic_flags) + sc->sifs;
1185		*(uint16_t *)wh->i_dur = htole16(dur);
1186	}
1187
1188#if NBPFILTER > 0
1189	if (sc->sc_drvbpf != NULL) {
1190		struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1191
1192		tap->wt_flags = 0;
1193		tap->wt_rate = rate;
1194		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1195		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1196		tap->wt_antenna = sc->tx_ant;
1197
1198		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1199	}
1200#endif
1201
1202	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1203	rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1204
1205	/* align end on a 4-bytes boundary */
1206	xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1207
1208	/*
1209	 * No space left in the last URB to store the extra 4 bytes, force
1210	 * sending of another URB.
1211	 */
1212	if ((xferlen % 64) == 0)
1213		xferlen += 4;
1214
1215	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1216	    m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1217
1218	usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1219	    USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1220
1221	error = usbd_transfer(data->xfer);
1222	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1223		m_freem(m0);
1224		return error;
1225	}
1226
1227	sc->tx_queued++;
1228
1229	return 0;
1230}
1231
1232Static void
1233rum_start(struct ifnet *ifp)
1234{
1235	struct rum_softc *sc = ifp->if_softc;
1236	struct ieee80211com *ic = &sc->sc_ic;
1237	struct ether_header *eh;
1238	struct ieee80211_node *ni;
1239	struct mbuf *m0;
1240
1241	for (;;) {
1242		IF_POLL(&ic->ic_mgtq, m0);
1243		if (m0 != NULL) {
1244			if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1245				ifp->if_flags |= IFF_OACTIVE;
1246				break;
1247			}
1248			IF_DEQUEUE(&ic->ic_mgtq, m0);
1249
1250			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1251			m0->m_pkthdr.rcvif = NULL;
1252#if NBPFILTER > 0
1253			if (ic->ic_rawbpf != NULL)
1254				bpf_mtap(ic->ic_rawbpf, m0);
1255#endif
1256			if (rum_tx_mgt(sc, m0, ni) != 0)
1257				break;
1258
1259		} else {
1260			if (ic->ic_state != IEEE80211_S_RUN)
1261				break;
1262			IFQ_POLL(&ifp->if_snd, m0);
1263			if (m0 == NULL)
1264				break;
1265			if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1266				ifp->if_flags |= IFF_OACTIVE;
1267				break;
1268			}
1269			IFQ_DEQUEUE(&ifp->if_snd, m0);
1270			if (m0->m_len < sizeof(struct ether_header) &&
1271			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1272				continue;
1273
1274			eh = mtod(m0, struct ether_header *);
1275			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1276			if (ni == NULL) {
1277				m_freem(m0);
1278				continue;
1279			}
1280#if NBPFILTER > 0
1281			if (ifp->if_bpf != NULL)
1282				bpf_mtap(ifp->if_bpf, m0);
1283#endif
1284			m0 = ieee80211_encap(ic, m0, ni);
1285			if (m0 == NULL) {
1286				ieee80211_free_node(ni);
1287				continue;
1288			}
1289#if NBPFILTER > 0
1290			if (ic->ic_rawbpf != NULL)
1291				bpf_mtap(ic->ic_rawbpf, m0);
1292#endif
1293			if (rum_tx_data(sc, m0, ni) != 0) {
1294				ieee80211_free_node(ni);
1295				ifp->if_oerrors++;
1296				break;
1297			}
1298		}
1299
1300		sc->sc_tx_timer = 5;
1301		ifp->if_timer = 1;
1302	}
1303}
1304
1305Static void
1306rum_watchdog(struct ifnet *ifp)
1307{
1308	struct rum_softc *sc = ifp->if_softc;
1309	struct ieee80211com *ic = &sc->sc_ic;
1310
1311	ifp->if_timer = 0;
1312
1313	if (sc->sc_tx_timer > 0) {
1314		if (--sc->sc_tx_timer == 0) {
1315			printf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1316			/*rum_init(ifp); XXX needs a process context! */
1317			ifp->if_oerrors++;
1318			return;
1319		}
1320		ifp->if_timer = 1;
1321	}
1322
1323	ieee80211_watchdog(ic);
1324}
1325
1326Static int
1327rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1328{
1329	struct rum_softc *sc = ifp->if_softc;
1330	struct ieee80211com *ic = &sc->sc_ic;
1331	int s, error = 0;
1332
1333	s = splnet();
1334
1335	switch (cmd) {
1336	case SIOCSIFFLAGS:
1337		if (ifp->if_flags & IFF_UP) {
1338			if (ifp->if_flags & IFF_RUNNING)
1339				rum_update_promisc(sc);
1340			else
1341				rum_init(ifp);
1342		} else {
1343			if (ifp->if_flags & IFF_RUNNING)
1344				rum_stop(ifp, 1);
1345		}
1346		break;
1347
1348	default:
1349		error = ieee80211_ioctl(ic, cmd, data);
1350	}
1351
1352	if (error == ENETRESET) {
1353		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1354		    (IFF_UP | IFF_RUNNING))
1355			rum_init(ifp);
1356		error = 0;
1357	}
1358
1359	splx(s);
1360
1361	return error;
1362}
1363
1364Static void
1365rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1366{
1367	usb_device_request_t req;
1368	usbd_status error;
1369
1370	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1371	req.bRequest = RT2573_READ_EEPROM;
1372	USETW(req.wValue, 0);
1373	USETW(req.wIndex, addr);
1374	USETW(req.wLength, len);
1375
1376	error = usbd_do_request(sc->sc_udev, &req, buf);
1377	if (error != 0) {
1378		printf("%s: could not read EEPROM: %s\n",
1379		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1380	}
1381}
1382
1383Static uint32_t
1384rum_read(struct rum_softc *sc, uint16_t reg)
1385{
1386	uint32_t val;
1387
1388	rum_read_multi(sc, reg, &val, sizeof val);
1389
1390	return le32toh(val);
1391}
1392
1393Static void
1394rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1395{
1396	usb_device_request_t req;
1397	usbd_status error;
1398
1399	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1400	req.bRequest = RT2573_READ_MULTI_MAC;
1401	USETW(req.wValue, 0);
1402	USETW(req.wIndex, reg);
1403	USETW(req.wLength, len);
1404
1405	error = usbd_do_request(sc->sc_udev, &req, buf);
1406	if (error != 0) {
1407		printf("%s: could not multi read MAC register: %s\n",
1408		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1409	}
1410}
1411
1412Static void
1413rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1414{
1415	uint32_t tmp = htole32(val);
1416
1417	rum_write_multi(sc, reg, &tmp, sizeof tmp);
1418}
1419
1420Static void
1421rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1422{
1423	usb_device_request_t req;
1424	usbd_status error;
1425
1426	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1427	req.bRequest = RT2573_WRITE_MULTI_MAC;
1428	USETW(req.wValue, 0);
1429	USETW(req.wIndex, reg);
1430	USETW(req.wLength, len);
1431
1432	error = usbd_do_request(sc->sc_udev, &req, buf);
1433	if (error != 0) {
1434		printf("%s: could not multi write MAC register: %s\n",
1435		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1436	}
1437}
1438
1439Static void
1440rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1441{
1442	uint32_t tmp;
1443	int ntries;
1444
1445	for (ntries = 0; ntries < 5; ntries++) {
1446		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1447			break;
1448	}
1449	if (ntries == 5) {
1450		printf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1451		return;
1452	}
1453
1454	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1455	rum_write(sc, RT2573_PHY_CSR3, tmp);
1456}
1457
1458Static uint8_t
1459rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1460{
1461	uint32_t val;
1462	int ntries;
1463
1464	for (ntries = 0; ntries < 5; ntries++) {
1465		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1466			break;
1467	}
1468	if (ntries == 5) {
1469		printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1470		return 0;
1471	}
1472
1473	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1474	rum_write(sc, RT2573_PHY_CSR3, val);
1475
1476	for (ntries = 0; ntries < 100; ntries++) {
1477		val = rum_read(sc, RT2573_PHY_CSR3);
1478		if (!(val & RT2573_BBP_BUSY))
1479			return val & 0xff;
1480		DELAY(1);
1481	}
1482
1483	printf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1484	return 0;
1485}
1486
1487Static void
1488rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1489{
1490	uint32_t tmp;
1491	int ntries;
1492
1493	for (ntries = 0; ntries < 5; ntries++) {
1494		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1495			break;
1496	}
1497	if (ntries == 5) {
1498		printf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1499		return;
1500	}
1501
1502	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1503	    (reg & 3);
1504	rum_write(sc, RT2573_PHY_CSR4, tmp);
1505
1506	/* remember last written value in sc */
1507	sc->rf_regs[reg] = val;
1508
1509	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1510}
1511
1512Static void
1513rum_select_antenna(struct rum_softc *sc)
1514{
1515	uint8_t bbp4, bbp77;
1516	uint32_t tmp;
1517
1518	bbp4  = rum_bbp_read(sc, 4);
1519	bbp77 = rum_bbp_read(sc, 77);
1520
1521	/* TBD */
1522
1523	/* make sure Rx is disabled before switching antenna */
1524	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1525	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1526
1527	rum_bbp_write(sc,  4, bbp4);
1528	rum_bbp_write(sc, 77, bbp77);
1529
1530	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1531}
1532
1533/*
1534 * Enable multi-rate retries for frames sent at OFDM rates.
1535 * In 802.11b/g mode, allow fallback to CCK rates.
1536 */
1537Static void
1538rum_enable_mrr(struct rum_softc *sc)
1539{
1540	struct ieee80211com *ic = &sc->sc_ic;
1541	uint32_t tmp;
1542
1543	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1544
1545	tmp &= ~RT2573_MRR_CCK_FALLBACK;
1546	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1547		tmp |= RT2573_MRR_CCK_FALLBACK;
1548	tmp |= RT2573_MRR_ENABLED;
1549
1550	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1551}
1552
1553Static void
1554rum_set_txpreamble(struct rum_softc *sc)
1555{
1556	uint32_t tmp;
1557
1558	tmp = rum_read(sc, RT2573_TXRX_CSR4);
1559
1560	tmp &= ~RT2573_SHORT_PREAMBLE;
1561	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1562		tmp |= RT2573_SHORT_PREAMBLE;
1563
1564	rum_write(sc, RT2573_TXRX_CSR4, tmp);
1565}
1566
1567Static void
1568rum_set_basicrates(struct rum_softc *sc)
1569{
1570	struct ieee80211com *ic = &sc->sc_ic;
1571
1572	/* update basic rate set */
1573	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1574		/* 11b basic rates: 1, 2Mbps */
1575		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1576	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1577		/* 11a basic rates: 6, 12, 24Mbps */
1578		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1579	} else {
1580		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1581		rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1582	}
1583}
1584
1585/*
1586 * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1587 * driver.
1588 */
1589Static void
1590rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1591{
1592	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1593	uint32_t tmp;
1594
1595	/* update all BBP registers that depend on the band */
1596	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1597	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1598	if (IEEE80211_IS_CHAN_5GHZ(c)) {
1599		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1600		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1601	}
1602	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1603	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1604		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1605	}
1606
1607	sc->bbp17 = bbp17;
1608	rum_bbp_write(sc,  17, bbp17);
1609	rum_bbp_write(sc,  96, bbp96);
1610	rum_bbp_write(sc, 104, bbp104);
1611
1612	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1613	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1614		rum_bbp_write(sc, 75, 0x80);
1615		rum_bbp_write(sc, 86, 0x80);
1616		rum_bbp_write(sc, 88, 0x80);
1617	}
1618
1619	rum_bbp_write(sc, 35, bbp35);
1620	rum_bbp_write(sc, 97, bbp97);
1621	rum_bbp_write(sc, 98, bbp98);
1622
1623	tmp = rum_read(sc, RT2573_PHY_CSR0);
1624	tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1625	if (IEEE80211_IS_CHAN_2GHZ(c))
1626		tmp |= RT2573_PA_PE_2GHZ;
1627	else
1628		tmp |= RT2573_PA_PE_5GHZ;
1629	rum_write(sc, RT2573_PHY_CSR0, tmp);
1630
1631	/* 802.11a uses a 16 microseconds short interframe space */
1632	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1633}
1634
1635Static void
1636rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1637{
1638	struct ieee80211com *ic = &sc->sc_ic;
1639	const struct rfprog *rfprog;
1640	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1641	int8_t power;
1642	u_int i, chan;
1643
1644	chan = ieee80211_chan2ieee(ic, c);
1645	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1646		return;
1647
1648	/* select the appropriate RF settings based on what EEPROM says */
1649	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1650		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1651
1652	/* find the settings for this channel (we know it exists) */
1653	for (i = 0; rfprog[i].chan != chan; i++);
1654
1655	power = sc->txpow[i];
1656	if (power < 0) {
1657		bbp94 += power;
1658		power = 0;
1659	} else if (power > 31) {
1660		bbp94 += power - 31;
1661		power = 31;
1662	}
1663
1664	/*
1665	 * If we are switching from the 2GHz band to the 5GHz band or
1666	 * vice-versa, BBP registers need to be reprogrammed.
1667	 */
1668	if (c->ic_flags != ic->ic_curchan->ic_flags) {
1669		rum_select_band(sc, c);
1670		rum_select_antenna(sc);
1671	}
1672	ic->ic_curchan = c;
1673
1674	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1675	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1676	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1677	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1678
1679	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1680	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1681	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1682	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1683
1684	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1685	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1686	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1687	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1688
1689	DELAY(10);
1690
1691	/* enable smart mode for MIMO-capable RFs */
1692	bbp3 = rum_bbp_read(sc, 3);
1693
1694	bbp3 &= ~RT2573_SMART_MODE;
1695	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1696		bbp3 |= RT2573_SMART_MODE;
1697
1698	rum_bbp_write(sc, 3, bbp3);
1699
1700	if (bbp94 != RT2573_BBPR94_DEFAULT)
1701		rum_bbp_write(sc, 94, bbp94);
1702}
1703
1704/*
1705 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1706 * and HostAP operating modes.
1707 */
1708Static void
1709rum_enable_tsf_sync(struct rum_softc *sc)
1710{
1711	struct ieee80211com *ic = &sc->sc_ic;
1712	uint32_t tmp;
1713
1714	if (ic->ic_opmode != IEEE80211_M_STA) {
1715		/*
1716		 * Change default 16ms TBTT adjustment to 8ms.
1717		 * Must be done before enabling beacon generation.
1718		 */
1719		rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1720	}
1721
1722	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1723
1724	/* set beacon interval (in 1/16ms unit) */
1725	tmp |= ic->ic_bss->ni_intval * 16;
1726
1727	tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1728	if (ic->ic_opmode == IEEE80211_M_STA)
1729		tmp |= RT2573_TSF_MODE(1);
1730	else
1731		tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1732
1733	rum_write(sc, RT2573_TXRX_CSR9, tmp);
1734}
1735
1736Static void
1737rum_update_slot(struct rum_softc *sc)
1738{
1739	struct ieee80211com *ic = &sc->sc_ic;
1740	uint8_t slottime;
1741	uint32_t tmp;
1742
1743	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1744
1745	tmp = rum_read(sc, RT2573_MAC_CSR9);
1746	tmp = (tmp & ~0xff) | slottime;
1747	rum_write(sc, RT2573_MAC_CSR9, tmp);
1748
1749	DPRINTF(("setting slot time to %uus\n", slottime));
1750}
1751
1752Static void
1753rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1754{
1755	uint32_t tmp;
1756
1757	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1758	rum_write(sc, RT2573_MAC_CSR4, tmp);
1759
1760	tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1761	rum_write(sc, RT2573_MAC_CSR5, tmp);
1762}
1763
1764Static void
1765rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1766{
1767	uint32_t tmp;
1768
1769	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1770	rum_write(sc, RT2573_MAC_CSR2, tmp);
1771
1772	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1773	rum_write(sc, RT2573_MAC_CSR3, tmp);
1774}
1775
1776Static void
1777rum_update_promisc(struct rum_softc *sc)
1778{
1779	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1780	uint32_t tmp;
1781
1782	tmp = rum_read(sc, RT2573_TXRX_CSR0);
1783
1784	tmp &= ~RT2573_DROP_NOT_TO_ME;
1785	if (!(ifp->if_flags & IFF_PROMISC))
1786		tmp |= RT2573_DROP_NOT_TO_ME;
1787
1788	rum_write(sc, RT2573_TXRX_CSR0, tmp);
1789
1790	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1791	    "entering" : "leaving"));
1792}
1793
1794Static const char *
1795rum_get_rf(int rev)
1796{
1797	switch (rev) {
1798	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
1799	case RT2573_RF_2528:	return "RT2528";
1800	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
1801	case RT2573_RF_5226:	return "RT5226";
1802	default:		return "unknown";
1803	}
1804}
1805
1806Static void
1807rum_read_eeprom(struct rum_softc *sc)
1808{
1809	struct ieee80211com *ic = &sc->sc_ic;
1810	uint16_t val;
1811#ifdef RUM_DEBUG
1812	int i;
1813#endif
1814
1815	/* read MAC/BBP type */
1816	rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1817	sc->macbbp_rev = le16toh(val);
1818
1819	/* read MAC address */
1820	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1821
1822	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1823	val = le16toh(val);
1824	sc->rf_rev =   (val >> 11) & 0x1f;
1825	sc->hw_radio = (val >> 10) & 0x1;
1826	sc->rx_ant =   (val >> 4)  & 0x3;
1827	sc->tx_ant =   (val >> 2)  & 0x3;
1828	sc->nb_ant =   val & 0x3;
1829
1830	DPRINTF(("RF revision=%d\n", sc->rf_rev));
1831
1832	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1833	val = le16toh(val);
1834	sc->ext_5ghz_lna = (val >> 6) & 0x1;
1835	sc->ext_2ghz_lna = (val >> 4) & 0x1;
1836
1837	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1838	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1839
1840	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1841	val = le16toh(val);
1842	if ((val & 0xff) != 0xff)
1843		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
1844
1845	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1846	val = le16toh(val);
1847	if ((val & 0xff) != 0xff)
1848		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
1849
1850	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1851	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1852
1853	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1854	val = le16toh(val);
1855	if ((val & 0xff) != 0xff)
1856		sc->rffreq = val & 0xff;
1857
1858	DPRINTF(("RF freq=%d\n", sc->rffreq));
1859
1860	/* read Tx power for all a/b/g channels */
1861	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1862	/* XXX default Tx power for 802.11a channels */
1863	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1864#ifdef RUM_DEBUG
1865	for (i = 0; i < 14; i++)
1866		DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1867#endif
1868
1869	/* read default values for BBP registers */
1870	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1871#ifdef RUM_DEBUG
1872	for (i = 0; i < 14; i++) {
1873		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1874			continue;
1875		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1876		    sc->bbp_prom[i].val));
1877	}
1878#endif
1879}
1880
1881Static int
1882rum_bbp_init(struct rum_softc *sc)
1883{
1884#define N(a)	(sizeof (a) / sizeof ((a)[0]))
1885	int i, ntries;
1886	uint8_t val;
1887
1888	/* wait for BBP to be ready */
1889	for (ntries = 0; ntries < 100; ntries++) {
1890		val = rum_bbp_read(sc, 0);
1891		if (val != 0 && val != 0xff)
1892			break;
1893		DELAY(1000);
1894	}
1895	if (ntries == 100) {
1896		printf("%s: timeout waiting for BBP\n",
1897		    USBDEVNAME(sc->sc_dev));
1898		return EIO;
1899	}
1900
1901	/* initialize BBP registers to default values */
1902	for (i = 0; i < N(rum_def_bbp); i++)
1903		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1904
1905	/* write vendor-specific BBP values (from EEPROM) */
1906	for (i = 0; i < 16; i++) {
1907		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1908			continue;
1909		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1910	}
1911
1912	return 0;
1913#undef N
1914}
1915
1916Static int
1917rum_init(struct ifnet *ifp)
1918{
1919#define N(a)	(sizeof (a) / sizeof ((a)[0]))
1920	struct rum_softc *sc = ifp->if_softc;
1921	struct ieee80211com *ic = &sc->sc_ic;
1922	struct rum_rx_data *data;
1923	uint32_t tmp;
1924	usbd_status error = 0;
1925	int i, ntries;
1926
1927	if ((sc->sc_flags & RT2573_FWLOADED) == 0) {
1928		if (rum_attachhook(sc))
1929			goto fail;
1930	}
1931
1932	rum_stop(ifp, 0);
1933
1934	/* initialize MAC registers to default values */
1935	for (i = 0; i < N(rum_def_mac); i++)
1936		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1937
1938	/* set host ready */
1939	rum_write(sc, RT2573_MAC_CSR1, 3);
1940	rum_write(sc, RT2573_MAC_CSR1, 0);
1941
1942	/* wait for BBP/RF to wakeup */
1943	for (ntries = 0; ntries < 1000; ntries++) {
1944		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1945			break;
1946		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
1947		DELAY(1000);
1948	}
1949	if (ntries == 1000) {
1950		printf("%s: timeout waiting for BBP/RF to wakeup\n",
1951		    USBDEVNAME(sc->sc_dev));
1952		goto fail;
1953	}
1954
1955	if ((error = rum_bbp_init(sc)) != 0)
1956		goto fail;
1957
1958	/* select default channel */
1959	rum_select_band(sc, ic->ic_curchan);
1960	rum_select_antenna(sc);
1961	rum_set_chan(sc, ic->ic_curchan);
1962
1963	/* clear STA registers */
1964	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1965
1966	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
1967	rum_set_macaddr(sc, ic->ic_myaddr);
1968
1969	/* initialize ASIC */
1970	rum_write(sc, RT2573_MAC_CSR1, 4);
1971
1972	/*
1973	 * Allocate xfer for AMRR statistics requests.
1974	 */
1975	sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
1976	if (sc->amrr_xfer == NULL) {
1977		printf("%s: could not allocate AMRR xfer\n",
1978		    USBDEVNAME(sc->sc_dev));
1979		goto fail;
1980	}
1981
1982	/*
1983	 * Open Tx and Rx USB bulk pipes.
1984	 */
1985	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1986	    &sc->sc_tx_pipeh);
1987	if (error != 0) {
1988		printf("%s: could not open Tx pipe: %s\n",
1989		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1990		goto fail;
1991	}
1992
1993	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1994	    &sc->sc_rx_pipeh);
1995	if (error != 0) {
1996		printf("%s: could not open Rx pipe: %s\n",
1997		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1998		goto fail;
1999	}
2000
2001	/*
2002	 * Allocate Tx and Rx xfer queues.
2003	 */
2004	error = rum_alloc_tx_list(sc);
2005	if (error != 0) {
2006		printf("%s: could not allocate Tx list\n",
2007		    USBDEVNAME(sc->sc_dev));
2008		goto fail;
2009	}
2010
2011	error = rum_alloc_rx_list(sc);
2012	if (error != 0) {
2013		printf("%s: could not allocate Rx list\n",
2014		    USBDEVNAME(sc->sc_dev));
2015		goto fail;
2016	}
2017
2018	/*
2019	 * Start up the receive pipe.
2020	 */
2021	for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
2022		data = &sc->rx_data[i];
2023
2024		usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
2025		    MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
2026		usbd_transfer(data->xfer);
2027	}
2028
2029	/* update Rx filter */
2030	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2031
2032	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2033	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2034		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2035		       RT2573_DROP_ACKCTS;
2036		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2037			tmp |= RT2573_DROP_TODS;
2038		if (!(ifp->if_flags & IFF_PROMISC))
2039			tmp |= RT2573_DROP_NOT_TO_ME;
2040	}
2041	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2042
2043	ifp->if_flags &= ~IFF_OACTIVE;
2044	ifp->if_flags |= IFF_RUNNING;
2045
2046	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2047		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2048	else
2049		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2050
2051	return 0;
2052
2053fail:	rum_stop(ifp, 1);
2054	return error;
2055#undef N
2056}
2057
2058Static void
2059rum_stop(struct ifnet *ifp, int disable)
2060{
2061	struct rum_softc *sc = ifp->if_softc;
2062	struct ieee80211com *ic = &sc->sc_ic;
2063	uint32_t tmp;
2064
2065	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2066
2067	sc->sc_tx_timer = 0;
2068	ifp->if_timer = 0;
2069	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2070
2071	/* disable Rx */
2072	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2073	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2074
2075	/* reset ASIC */
2076	rum_write(sc, RT2573_MAC_CSR1, 3);
2077	rum_write(sc, RT2573_MAC_CSR1, 0);
2078
2079	if (sc->sc_rx_pipeh != NULL) {
2080		usbd_abort_pipe(sc->sc_rx_pipeh);
2081		usbd_close_pipe(sc->sc_rx_pipeh);
2082		sc->sc_rx_pipeh = NULL;
2083	}
2084
2085	if (sc->sc_tx_pipeh != NULL) {
2086		usbd_abort_pipe(sc->sc_tx_pipeh);
2087		usbd_close_pipe(sc->sc_tx_pipeh);
2088		sc->sc_tx_pipeh = NULL;
2089	}
2090
2091	rum_free_rx_list(sc);
2092	rum_free_tx_list(sc);
2093}
2094
2095Static int
2096rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
2097{
2098	usb_device_request_t req;
2099	uint16_t reg = RT2573_MCU_CODE_BASE;
2100	usbd_status error;
2101
2102	/* copy firmware image into NIC */
2103	for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2104		rum_write(sc, reg, UGETDW(ucode));
2105
2106	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2107	req.bRequest = RT2573_MCU_CNTL;
2108	USETW(req.wValue, RT2573_MCU_RUN);
2109	USETW(req.wIndex, 0);
2110	USETW(req.wLength, 0);
2111
2112	error = usbd_do_request(sc->sc_udev, &req, NULL);
2113	if (error != 0) {
2114		printf("%s: could not run firmware: %s\n",
2115		    USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2116	}
2117	return error;
2118}
2119
2120Static int
2121rum_prepare_beacon(struct rum_softc *sc)
2122{
2123	struct ieee80211com *ic = &sc->sc_ic;
2124	struct rum_tx_desc desc;
2125	struct mbuf *m0;
2126	int rate;
2127
2128	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
2129	if (m0 == NULL) {
2130		printf("%s: could not allocate beacon frame\n",
2131		    sc->sc_dev.dv_xname);
2132		return ENOBUFS;
2133	}
2134
2135	/* send beacons at the lowest available rate */
2136	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2137
2138	rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2139	    m0->m_pkthdr.len, rate);
2140
2141	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2142	rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2143
2144	/* copy beacon header and payload into NIC memory */
2145	rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2146	    m0->m_pkthdr.len);
2147
2148	m_freem(m0);
2149
2150	return 0;
2151}
2152
2153Static void
2154rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
2155{
2156	int i;
2157
2158	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
2159	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2160
2161	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2162
2163	/* set rate to some reasonable initial value */
2164	for (i = ni->ni_rates.rs_nrates - 1;
2165	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2166	     i--);
2167	ni->ni_txrate = i;
2168
2169	callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2170}
2171
2172Static void
2173rum_amrr_timeout(void *arg)
2174{
2175	struct rum_softc *sc = arg;
2176	usb_device_request_t req;
2177	int s;
2178
2179	s = splusb();
2180
2181	/*
2182	 * Asynchronously read statistic registers (cleared by read).
2183	 */
2184	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2185	req.bRequest = RT2573_READ_MULTI_MAC;
2186	USETW(req.wValue, 0);
2187	USETW(req.wIndex, RT2573_STA_CSR0);
2188	USETW(req.wLength, sizeof sc->sta);
2189
2190	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2191	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
2192	    rum_amrr_update);
2193	(void)usbd_transfer(sc->amrr_xfer);
2194
2195	splx(s);
2196}
2197
2198Static void
2199rum_amrr_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2200    usbd_status status)
2201{
2202	struct rum_softc *sc = (struct rum_softc *)priv;
2203	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2204
2205	if (status != USBD_NORMAL_COMPLETION) {
2206		printf("%s: could not retrieve Tx statistics - cancelling "
2207		    "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2208		return;
2209	}
2210
2211	/* count TX retry-fail as Tx errors */
2212	ifp->if_oerrors += le32toh(sc->sta[5]) >> 16;
2213
2214	sc->amn.amn_retrycnt =
2215	    (le32toh(sc->sta[4]) >> 16) +	/* TX one-retry ok count */
2216	    (le32toh(sc->sta[5]) & 0xffff) +	/* TX more-retry ok count */
2217	    (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
2218
2219	sc->amn.amn_txcnt =
2220	    sc->amn.amn_retrycnt +
2221	    (le32toh(sc->sta[4]) & 0xffff);	/* TX no-retry ok count */
2222
2223	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2224
2225	callout_reset(&sc->amrr_ch, hz, rum_amrr_timeout, sc);
2226}
2227
2228int
2229rum_activate(device_ptr_t self, enum devact act)
2230{
2231	switch (act) {
2232	case DVACT_ACTIVATE:
2233		return EOPNOTSUPP;
2234
2235	case DVACT_DEACTIVATE:
2236		/*if_deactivate(&sc->sc_ic.ic_if);*/
2237		break;
2238	}
2239
2240	return 0;
2241}
2242