rf_reconstruct.c revision 1.69
1/*	$NetBSD: rf_reconstruct.c,v 1.69 2004/03/03 16:12:28 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.69 2004/03/03 16:12:28 oster Exp $");
37
38#include <sys/time.h>
39#include <sys/buf.h>
40#include <sys/errno.h>
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/proc.h>
45#include <sys/ioctl.h>
46#include <sys/fcntl.h>
47#include <sys/vnode.h>
48#include <dev/raidframe/raidframevar.h>
49
50#include "rf_raid.h"
51#include "rf_reconutil.h"
52#include "rf_revent.h"
53#include "rf_reconbuffer.h"
54#include "rf_acctrace.h"
55#include "rf_etimer.h"
56#include "rf_dag.h"
57#include "rf_desc.h"
58#include "rf_debugprint.h"
59#include "rf_general.h"
60#include "rf_driver.h"
61#include "rf_utils.h"
62#include "rf_shutdown.h"
63
64#include "rf_kintf.h"
65
66/* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68#if RF_DEBUG_RECON
69#define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70#define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71#define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72#define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73#define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74#define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75#define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76#define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78#define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79#define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81#else /* RF_DEBUG_RECON */
82
83#define Dprintf(s) {}
84#define Dprintf1(s,a) {}
85#define Dprintf2(s,a,b) {}
86#define Dprintf3(s,a,b,c) {}
87#define Dprintf4(s,a,b,c,d) {}
88#define Dprintf5(s,a,b,c,d,e) {}
89#define Dprintf6(s,a,b,c,d,e,f) {}
90#define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92#define DDprintf1(s,a) {}
93#define DDprintf2(s,a,b) {}
94
95#endif /* RF_DEBUG_RECON */
96
97
98static struct pool rf_recond_pool;
99#define RF_MAX_FREE_RECOND  4
100#define RF_RECOND_INC       1
101
102static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
103					      RF_RaidDisk_t *, int, RF_RowCol_t);
104static void FreeReconDesc(RF_RaidReconDesc_t *);
105static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
106static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
107static int TryToRead(RF_Raid_t *, RF_RowCol_t);
108static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
109				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
110				RF_SectorNum_t *);
111static int IssueNextWriteRequest(RF_Raid_t *);
112static int ReconReadDoneProc(void *, int);
113static int ReconWriteDoneProc(void *, int);
114static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
115static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
116			       RF_RowCol_t, RF_HeadSepLimit_t,
117			       RF_ReconUnitNum_t);
118static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
119					      RF_ReconParityStripeStatus_t *,
120					      RF_PerDiskReconCtrl_t *,
121					      RF_RowCol_t, RF_StripeNum_t,
122					      RF_ReconUnitNum_t);
123static void ForceReconReadDoneProc(void *, int);
124static void rf_ShutdownReconstruction(void *);
125
126struct RF_ReconDoneProc_s {
127	void    (*proc) (RF_Raid_t *, void *);
128	void   *arg;
129	RF_ReconDoneProc_t *next;
130};
131
132/**************************************************************************
133 *
134 * sets up the parameters that will be used by the reconstruction process
135 * currently there are none, except for those that the layout-specific
136 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
137 *
138 * in the kernel, we fire off the recon thread.
139 *
140 **************************************************************************/
141static void
142rf_ShutdownReconstruction(void *ignored)
143{
144	pool_destroy(&rf_recond_pool);
145}
146
147int
148rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
149{
150
151	pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0,
152		  "rf_recond_pl", NULL);
153	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
154
155	return (0);
156}
157
158static RF_RaidReconDesc_t *
159AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
160		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
161		   RF_RowCol_t scol)
162{
163
164	RF_RaidReconDesc_t *reconDesc;
165
166	reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */
167
168	reconDesc->raidPtr = raidPtr;
169	reconDesc->col = col;
170	reconDesc->spareDiskPtr = spareDiskPtr;
171	reconDesc->numDisksDone = numDisksDone;
172	reconDesc->scol = scol;
173	reconDesc->state = 0;
174	reconDesc->next = NULL;
175
176	return (reconDesc);
177}
178
179static void
180FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
181{
182#if RF_RECON_STATS > 0
183	printf("raid%d: %lu recon event waits, %lu recon delays\n",
184	       reconDesc->raidPtr->raidid,
185	       (long) reconDesc->numReconEventWaits,
186	       (long) reconDesc->numReconExecDelays);
187#endif				/* RF_RECON_STATS > 0 */
188	printf("raid%d: %lu max exec ticks\n",
189	       reconDesc->raidPtr->raidid,
190	       (long) reconDesc->maxReconExecTicks);
191#if (RF_RECON_STATS > 0) || defined(KERNEL)
192	printf("\n");
193#endif				/* (RF_RECON_STATS > 0) || KERNEL */
194	pool_put(&rf_recond_pool, reconDesc);
195}
196
197
198/*****************************************************************************
199 *
200 * primary routine to reconstruct a failed disk.  This should be called from
201 * within its own thread.  It won't return until reconstruction completes,
202 * fails, or is aborted.
203 *****************************************************************************/
204int
205rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
206{
207	const RF_LayoutSW_t *lp;
208	int     rc;
209
210	lp = raidPtr->Layout.map;
211	if (lp->SubmitReconBuffer) {
212		/*
213	         * The current infrastructure only supports reconstructing one
214	         * disk at a time for each array.
215	         */
216		RF_LOCK_MUTEX(raidPtr->mutex);
217		while (raidPtr->reconInProgress) {
218			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
219		}
220		raidPtr->reconInProgress++;
221		RF_UNLOCK_MUTEX(raidPtr->mutex);
222		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
223		RF_LOCK_MUTEX(raidPtr->mutex);
224		raidPtr->reconInProgress--;
225		RF_UNLOCK_MUTEX(raidPtr->mutex);
226	} else {
227		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
228		    lp->parityConfig);
229		rc = EIO;
230	}
231	RF_SIGNAL_COND(raidPtr->waitForReconCond);
232	return (rc);
233}
234
235int
236rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
237{
238	RF_ComponentLabel_t c_label;
239	RF_RaidDisk_t *spareDiskPtr = NULL;
240	RF_RaidReconDesc_t *reconDesc;
241	RF_RowCol_t scol;
242	int     numDisksDone = 0, rc;
243
244	/* first look for a spare drive onto which to reconstruct the data */
245	/* spare disk descriptors are stored in row 0.  This may have to
246	 * change eventually */
247
248	RF_LOCK_MUTEX(raidPtr->mutex);
249	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
250
251	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
252		if (raidPtr->status != rf_rs_degraded) {
253			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
254			RF_UNLOCK_MUTEX(raidPtr->mutex);
255			return (EINVAL);
256		}
257		scol = (-1);
258	} else {
259		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
260			if (raidPtr->Disks[scol].status == rf_ds_spare) {
261				spareDiskPtr = &raidPtr->Disks[scol];
262				spareDiskPtr->status = rf_ds_used_spare;
263				break;
264			}
265		}
266		if (!spareDiskPtr) {
267			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
268			RF_UNLOCK_MUTEX(raidPtr->mutex);
269			return (ENOSPC);
270		}
271		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
272	}
273	RF_UNLOCK_MUTEX(raidPtr->mutex);
274
275	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
276	raidPtr->reconDesc = (void *) reconDesc;
277#if RF_RECON_STATS > 0
278	reconDesc->hsStallCount = 0;
279	reconDesc->numReconExecDelays = 0;
280	reconDesc->numReconEventWaits = 0;
281#endif				/* RF_RECON_STATS > 0 */
282	reconDesc->reconExecTimerRunning = 0;
283	reconDesc->reconExecTicks = 0;
284	reconDesc->maxReconExecTicks = 0;
285	rc = rf_ContinueReconstructFailedDisk(reconDesc);
286
287	if (!rc) {
288		/* fix up the component label */
289		/* Don't actually need the read here.. */
290		raidread_component_label(
291                        raidPtr->raid_cinfo[scol].ci_dev,
292			raidPtr->raid_cinfo[scol].ci_vp,
293			&c_label);
294
295		raid_init_component_label( raidPtr, &c_label);
296		c_label.row = 0;
297		c_label.column = col;
298		c_label.clean = RF_RAID_DIRTY;
299		c_label.status = rf_ds_optimal;
300		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
301
302		/* We've just done a rebuild based on all the other
303		   disks, so at this point the parity is known to be
304		   clean, even if it wasn't before. */
305
306		/* XXX doesn't hold for RAID 6!!*/
307
308		RF_LOCK_MUTEX(raidPtr->mutex);
309		raidPtr->parity_good = RF_RAID_CLEAN;
310		RF_UNLOCK_MUTEX(raidPtr->mutex);
311
312		/* XXXX MORE NEEDED HERE */
313
314		raidwrite_component_label(
315                        raidPtr->raid_cinfo[scol].ci_dev,
316			raidPtr->raid_cinfo[scol].ci_vp,
317			&c_label);
318
319
320		rf_update_component_labels(raidPtr,
321					   RF_NORMAL_COMPONENT_UPDATE);
322
323	}
324	return (rc);
325}
326
327/*
328
329   Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
330   and you don't get a spare until the next Monday.  With this function
331   (and hot-swappable drives) you can now put your new disk containing
332   /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
333   rebuild the data "on the spot".
334
335*/
336
337int
338rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
339{
340	RF_RaidDisk_t *spareDiskPtr = NULL;
341	RF_RaidReconDesc_t *reconDesc;
342	const RF_LayoutSW_t *lp;
343	RF_ComponentLabel_t c_label;
344	int     numDisksDone = 0, rc;
345	struct partinfo dpart;
346	struct vnode *vp;
347	struct vattr va;
348	struct proc *proc;
349	int retcode;
350	int ac;
351
352	lp = raidPtr->Layout.map;
353	if (!lp->SubmitReconBuffer) {
354		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
355			     lp->parityConfig);
356		/* wakeup anyone who might be waiting to do a reconstruct */
357		RF_SIGNAL_COND(raidPtr->waitForReconCond);
358		return(EIO);
359	}
360
361	/*
362	 * The current infrastructure only supports reconstructing one
363	 * disk at a time for each array.
364	 */
365	RF_LOCK_MUTEX(raidPtr->mutex);
366
367	if (raidPtr->Disks[col].status != rf_ds_failed) {
368		/* "It's gone..." */
369		raidPtr->numFailures++;
370		raidPtr->Disks[col].status = rf_ds_failed;
371		raidPtr->status = rf_rs_degraded;
372		RF_UNLOCK_MUTEX(raidPtr->mutex);
373		rf_update_component_labels(raidPtr,
374					   RF_NORMAL_COMPONENT_UPDATE);
375		RF_LOCK_MUTEX(raidPtr->mutex);
376	}
377
378	while (raidPtr->reconInProgress) {
379		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
380	}
381
382	raidPtr->reconInProgress++;
383
384	/* first look for a spare drive onto which to reconstruct the
385	   data.  spare disk descriptors are stored in row 0.  This
386	   may have to change eventually */
387
388	/* Actually, we don't care if it's failed or not...  On a RAID
389	   set with correct parity, this function should be callable
390	   on any component without ill affects. */
391	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
392
393	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
394		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
395
396		raidPtr->reconInProgress--;
397		RF_UNLOCK_MUTEX(raidPtr->mutex);
398		RF_SIGNAL_COND(raidPtr->waitForReconCond);
399		return (EINVAL);
400	}
401
402	proc = raidPtr->engine_thread;
403
404	/* This device may have been opened successfully the
405	   first time. Close it before trying to open it again.. */
406
407	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
408#if 0
409		printf("Closed the open device: %s\n",
410		       raidPtr->Disks[col].devname);
411#endif
412		vp = raidPtr->raid_cinfo[col].ci_vp;
413		ac = raidPtr->Disks[col].auto_configured;
414		RF_UNLOCK_MUTEX(raidPtr->mutex);
415		rf_close_component(raidPtr, vp, ac);
416		RF_LOCK_MUTEX(raidPtr->mutex);
417		raidPtr->raid_cinfo[col].ci_vp = NULL;
418	}
419	/* note that this disk was *not* auto_configured (any longer)*/
420	raidPtr->Disks[col].auto_configured = 0;
421
422#if 0
423	printf("About to (re-)open the device for rebuilding: %s\n",
424	       raidPtr->Disks[col].devname);
425#endif
426	RF_UNLOCK_MUTEX(raidPtr->mutex);
427	retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
428
429	if (retcode) {
430		printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
431		       raidPtr->Disks[col].devname, retcode);
432
433		/* the component isn't responding properly...
434		   must be still dead :-( */
435		RF_LOCK_MUTEX(raidPtr->mutex);
436		raidPtr->reconInProgress--;
437		RF_UNLOCK_MUTEX(raidPtr->mutex);
438		RF_SIGNAL_COND(raidPtr->waitForReconCond);
439		return(retcode);
440	}
441
442	/* Ok, so we can at least do a lookup...
443	   How about actually getting a vp for it? */
444
445	if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
446		RF_LOCK_MUTEX(raidPtr->mutex);
447		raidPtr->reconInProgress--;
448		RF_UNLOCK_MUTEX(raidPtr->mutex);
449		RF_SIGNAL_COND(raidPtr->waitForReconCond);
450		return(retcode);
451	}
452
453	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
454	if (retcode) {
455		RF_LOCK_MUTEX(raidPtr->mutex);
456		raidPtr->reconInProgress--;
457		RF_UNLOCK_MUTEX(raidPtr->mutex);
458		RF_SIGNAL_COND(raidPtr->waitForReconCond);
459		return(retcode);
460	}
461	RF_LOCK_MUTEX(raidPtr->mutex);
462	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
463
464	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
465		rf_protectedSectors;
466
467	raidPtr->raid_cinfo[col].ci_vp = vp;
468	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
469
470	raidPtr->Disks[col].dev = va.va_rdev;
471
472	/* we allow the user to specify that only a fraction
473	   of the disks should be used this is just for debug:
474	   it speeds up * the parity scan */
475	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
476		rf_sizePercentage / 100;
477	RF_UNLOCK_MUTEX(raidPtr->mutex);
478
479	spareDiskPtr = &raidPtr->Disks[col];
480	spareDiskPtr->status = rf_ds_used_spare;
481
482	printf("raid%d: initiating in-place reconstruction on column %d\n",
483	       raidPtr->raidid, col);
484
485	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
486				       numDisksDone, col);
487	raidPtr->reconDesc = (void *) reconDesc;
488#if RF_RECON_STATS > 0
489	reconDesc->hsStallCount = 0;
490	reconDesc->numReconExecDelays = 0;
491	reconDesc->numReconEventWaits = 0;
492#endif				/* RF_RECON_STATS > 0 */
493	reconDesc->reconExecTimerRunning = 0;
494	reconDesc->reconExecTicks = 0;
495	reconDesc->maxReconExecTicks = 0;
496	rc = rf_ContinueReconstructFailedDisk(reconDesc);
497
498	RF_LOCK_MUTEX(raidPtr->mutex);
499	raidPtr->reconInProgress--;
500	RF_UNLOCK_MUTEX(raidPtr->mutex);
501
502	if (!rc) {
503		RF_LOCK_MUTEX(raidPtr->mutex);
504		/* Need to set these here, as at this point it'll be claiming
505		   that the disk is in rf_ds_spared!  But we know better :-) */
506
507		raidPtr->Disks[col].status = rf_ds_optimal;
508		raidPtr->status = rf_rs_optimal;
509		RF_UNLOCK_MUTEX(raidPtr->mutex);
510
511		/* fix up the component label */
512		/* Don't actually need the read here.. */
513		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
514					 raidPtr->raid_cinfo[col].ci_vp,
515					 &c_label);
516
517		RF_LOCK_MUTEX(raidPtr->mutex);
518		raid_init_component_label(raidPtr, &c_label);
519
520		c_label.row = 0;
521		c_label.column = col;
522
523		/* We've just done a rebuild based on all the other
524		   disks, so at this point the parity is known to be
525		   clean, even if it wasn't before. */
526
527		/* XXX doesn't hold for RAID 6!!*/
528
529		raidPtr->parity_good = RF_RAID_CLEAN;
530		RF_UNLOCK_MUTEX(raidPtr->mutex);
531
532		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
533					  raidPtr->raid_cinfo[col].ci_vp,
534					  &c_label);
535
536		rf_update_component_labels(raidPtr,
537					   RF_NORMAL_COMPONENT_UPDATE);
538
539	}
540	RF_SIGNAL_COND(raidPtr->waitForReconCond);
541	return (rc);
542}
543
544
545int
546rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
547{
548	RF_Raid_t *raidPtr = reconDesc->raidPtr;
549	RF_RowCol_t col = reconDesc->col;
550	RF_RowCol_t scol = reconDesc->scol;
551	RF_ReconMap_t *mapPtr;
552	RF_ReconCtrl_t *tmp_reconctrl;
553	RF_ReconEvent_t *event;
554	struct timeval etime, elpsd;
555	unsigned long xor_s, xor_resid_us;
556	int     i, ds;
557
558	switch (reconDesc->state) {
559
560
561	case 0:
562
563		raidPtr->accumXorTimeUs = 0;
564#if RF_ACC_TRACE > 0
565		/* create one trace record per physical disk */
566		RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
567#endif
568
569		/* quiesce the array prior to starting recon.  this is needed
570		 * to assure no nasty interactions with pending user writes.
571		 * We need to do this before we change the disk or row status. */
572		reconDesc->state = 1;
573
574		Dprintf("RECON: begin request suspend\n");
575		rf_SuspendNewRequestsAndWait(raidPtr);
576		Dprintf("RECON: end request suspend\n");
577		rf_StartUserStats(raidPtr);	/* zero out the stats kept on
578						 * user accs */
579
580		/* fall through to state 1 */
581
582	case 1:
583
584		/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
585		tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
586
587		RF_LOCK_MUTEX(raidPtr->mutex);
588
589		/* create the reconstruction control pointer and install it in
590		 * the right slot */
591		raidPtr->reconControl = tmp_reconctrl;
592		mapPtr = raidPtr->reconControl->reconMap;
593		raidPtr->status = rf_rs_reconstructing;
594		raidPtr->Disks[col].status = rf_ds_reconstructing;
595		raidPtr->Disks[col].spareCol = scol;
596
597		RF_UNLOCK_MUTEX(raidPtr->mutex);
598
599		RF_GETTIME(raidPtr->reconControl->starttime);
600
601		/* now start up the actual reconstruction: issue a read for
602		 * each surviving disk */
603
604		reconDesc->numDisksDone = 0;
605		for (i = 0; i < raidPtr->numCol; i++) {
606			if (i != col) {
607				/* find and issue the next I/O on the
608				 * indicated disk */
609				if (IssueNextReadRequest(raidPtr, i)) {
610					Dprintf1("RECON: done issuing for c%d\n", i);
611					reconDesc->numDisksDone++;
612				}
613			}
614		}
615
616	case 2:
617		Dprintf("RECON: resume requests\n");
618		rf_ResumeNewRequests(raidPtr);
619
620
621		reconDesc->state = 3;
622
623	case 3:
624
625		/* process reconstruction events until all disks report that
626		 * they've completed all work */
627		mapPtr = raidPtr->reconControl->reconMap;
628
629
630
631		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
632
633			event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
634			RF_ASSERT(event);
635
636			if (ProcessReconEvent(raidPtr, event))
637				reconDesc->numDisksDone++;
638			raidPtr->reconControl->numRUsTotal =
639				mapPtr->totalRUs;
640			raidPtr->reconControl->numRUsComplete =
641				mapPtr->totalRUs -
642				rf_UnitsLeftToReconstruct(mapPtr);
643#if RF_DEBUG_RECON
644			raidPtr->reconControl->percentComplete =
645				(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
646			if (rf_prReconSched) {
647				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
648			}
649#endif
650		}
651
652
653
654		reconDesc->state = 4;
655
656
657	case 4:
658		mapPtr = raidPtr->reconControl->reconMap;
659		if (rf_reconDebug) {
660			printf("RECON: all reads completed\n");
661		}
662		/* at this point all the reads have completed.  We now wait
663		 * for any pending writes to complete, and then we're done */
664
665		while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
666
667			event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
668			RF_ASSERT(event);
669
670			(void) ProcessReconEvent(raidPtr, event);	/* ignore return code */
671#if RF_DEBUG_RECON
672			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
673			if (rf_prReconSched) {
674				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
675			}
676#endif
677		}
678		reconDesc->state = 5;
679
680	case 5:
681		/* Success:  mark the dead disk as reconstructed.  We quiesce
682		 * the array here to assure no nasty interactions with pending
683		 * user accesses when we free up the psstatus structure as
684		 * part of FreeReconControl() */
685
686		reconDesc->state = 6;
687
688		rf_SuspendNewRequestsAndWait(raidPtr);
689		rf_StopUserStats(raidPtr);
690		rf_PrintUserStats(raidPtr);	/* print out the stats on user
691						 * accs accumulated during
692						 * recon */
693
694		/* fall through to state 6 */
695	case 6:
696
697
698
699		RF_LOCK_MUTEX(raidPtr->mutex);
700		raidPtr->numFailures--;
701		ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
702		raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
703		raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
704		RF_UNLOCK_MUTEX(raidPtr->mutex);
705		RF_GETTIME(etime);
706		RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
707
708		/* XXX -- why is state 7 different from state 6 if there is no
709		 * return() here? -- XXX Note that I set elpsd above & use it
710		 * below, so if you put a return here you'll have to fix this.
711		 * (also, FreeReconControl is called below) */
712
713	case 7:
714
715		rf_ResumeNewRequests(raidPtr);
716
717		printf("raid%d: Reconstruction of disk at col %d completed\n",
718		       raidPtr->raidid, col);
719		xor_s = raidPtr->accumXorTimeUs / 1000000;
720		xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
721		printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
722		       raidPtr->raidid,
723		       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
724		       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
725		printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
726		       raidPtr->raidid,
727		       (int) raidPtr->reconControl->starttime.tv_sec,
728		       (int) raidPtr->reconControl->starttime.tv_usec,
729		       (int) etime.tv_sec, (int) etime.tv_usec);
730
731#if RF_RECON_STATS > 0
732		printf("raid%d: Total head-sep stall count was %d\n",
733		       raidPtr->raidid, (int) reconDesc->hsStallCount);
734#endif				/* RF_RECON_STATS > 0 */
735		rf_FreeReconControl(raidPtr);
736#if RF_ACC_TRACE > 0
737		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
738#endif
739		FreeReconDesc(reconDesc);
740
741	}
742
743	return (0);
744}
745/*****************************************************************************
746 * do the right thing upon each reconstruction event.
747 * returns nonzero if and only if there is nothing left unread on the
748 * indicated disk
749 *****************************************************************************/
750static int
751ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
752{
753	int     retcode = 0, submitblocked;
754	RF_ReconBuffer_t *rbuf;
755	RF_SectorCount_t sectorsPerRU;
756
757	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
758	switch (event->type) {
759
760		/* a read I/O has completed */
761	case RF_REVENT_READDONE:
762		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
763		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
764		    event->col, rbuf->parityStripeID);
765		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
766		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
767		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
768		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
769		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
770		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
771		if (!submitblocked)
772			retcode = IssueNextReadRequest(raidPtr, event->col);
773		break;
774
775		/* a write I/O has completed */
776	case RF_REVENT_WRITEDONE:
777#if RF_DEBUG_RECON
778		if (rf_floatingRbufDebug) {
779			rf_CheckFloatingRbufCount(raidPtr, 1);
780		}
781#endif
782		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
783		rbuf = (RF_ReconBuffer_t *) event->arg;
784		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
785		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
786		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
787		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
788		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
789		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
790
791		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
792			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
793			raidPtr->numFullReconBuffers--;
794			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
795			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
796		} else
797			if (rbuf->type == RF_RBUF_TYPE_FORCED)
798				rf_FreeReconBuffer(rbuf);
799			else
800				RF_ASSERT(0);
801		break;
802
803	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
804					 * cleared */
805		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
806		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
807		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
808						 * BUFCLEAR event if we
809						 * couldn't submit */
810		retcode = IssueNextReadRequest(raidPtr, event->col);
811		break;
812
813	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
814					 * blockage has been cleared */
815		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
816		retcode = TryToRead(raidPtr, event->col);
817		break;
818
819	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
820					 * reconstruction blockage has been
821					 * cleared */
822		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
823		retcode = TryToRead(raidPtr, event->col);
824		break;
825
826		/* a buffer has become ready to write */
827	case RF_REVENT_BUFREADY:
828		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
829		retcode = IssueNextWriteRequest(raidPtr);
830#if RF_DEBUG_RECON
831		if (rf_floatingRbufDebug) {
832			rf_CheckFloatingRbufCount(raidPtr, 1);
833		}
834#endif
835		break;
836
837		/* we need to skip the current RU entirely because it got
838		 * recon'd while we were waiting for something else to happen */
839	case RF_REVENT_SKIP:
840		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
841		retcode = IssueNextReadRequest(raidPtr, event->col);
842		break;
843
844		/* a forced-reconstruction read access has completed.  Just
845		 * submit the buffer */
846	case RF_REVENT_FORCEDREADDONE:
847		rbuf = (RF_ReconBuffer_t *) event->arg;
848		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
849		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
850		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
851		RF_ASSERT(!submitblocked);
852		break;
853
854	default:
855		RF_PANIC();
856	}
857	rf_FreeReconEventDesc(event);
858	return (retcode);
859}
860/*****************************************************************************
861 *
862 * find the next thing that's needed on the indicated disk, and issue
863 * a read request for it.  We assume that the reconstruction buffer
864 * associated with this process is free to receive the data.  If
865 * reconstruction is blocked on the indicated RU, we issue a
866 * blockage-release request instead of a physical disk read request.
867 * If the current disk gets too far ahead of the others, we issue a
868 * head-separation wait request and return.
869 *
870 * ctrl->{ru_count, curPSID, diskOffset} and
871 * rbuf->failedDiskSectorOffset are maintained to point to the unit
872 * we're currently accessing.  Note that this deviates from the
873 * standard C idiom of having counters point to the next thing to be
874 * accessed.  This allows us to easily retry when we're blocked by
875 * head separation or reconstruction-blockage events.
876 *
877 * returns nonzero if and only if there is nothing left unread on the
878 * indicated disk
879 *
880 *****************************************************************************/
881static int
882IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
883{
884	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
885	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
886	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
887	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
888	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
889	int     do_new_check = 0, retcode = 0, status;
890
891	/* if we are currently the slowest disk, mark that we have to do a new
892	 * check */
893	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
894		do_new_check = 1;
895
896	while (1) {
897
898		ctrl->ru_count++;
899		if (ctrl->ru_count < RUsPerPU) {
900			ctrl->diskOffset += sectorsPerRU;
901			rbuf->failedDiskSectorOffset += sectorsPerRU;
902		} else {
903			ctrl->curPSID++;
904			ctrl->ru_count = 0;
905			/* code left over from when head-sep was based on
906			 * parity stripe id */
907			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
908				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
909				return (1);	/* finito! */
910			}
911			/* find the disk offsets of the start of the parity
912			 * stripe on both the current disk and the failed
913			 * disk. skip this entire parity stripe if either disk
914			 * does not appear in the indicated PS */
915			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
916			    &rbuf->spCol, &rbuf->spOffset);
917			if (status) {
918				ctrl->ru_count = RUsPerPU - 1;
919				continue;
920			}
921		}
922		rbuf->which_ru = ctrl->ru_count;
923
924		/* skip this RU if it's already been reconstructed */
925		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
926			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
927			continue;
928		}
929		break;
930	}
931	ctrl->headSepCounter++;
932	if (do_new_check)
933		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
934
935
936	/* at this point, we have definitely decided what to do, and we have
937	 * only to see if we can actually do it now */
938	rbuf->parityStripeID = ctrl->curPSID;
939	rbuf->which_ru = ctrl->ru_count;
940#if RF_ACC_TRACE > 0
941	memset((char *) &raidPtr->recon_tracerecs[col], 0,
942	    sizeof(raidPtr->recon_tracerecs[col]));
943	raidPtr->recon_tracerecs[col].reconacc = 1;
944	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
945#endif
946	retcode = TryToRead(raidPtr, col);
947	return (retcode);
948}
949
950/*
951 * tries to issue the next read on the indicated disk.  We may be
952 * blocked by (a) the heads being too far apart, or (b) recon on the
953 * indicated RU being blocked due to a write by a user thread.  In
954 * this case, we issue a head-sep or blockage wait request, which will
955 * cause this same routine to be invoked again later when the blockage
956 * has cleared.
957 */
958
959static int
960TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
961{
962	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
963	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
964	RF_StripeNum_t psid = ctrl->curPSID;
965	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
966	RF_DiskQueueData_t *req;
967	int     status;
968	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
969
970	/* if the current disk is too far ahead of the others, issue a
971	 * head-separation wait and return */
972	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
973		return (0);
974
975	/* allocate a new PSS in case we need it */
976	newpssPtr = rf_AllocPSStatus(raidPtr);
977
978	RF_LOCK_PSS_MUTEX(raidPtr, psid);
979	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
980
981	if (pssPtr != newpssPtr) {
982		rf_FreePSStatus(raidPtr, newpssPtr);
983	}
984
985	/* if recon is blocked on the indicated parity stripe, issue a
986	 * block-wait request and return. this also must mark the indicated RU
987	 * in the stripe as under reconstruction if not blocked. */
988	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
989	if (status == RF_PSS_RECON_BLOCKED) {
990		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
991		goto out;
992	} else
993		if (status == RF_PSS_FORCED_ON_WRITE) {
994			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
995			goto out;
996		}
997	/* make one last check to be sure that the indicated RU didn't get
998	 * reconstructed while we were waiting for something else to happen.
999	 * This is unfortunate in that it causes us to make this check twice
1000	 * in the normal case.  Might want to make some attempt to re-work
1001	 * this so that we only do this check if we've definitely blocked on
1002	 * one of the above checks.  When this condition is detected, we may
1003	 * have just created a bogus status entry, which we need to delete. */
1004	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1005		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1006		if (pssPtr == newpssPtr)
1007			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1008		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1009		goto out;
1010	}
1011	/* found something to read.  issue the I/O */
1012	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1013	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1014#if RF_ACC_TRACE > 0
1015	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1016	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1017	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1018	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1019	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1020#endif
1021	/* should be ok to use a NULL proc pointer here, all the bufs we use
1022	 * should be in kernel space */
1023	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1024	    ReconReadDoneProc, (void *) ctrl, NULL,
1025#if RF_ACC_TRACE > 0
1026				     &raidPtr->recon_tracerecs[col],
1027#else
1028				     NULL,
1029#endif
1030				     (void *) raidPtr, 0, NULL);
1031
1032	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1033
1034	ctrl->rbuf->arg = (void *) req;
1035	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1036	pssPtr->issued[col] = 1;
1037
1038out:
1039	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1040	return (0);
1041}
1042
1043
1044/*
1045 * given a parity stripe ID, we want to find out whether both the
1046 * current disk and the failed disk exist in that parity stripe.  If
1047 * not, we want to skip this whole PS.  If so, we want to find the
1048 * disk offset of the start of the PS on both the current disk and the
1049 * failed disk.
1050 *
1051 * this works by getting a list of disks comprising the indicated
1052 * parity stripe, and searching the list for the current and failed
1053 * disks.  Once we've decided they both exist in the parity stripe, we
1054 * need to decide whether each is data or parity, so that we'll know
1055 * which mapping function to call to get the corresponding disk
1056 * offsets.
1057 *
1058 * this is kind of unpleasant, but doing it this way allows the
1059 * reconstruction code to use parity stripe IDs rather than physical
1060 * disks address to march through the failed disk, which greatly
1061 * simplifies a lot of code, as well as eliminating the need for a
1062 * reverse-mapping function.  I also think it will execute faster,
1063 * since the calls to the mapping module are kept to a minimum.
1064 *
1065 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1066 * THE STRIPE IN THE CORRECT ORDER
1067 *
1068 * raidPtr          - raid descriptor
1069 * psid             - parity stripe identifier
1070 * col              - column of disk to find the offsets for
1071 * spCol            - out: col of spare unit for failed unit
1072 * spOffset         - out: offset into disk containing spare unit
1073 *
1074 */
1075
1076
1077static int
1078ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1079		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1080		     RF_SectorNum_t *outFailedDiskSectorOffset,
1081		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1082{
1083	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1084	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1085	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
1086	RF_RowCol_t *diskids;
1087	u_int   i, j, k, i_offset, j_offset;
1088	RF_RowCol_t pcol;
1089	int     testcol;
1090	RF_SectorNum_t poffset;
1091	char    i_is_parity = 0, j_is_parity = 0;
1092	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1093
1094	/* get a listing of the disks comprising that stripe */
1095	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1096	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1097	RF_ASSERT(diskids);
1098
1099	/* reject this entire parity stripe if it does not contain the
1100	 * indicated disk or it does not contain the failed disk */
1101
1102	for (i = 0; i < stripeWidth; i++) {
1103		if (col == diskids[i])
1104			break;
1105	}
1106	if (i == stripeWidth)
1107		goto skipit;
1108	for (j = 0; j < stripeWidth; j++) {
1109		if (fcol == diskids[j])
1110			break;
1111	}
1112	if (j == stripeWidth) {
1113		goto skipit;
1114	}
1115	/* find out which disk the parity is on */
1116	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1117
1118	/* find out if either the current RU or the failed RU is parity */
1119	/* also, if the parity occurs in this stripe prior to the data and/or
1120	 * failed col, we need to decrement i and/or j */
1121	for (k = 0; k < stripeWidth; k++)
1122		if (diskids[k] == pcol)
1123			break;
1124	RF_ASSERT(k < stripeWidth);
1125	i_offset = i;
1126	j_offset = j;
1127	if (k < i)
1128		i_offset--;
1129	else
1130		if (k == i) {
1131			i_is_parity = 1;
1132			i_offset = 0;
1133		}		/* set offsets to zero to disable multiply
1134				 * below */
1135	if (k < j)
1136		j_offset--;
1137	else
1138		if (k == j) {
1139			j_is_parity = 1;
1140			j_offset = 0;
1141		}
1142	/* at this point, [ij]_is_parity tells us whether the [current,failed]
1143	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1144	 * tells us how far into the stripe the [current,failed] disk is. */
1145
1146	/* call the mapping routine to get the offset into the current disk,
1147	 * repeat for failed disk. */
1148	if (i_is_parity)
1149		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1150	else
1151		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1152
1153	RF_ASSERT(col == testcol);
1154
1155	if (j_is_parity)
1156		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1157	else
1158		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1159	RF_ASSERT(fcol == testcol);
1160
1161	/* now locate the spare unit for the failed unit */
1162	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1163		if (j_is_parity)
1164			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1165		else
1166			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1167	} else {
1168		*spCol = raidPtr->reconControl->spareCol;
1169		*spOffset = *outFailedDiskSectorOffset;
1170	}
1171
1172	return (0);
1173
1174skipit:
1175	Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1176	    psid, col);
1177	return (1);
1178}
1179/* this is called when a buffer has become ready to write to the replacement disk */
1180static int
1181IssueNextWriteRequest(RF_Raid_t *raidPtr)
1182{
1183	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1184	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1185#if RF_ACC_TRACE > 0
1186	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1187#endif
1188	RF_ReconBuffer_t *rbuf;
1189	RF_DiskQueueData_t *req;
1190
1191	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1192	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
1193				 * have gotten the event that sent us here */
1194	RF_ASSERT(rbuf->pssPtr);
1195
1196	rbuf->pssPtr->writeRbuf = rbuf;
1197	rbuf->pssPtr = NULL;
1198
1199	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1200	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1201	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1202	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
1203	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1204	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1205
1206	/* should be ok to use a NULL b_proc here b/c all addrs should be in
1207	 * kernel space */
1208	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1209	    sectorsPerRU, rbuf->buffer,
1210	    rbuf->parityStripeID, rbuf->which_ru,
1211	    ReconWriteDoneProc, (void *) rbuf, NULL,
1212#if RF_ACC_TRACE > 0
1213	    &raidPtr->recon_tracerecs[fcol],
1214#else
1215				     NULL,
1216#endif
1217	    (void *) raidPtr, 0, NULL);
1218
1219	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
1220
1221	rbuf->arg = (void *) req;
1222	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1223
1224	return (0);
1225}
1226
1227/*
1228 * this gets called upon the completion of a reconstruction read
1229 * operation the arg is a pointer to the per-disk reconstruction
1230 * control structure for the process that just finished a read.
1231 *
1232 * called at interrupt context in the kernel, so don't do anything
1233 * illegal here.
1234 */
1235static int
1236ReconReadDoneProc(void *arg, int status)
1237{
1238	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1239	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1240
1241	if (status) {
1242		/*
1243	         * XXX
1244	         */
1245		printf("Recon read failed!\n");
1246		RF_PANIC();
1247	}
1248#if RF_ACC_TRACE > 0
1249	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1250	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1251	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1252	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1253	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1254#endif
1255	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1256	return (0);
1257}
1258/* this gets called upon the completion of a reconstruction write operation.
1259 * the arg is a pointer to the rbuf that was just written
1260 *
1261 * called at interrupt context in the kernel, so don't do anything illegal here.
1262 */
1263static int
1264ReconWriteDoneProc(void *arg, int status)
1265{
1266	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1267
1268	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1269	if (status) {
1270		printf("Recon write failed!\n");	/* fprintf(stderr,"Recon
1271							 * write failed!\n"); */
1272		RF_PANIC();
1273	}
1274	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1275	return (0);
1276}
1277
1278
1279/*
1280 * computes a new minimum head sep, and wakes up anyone who needs to
1281 * be woken as a result
1282 */
1283static void
1284CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1285{
1286	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1287	RF_HeadSepLimit_t new_min;
1288	RF_RowCol_t i;
1289	RF_CallbackDesc_t *p;
1290	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
1291								 * of a minimum */
1292
1293
1294	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1295
1296	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
1297	for (i = 0; i < raidPtr->numCol; i++)
1298		if (i != reconCtrlPtr->fcol) {
1299			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1300				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1301		}
1302	/* set the new minimum and wake up anyone who can now run again */
1303	if (new_min != reconCtrlPtr->minHeadSepCounter) {
1304		reconCtrlPtr->minHeadSepCounter = new_min;
1305		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
1306		while (reconCtrlPtr->headSepCBList) {
1307			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1308				break;
1309			p = reconCtrlPtr->headSepCBList;
1310			reconCtrlPtr->headSepCBList = p->next;
1311			p->next = NULL;
1312			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1313			rf_FreeCallbackDesc(p);
1314		}
1315
1316	}
1317	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1318}
1319
1320/*
1321 * checks to see that the maximum head separation will not be violated
1322 * if we initiate a reconstruction I/O on the indicated disk.
1323 * Limiting the maximum head separation between two disks eliminates
1324 * the nasty buffer-stall conditions that occur when one disk races
1325 * ahead of the others and consumes all of the floating recon buffers.
1326 * This code is complex and unpleasant but it's necessary to avoid
1327 * some very nasty, albeit fairly rare, reconstruction behavior.
1328 *
1329 * returns non-zero if and only if we have to stop working on the
1330 * indicated disk due to a head-separation delay.
1331 */
1332static int
1333CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1334		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1335		    RF_ReconUnitNum_t which_ru)
1336{
1337	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1338	RF_CallbackDesc_t *cb, *p, *pt;
1339	int     retval = 0;
1340
1341	/* if we're too far ahead of the slowest disk, stop working on this
1342	 * disk until the slower ones catch up.  We do this by scheduling a
1343	 * wakeup callback for the time when the slowest disk has caught up.
1344	 * We define "caught up" with 20% hysteresis, i.e. the head separation
1345	 * must have fallen to at most 80% of the max allowable head
1346	 * separation before we'll wake up.
1347	 *
1348	 */
1349	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1350	if ((raidPtr->headSepLimit >= 0) &&
1351	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1352		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1353			 raidPtr->raidid, col, ctrl->headSepCounter,
1354			 reconCtrlPtr->minHeadSepCounter,
1355			 raidPtr->headSepLimit);
1356		cb = rf_AllocCallbackDesc();
1357		/* the minHeadSepCounter value we have to get to before we'll
1358		 * wake up.  build in 20% hysteresis. */
1359		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1360		cb->col = col;
1361		cb->next = NULL;
1362
1363		/* insert this callback descriptor into the sorted list of
1364		 * pending head-sep callbacks */
1365		p = reconCtrlPtr->headSepCBList;
1366		if (!p)
1367			reconCtrlPtr->headSepCBList = cb;
1368		else
1369			if (cb->callbackArg.v < p->callbackArg.v) {
1370				cb->next = reconCtrlPtr->headSepCBList;
1371				reconCtrlPtr->headSepCBList = cb;
1372			} else {
1373				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1374				cb->next = p;
1375				pt->next = cb;
1376			}
1377		retval = 1;
1378#if RF_RECON_STATS > 0
1379		ctrl->reconCtrl->reconDesc->hsStallCount++;
1380#endif				/* RF_RECON_STATS > 0 */
1381	}
1382	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1383
1384	return (retval);
1385}
1386/*
1387 * checks to see if reconstruction has been either forced or blocked
1388 * by a user operation.  if forced, we skip this RU entirely.  else if
1389 * blocked, put ourselves on the wait list.  else return 0.
1390 *
1391 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1392 */
1393static int
1394CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1395				   RF_ReconParityStripeStatus_t *pssPtr,
1396				   RF_PerDiskReconCtrl_t *ctrl,
1397				   RF_RowCol_t col, RF_StripeNum_t psid,
1398				   RF_ReconUnitNum_t which_ru)
1399{
1400	RF_CallbackDesc_t *cb;
1401	int     retcode = 0;
1402
1403	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1404		retcode = RF_PSS_FORCED_ON_WRITE;
1405	else
1406		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1407			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1408			cb = rf_AllocCallbackDesc();	/* append ourselves to
1409							 * the blockage-wait
1410							 * list */
1411			cb->col = col;
1412			cb->next = pssPtr->blockWaitList;
1413			pssPtr->blockWaitList = cb;
1414			retcode = RF_PSS_RECON_BLOCKED;
1415		}
1416	if (!retcode)
1417		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
1418							 * reconstruction */
1419
1420	return (retcode);
1421}
1422/*
1423 * if reconstruction is currently ongoing for the indicated stripeID,
1424 * reconstruction is forced to completion and we return non-zero to
1425 * indicate that the caller must wait.  If not, then reconstruction is
1426 * blocked on the indicated stripe and the routine returns zero.  If
1427 * and only if we return non-zero, we'll cause the cbFunc to get
1428 * invoked with the cbArg when the reconstruction has completed.
1429 */
1430int
1431rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1432		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1433{
1434	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
1435							 * forcing recon on */
1436	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
1437	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
1438						 * stripe status structure */
1439	RF_StripeNum_t psid;	/* parity stripe id */
1440	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
1441						 * offset */
1442	RF_RowCol_t *diskids;
1443	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
1444	RF_RowCol_t fcol, diskno, i;
1445	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
1446	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1447	RF_CallbackDesc_t *cb;
1448	int     nPromoted;
1449
1450	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1451
1452	/* allocate a new PSS in case we need it */
1453        newpssPtr = rf_AllocPSStatus(raidPtr);
1454
1455	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1456
1457	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1458
1459        if (pssPtr != newpssPtr) {
1460                rf_FreePSStatus(raidPtr, newpssPtr);
1461        }
1462
1463	/* if recon is not ongoing on this PS, just return */
1464	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1465		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1466		return (0);
1467	}
1468	/* otherwise, we have to wait for reconstruction to complete on this
1469	 * RU. */
1470	/* In order to avoid waiting for a potentially large number of
1471	 * low-priority accesses to complete, we force a normal-priority (i.e.
1472	 * not low-priority) reconstruction on this RU. */
1473	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1474		DDprintf1("Forcing recon on psid %ld\n", psid);
1475		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
1476								 * forced recon */
1477		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
1478							 * that we just set */
1479		fcol = raidPtr->reconControl->fcol;
1480
1481		/* get a listing of the disks comprising the indicated stripe */
1482		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1483
1484		/* For previously issued reads, elevate them to normal
1485		 * priority.  If the I/O has already completed, it won't be
1486		 * found in the queue, and hence this will be a no-op. For
1487		 * unissued reads, allocate buffers and issue new reads.  The
1488		 * fact that we've set the FORCED bit means that the regular
1489		 * recon procs will not re-issue these reqs */
1490		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1491			if ((diskno = diskids[i]) != fcol) {
1492				if (pssPtr->issued[diskno]) {
1493					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1494					if (rf_reconDebug && nPromoted)
1495						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1496				} else {
1497					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
1498					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1499					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
1500													 * location */
1501					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
1502					new_rbuf->which_ru = which_ru;
1503					new_rbuf->failedDiskSectorOffset = fd_offset;
1504					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1505
1506					/* use NULL b_proc b/c all addrs
1507					 * should be in kernel space */
1508					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1509					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1510					    NULL, (void *) raidPtr, 0, NULL);
1511
1512					RF_ASSERT(req);	/* XXX -- fix this --
1513							 * XXX */
1514
1515					new_rbuf->arg = req;
1516					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
1517					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1518				}
1519			}
1520		/* if the write is sitting in the disk queue, elevate its
1521		 * priority */
1522		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1523			printf("raid%d: promoted write to col %d\n",
1524			       raidPtr->raidid, fcol);
1525	}
1526	/* install a callback descriptor to be invoked when recon completes on
1527	 * this parity stripe. */
1528	cb = rf_AllocCallbackDesc();
1529	/* XXX the following is bogus.. These functions don't really match!!
1530	 * GO */
1531	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1532	cb->callbackArg.p = (void *) cbArg;
1533	cb->next = pssPtr->procWaitList;
1534	pssPtr->procWaitList = cb;
1535	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1536		  raidPtr->raidid, psid);
1537
1538	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1539	return (1);
1540}
1541/* called upon the completion of a forced reconstruction read.
1542 * all we do is schedule the FORCEDREADONE event.
1543 * called at interrupt context in the kernel, so don't do anything illegal here.
1544 */
1545static void
1546ForceReconReadDoneProc(void *arg, int status)
1547{
1548	RF_ReconBuffer_t *rbuf = arg;
1549
1550	if (status) {
1551		printf("Forced recon read failed!\n");	/* fprintf(stderr,"Forced
1552							 *  recon read
1553							 * failed!\n"); */
1554		RF_PANIC();
1555	}
1556	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1557}
1558/* releases a block on the reconstruction of the indicated stripe */
1559int
1560rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1561{
1562	RF_StripeNum_t stripeID = asmap->stripeID;
1563	RF_ReconParityStripeStatus_t *pssPtr;
1564	RF_ReconUnitNum_t which_ru;
1565	RF_StripeNum_t psid;
1566	RF_CallbackDesc_t *cb;
1567
1568	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1569	RF_LOCK_PSS_MUTEX(raidPtr, psid);
1570	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1571
1572	/* When recon is forced, the pss desc can get deleted before we get
1573	 * back to unblock recon. But, this can _only_ happen when recon is
1574	 * forced. It would be good to put some kind of sanity check here, but
1575	 * how to decide if recon was just forced or not? */
1576	if (!pssPtr) {
1577		/* printf("Warning: no pss descriptor upon unblock on psid %ld
1578		 * RU %d\n",psid,which_ru); */
1579#if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1580		if (rf_reconDebug || rf_pssDebug)
1581			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1582#endif
1583		goto out;
1584	}
1585	pssPtr->blockCount--;
1586	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1587		 raidPtr->raidid, psid, pssPtr->blockCount);
1588	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
1589
1590		/* unblock recon before calling CauseReconEvent in case
1591		 * CauseReconEvent causes us to try to issue a new read before
1592		 * returning here. */
1593		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1594
1595
1596		while (pssPtr->blockWaitList) {
1597			/* spin through the block-wait list and
1598			   release all the waiters */
1599			cb = pssPtr->blockWaitList;
1600			pssPtr->blockWaitList = cb->next;
1601			cb->next = NULL;
1602			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1603			rf_FreeCallbackDesc(cb);
1604		}
1605		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1606			/* if no recon was requested while recon was blocked */
1607			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1608		}
1609	}
1610out:
1611	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1612	return (0);
1613}
1614